

Precision & Industrial Positioning Systems

Motion Control Solutions

ENGINEERING YOUR SUCCESS.

Parker Hannifin Corporation

Parker Hannifin is a Fortune 250 global leader in motion and control technologies. For more than 100 years the company has engineered the success of its customers in a wide range of diversified industrial and aerospace markets. Learn more at www.parker.com or @parkerhannifin.

Total System Solutions

Parker's team of highly qualified application engineers, product development engineers, and system specialists can turn electromechanical components into an integrated system solution. Moreover, our Selectable Levels of Integration[™] allows you to choose the appropriate system, subsystem, or component to meet your specific need.

First in Delivery, Distribution, and Support

In today's competitive, fast-moving economy, what good is an application that isn't ready on time? This is especially true when compressed design cycles make the quick delivery of critical components essential. With factories strategically located on five continents, Parker offers an unrivaled delivery record, getting solutions out our door and onto your floor faster than ever.

Parker also has the industry's largest global distribution network, with more than 8,600 distributors worldwide. Each of these locations maintains ample product inventory to keep your downtime to a minimum. And many distributors have in-house design capabilities to support your system and subsystem requirements.

Parker world headquarters in Cleveland, OH.

Training

Parker's best-in-class technology training includes hands-on classes, web-based instruction, and comprehensive texts for employees, distributors, and customers. Parker

also provides computer-based training, PowerPoint presentations, exams, CAD and simulation software, and trainer stands. Get the in-person training schedule at **parkermotion.com/support_training.html.**

parker.com/emn

Our award-winning Web site is your single source for

- Product information
- Downloadable catalogs
- Motion-sizing software
- 3D CAD files
- Training materials
- Product-configuration software
- RFQ capabilities
- Videos and application stories
- Selection, Sizing Tools

24/7 Emergency Breakdown Support

The Parker product information center is available any time of the day or night at 1-800-C-Parker. Our operators will connect you with a live, on-call representative who will identify replacement parts or services for all motion technologies.

Welcome!

Thank you for your interest in the products and systems offered by Parker Hannifin Corporation's Electromechanical & Drives Division. This catalog presents Parker's "perfect fit" electromechanical solutions for highprecision positioning and high-speed automation. Our products and systems are recognized around the world for their functionality, performance, and reliability.

The products illustrated in this catalog can be combined to form single- or multi-axis systems. These systems are offered at Selectable Levels of Integration[™] ranging from basic single-axis mechanical tables and actuators... to multi-axis mechanical subsystems... to complete electromechanical systems and robots including motors, drives, controls, and machine interface.

As you read through this catalog, you will discover that Parker offers the widest variety of electromechanical solutions that are delivered in the shortest amount of time. Still, many customers require special solutions to satisfy unique or special requirements. Parker has been providing custom engineered solutions for over 30 years to satisfy those requirements. If your application cannot be fulfilled by the complement of products found in this catalog, please contact an authorized Parker Automation Technology Center or a factory applications engineer.

We are proud to present to you a complete spectrum of positioning and motion control products. We invite you to discover the advantages that can be realized by relying on Parker for products and systems which represent the very best value in the electromechanical marketplace.

Sincerely,

Chris Griffin General Manager

TABLE OF CONTENTS

INTRODUCTION

- 4 Partners in Automation & Unrivalled Support
- 6 Selectable Levels of Integration™
- 8 Parker Products and Technologies
- 10 Application Solutions
- 13 Precision and Industrial Markets
- 15 Additional Capabilities
- 16 The Virtual Engineer Design Tool
- 17 Product Selection Information
- 12 Electromechanical Automation Products

SCREW DRIVEN AUTOMATION TABLES

- 21 Overview
- 22 XR Series Precision Screw-Driven Positioners
- 56 HMRS Screw-Driven Actuators
- 91 XE Series Economy Screw-Driven Positioners
- 107 404XE Series Screw-Driven Positioners
- 118 OSPE..SB/ST Screw-Driven Actuators
- 142 LCR Series Light-Capacity Screw Driven Positioners

BELT DRIVEN AUTOMATION TABLES

- 157 Overview
- 159 HMRB Belt-Driven Actuators
- 190 OSPE..BHD Belt-Driven Actuators
- 207 OSPE..B Belt-Driven Actuators
- 229 OSPE..BV Fixed Belt-Driven Actuators
- 235 LCR Series Light-Capacity Screw Driven Positioners
- 247 HPLA Series Belt-Driven Linear Modules
- 261 HLE-RB Belt-Driven Linear Modules
- 276 HLE-SR Belt-Driven Linear Modules
- 287 HZR Vertical-Axis Belt Driven Positioners
- 293 Gantry Robot Configurations
- 303 HPLA/HLE Options and Accessories

LINEAR SERVO MOTOR DRIVEN TABLES

- 308 Overview
- 309 400LXR Series Linear Motor Tables
- 319 Trilogy I-FORCE Ironless Linear Positioners

MINIATURE POSITIONERS

- 341 Overview
- 342 mSR Miniature Square Rail Positioner
- 362 MX80L Linear Motor Driven Stages
- 370 MX80S Ballscrew/Leadscrew Driven Stages
- 377 MX80M Free Travel & Micrometer Driven
- 380 MX45S Linear Positioning Stages

ELECTRIC CYLINDERS

- 390 Overview
- 391 ETH High Force Electric Cylinders
- 441 XFC Extreme Force Electric Thrust Cylinder

ROTARY AND LIFT POSITIONERS

- 471 Overview
- 472 mPR Miniature Precision Rotary Stage
- 487 PM-DD Powerful Direct Drive Motors
- 496 RM Series Worm Drive Rotary Tables
- 501 200RT Series Rotary Tables
- 507 ZP200 Series Vertical Lift "Wedge" Table

DRIVES, MOTORS, GEARHEADS, & CONTROLLERS

- 512 Overview
- 513 Gearheads and Gearmotors
- 516 Rotary and Linear Motors
- 525 Servo Drives & Controller Drives
- 526 Stepper Drives & Controller Drives
- 527 Motion and Machine Control
- 528 HMI Human Machine Interfaces

ENGINEERING REFERENCE

- 530 Overview
- 531 Technical Reference Information
- 560 Glossary of Terms
- 562 Offer of Sale

© Copyright 2020 Parker Hannifin Corporation. All rights reserved.

PARKER PRODUCTS & TECHNOLOGIES

Partners in Automation

Today's automation applications demand performance in quality throughput, productivity and precision. Miniaturization of semiconductor, electronics and life science applications have created the need to partner with companies that have the experience and products to meet stringent specifications for smaller, more precise motion control solutions.

Parker's dedicated electromechanical business is rapidly becoming an industry leader in providing precision connectivity to PC-based controls for target industries including:

- Semiconductor
- Electronics
- Life Science
- Medical Equipment
- Metrology

In the industrial markets, solutions from Parker's Electromechanical Automation Division combine speed, accuracy and high-load capacities to give machine builders and OEMs a competitive edge in applications including:

- Packaging
- Automotive Manufacturing and Assembly
- Printing
- Material Handling
- Metal & Plastics Fabrication

Parker is about motion control engineering, manufacturing, application expertise and unparalleled customer service. Our electromechanical systems and solutions are available wherever needed—around the corner or around the world.

Unrivaled Support

Customization and Services

Unlike many other motion technologies, electromechanical applications often require custom solutions. Parker has a Custom Systems Group staffed by experienced engineers and technicians who utilize systematic processes for handling component modifications or complete one-of-a-kind systems.

The System is the Product

Many of the industrial systems shown in this catalog are built specifically to customer request and need. Parker system customers can receive many optional services such as:

- 3-D Custom Assembly Drawings
- Electronics Integration
- Finite Element Analysis
- Life Load Testing
- End Effector Integration
- High-Flex Cabling Systems
- Structural Frame & Guarding
- & more

Our advanced manufacturing and assembly process allows us to build quality and consistency into every element of your motion system. Each mechanical system is fully assembled prior to shipment and each component is properly handled to protect finish and appearance. Performance and specifications are verified with state-ofthe-art testing, including:

Cleanroom Testing

Parker is equipped with particulate testing to certify systems for your cleanroom application.

EMI Testing

Parker has an EMI test chamber, which allows us to test equipment to verify levels of electromagnetic interference.

Precision Metrology Lab

When precision is critical to your process, you need validated, proven performance data. Parker certifies all precision-grade positioners using state-of-the-art laser interferometers, and provides reports to validate accuracy and bidirectional repeatability.

24/7 Emergency Breakdown Referrals

The Parker product information center at 800-C-PARKER offers live operators 24/7 to help identify replacement parts or services.

Parker Automation Technology Centers

Parker Automation Technology Centers are a network of premier product and service providers who can serve you locally for your automation needs. Each Automation Technology Center is certified to have completed significant product training and has the ability to provide subsystem solutions with local support.

Your Delivery Date is Our Lead Time

We measure ourselves to your ship date to ensure we are aligned to our customers' needs. In emergency situations, we can ship a solution in as little as one day.

www.parker.com/emn

The Parker Electromechanical & Drives web site offers the most extensive online support tools in the industry, including:

- Complete online catalog
- FAQ database with more than 500 answers to common questions
- Virtual Engineer interactive product sizing and selection tool
- Comprehensive CAD drawings and 3-D models for electronic and mechanical products
- · User guides and detailed product specifications
- Latest software and firmware revisions
- Application case studies and videos
- Custom solutions photo library
- · Innovative technology white papers

One-on-One with a Motion Control Expert Toll-Free Applications Engineering Assistance

When you have urgent questions, expert answers are only a phone call away. Our team of experienced engineers are ready to take your call. These engineers have practical field experience and can provide you with application and product assistance throughout the stages of your project and for the life of the product.

For presale support, including sizing and selecting systems, call 800-245-6903 (724-861-8200 outside the US). For post-sale support with technical questions on programming and troubleshooting, call 800-358-9070 (707-584-7558 outside the US). Our staffing and support tools allow us to resolve most issues and get your project rolling in less than one hour.

PARKER PRODUCTS & TECHNOLOGIES

Selectable Levels of Integration[™]

Selectable Levels of Integration[™] is Parker's philosophy of product development and management. A machine builder can choose the appropriate system, subsystem, or component that meets their specific need and optimizes their system design.

Parker designs solutions for customers of all types, whether you need a complete integrated system or want to build your own with the tailored components that match your performance and price requirements.

From comprehensive systems to single products, we'll help you create the best solution for your business.

Machine builders and OEMs often choose to integrate a complete electromechanical system into their existing machine. They rely on Parker's knowledge, experience, and support to make this process as simple and cost-effective as possible.

SYSTEMS

BUNDLED SOLUTIONS

COMPONENTS

When you choose Parker as your design partner, our engineering expertise will reduce your design time, ensure components are compatible with each other, and bring your machine to life more quickly. Ultimately this results in savings of both time and money.

Component Solutions

Parker has the largest platform of standard electromechanical automation products on the market. This platform ranges from the user interface software and touchscreen (HMI) through the T-slot aluminum framing and guarding and includes everything in between. If you have the capability and experience to develop your own systems, our innovative, easy-to-use components will help you get the job done. Local manufacturing provides short lead times, large selection, and proven reliability.

Parker Products & Technologies

The Fundamental Elements of Motion and Machine Control

A complete platform of electromechanical solutions and products

Visualization – Human-Machine Interfaces (HMI)

Parker offers HMI solutions for every application, from simple push-button replacement to sophisticated networking, multimedia, and data logging requirements. Parker pre-loads Interact Xpress or InteractX HMI software on PowerStation industrial computers to provide a ready-to-go HMI solution. This bundled approach reduces development and integration time for your HMI project.

Motion & Machine Controllers

Parker automation controllers have advanced features built-in, such as kinematics transformation for the control of robots and other non-linear functions. With a variety of communication protocol options, these controllers are easily adapted into your machine network and can help manage your internet data connectivity for machine to machine communications, with our embedded Xpress platform.

Drives & Drive/Controllers

Parker servo and stepper drives are designed to deliver a maximum amount of power output and performance. With optional integrated control capability, Add On Intructions for EtherNet/IP, and multiple communication protocols, Parker drives are optimized to ease integration and start-up.

Rotary & Linear Motors

Using advanced technologies, Parker rotary motors provide maximum torque density. Our designs also provide cog-free rotary motion for the best low-speed smoothness. Patented linear motor designs provide the greatest winding uniformity and accuracy in the industry, and our product offering scales from small linear motor components to the largest force capacity.

Gearheads & Gearmotors

With expert machining and high precision designs, the Parker gearheads have precision options with less than three arc-minutes of backlash. Our other gearhead options include NEMA sizes, right angle, dual drive, and more.

Linear & Rotary Positioners

Parker offers best-in-class positioner designs with screw, belt, or linear motor-drive technologies. Our award-winning designs lead the way with unmatched flexibility and precision capabilities. Parker's breadth of positioning product solutions includes positioners, miniatures, OEM-friendly linear motors, and precision and high-payload industrial rotary positioner products.

Manually Driven Positioning Slides and Stages

For over forty years, Parker has been a leader in supplying manual positioners to industries and laboratories around the world. Free travel linear slides and precision positioners are available in sizes ranging from less than half an inch wide to 6 inches wide, travels from 1 inch to 30+ feet, and payload capacities of hundreds of pounds.

Electric Cylinders

Since the early 1990s, Parker has led the market for high quality electric cylinders. Today, Parker has one of the most complete electric cylinder product lines available, offering high speed linear motor versions, high-force ball screw cylinders, extreme-force roller screw cylinders, and low- to mediumcapacity lead screw/ball screw versions. Products range from ISO25 to 195 mm frame sizes with capabilities up to 80,000 lbs of thrust.

T-Slot Aluminum Framing (IPS)

Parker T-Slot aluminum framing utilizes aircraft-grade aluminum for robust, high-strength assemblies. Choose from individual components, bundled inventory, kits, and turnkey systems. We also offer full engineering, fabrication, and assembly services. We are the single source/complete resource for all your structural design needs.

Systems

Parker offers multi-axis Cartesian and gantry-style robots as standard pre-configured. If the application needs something more custom, we offer best-fit custom automation solutions ranging from precision cleanroom and laboratory motion to heavy-duty industrial automation. When you partner with Parker, you leverage the full extent of our global motion and control leadership to create unrivalled application solutions.

Application Solutions

The majority of today's positioning and motion control systems are involved in processes associated with "making" (manufacturing), "moving" (transferring), or "measuring" (testing).

Parker's electromechanical systems are utilized extensively in all three areas. This is attributed to our ability to provide "Perfect Fit" solutions covering a broad spectrum of requirements at various levels of integration and complexity.

Below and on the following pages are several examples of Parker engineered electromechanical solutions for customerspecific applications.

Make

The application examples shown here are a small sample of the multitude of manufacturing processes where Parker system solutions are being utilized. From factory floors to cleanrooms, Parker provides versatile motion systems and subsystems that maximize manufacturing productivity.

Automotive Component Assembly Machine

Tooling station positioner to replace mechanical cam.

- 6 inch vertical travel with electromechanical brake on ballscrew
- 0.0002 inch position repeatability
- Dowel holes in table base and carriage for precise mounting
- Strip seals on table to keep fingers and debris out of table

Catheter and Stent Manufacturing for Medical Industry

XY positioning for micromanufacturing of precision instruments.

- Miniature positioners with NEMA 16 servo motors
- 0.00002 inch resolution with linear encoder feedback
- Continuous duty cycle
- Precision grade tables with special laser interferometer testing

Sealant Dispensing for Engine Rocker Covers

Contour path - CAD to motion.

- XYZ (18 in x 14 in x 6 in) work area
- High stiffness tables for cantilevered mounting
- Cable carriers for multi-axis system
- Precision ground ballscrews for smooth, quiet operation

Rapid Prototype Machines

Automated process for fabricating dense metal parts by fusing metal powder within the focal beam of a laser.

- Combined linear motor, ballscrew and belt drive technologies
- Complete with machine base and cable management system
- Special straightness and flatness testing
- Custom engineered brackets

Food and Beverage Packaging

Filling machine in washdown environment.

- Stainless steel construction
- FDA approved lubrication
- 30 inch travel; 50 lb load
- Continuous duty at 120 in/sec velocity; 3 g acceleration

PARKER PRODUCTS & TECHNOLOGIES

Move

The application examples shown here illustrate the types of material handling applications routinely solved by Parker system solutions. From overhead gantry robots to tabletop XY positioners, Parker provides the widest spectrum of material handling application solutions in the industry.

Electric Motor Container Handling

Automated transfer of product from conveyor to labeler to pallet.

- XYZ (80 in x 60 in x 40 in) work area
- Per axis repeatability of 0.004 inch
- Complete cable management system
- Custom end effector

Multi-Pick Storage and Retrieval System

Programmable order picker

- XYZ (20 ft x 13 ft x 3 ft) work area
- High dynamics (2 g accel.; 80 in/sec vel.)
- Custom end effectors

Genomic Specimen Handling

Accurate placement of 96, 384, or 1536 well microtiter plates for DNA sequencing and analysis

- XY (24 in x 20 in) work area
- Modular motion platform integrates into OEM machinery
- Attractive packaging of XY table with stainless steel protective covers
- Cleanroom compatible

Machine Tool Loader/Unloader

Automated machine tending for top entry machine access

- XZ (10 ft x 3 ft) work area
- 60 in/sec velocity requirement
- Clean cable / air hose routing
- Payloads up to 130 lb

Palletizer for Pharmaceutical Products

Product loading on automated guided vehicle

- XYZ (15 ft x 6 ft x 6 ft) work area
- Pneumatic rotary axis
- Custom end effector
- Overhead gantry mechanics allow floor space utilization

PARKER PRODUCTS & TECHNOLOGIES

Measure

The examples shown here showcase Parker's ability to provide high-precision motion solutions for critical test and measurement applications. From miniature microscope mounted positioners to steel framed test systems, Parker provides solutions for the widest range of precision applications and ensures performance with laser testing and certification.

Surface Measurement of Turbine Blades

Precise positioning of contact probes.

- Custom 5-axes motion mechanics
- Complete with machine base and cable management system
- Special laser interferometer certification
- Heavy duty construction to minimize deflection

Flying Height Tester

Position a test specimen to simulate hard disk drive reader head operation.

- 6 in x 4 in XY travel designed for high accuracy
- Special materials for extreme rigidity and low ESD
- Cleanroom compatible mechanical system
- Special point of measurement laser interferometer testing

Wafer Inspection

Vision system raster scan.

- 350 mm x 350 mm work area
- Continuous duty cycle
- Cleanroom compatible mechanics
- Precision ballscrew or linear motor drive options

Inspection of Composite Parts for Aerospace Industry

Precision positioning of 300 lb test specimen relative to fixed test beam.

- 40 in x 20 in x 360° work envelope
- All axes of motion aligned to test beam for entire travel range
- Custom 16 ft x 8 ft x 5 ft steel machine frame
- Complete with control panel and cable management system

Camera Calibration Rig

Calibration of video camera used in space for vital display information.

- Ballscrew driven XYZ system with extended travel (144 in x 24 in x 24 in)
- Custom engineered brackets
- Pinned orthogonal
- Repeatable within 0.0005 in

MARKETS

PRECISION

The precision manufacturing industry depends on innovation, low tolerances, and extremely high quality standards to make superior products. Accuracy and performance monitoring improve manufacturers' ability to deliver reliably, even as the industry demands increasingly smaller products and assembly equipment. To meet the needs of precision manufacturers, Parker offers motion control components that satisfy the need for computerization, miniaturization, and ultra clean processing.

Parker provides solutions for OEMs of semiconductor and life science products, electronics consumables, automotive components, LED lighting products, 3D printing equipment, and medical devices, as well as for companies in the environmental and food processing sectors.

Specific Applications

- LIFE SCIENCES
- Automated Imaging
- Digital Pathology
- DNA Sequencing
- Liquid Handling
- Sample Handling

- Non Contact Metrology
- Optical Profilometry
- Laser Profilometry
- Confocal Microscopy
- Shuttling and Handling

MATERIAL PROCESSING

- Laser Machining
- Cutting Scribing Drilling
- Ablation
- Micro machining
- 3D Printing

- SEMICONDUCTOR
- Wafer Inspection
- Mask Alignment
- Lithography
- Atomic Force Microscopes
- Optical Profilometry

Parker Design

Parker is the design partner of choice for today's precision manufacturers. In order to improve the design process, Parker offers compact products with very high precision that easily mount to linear motion axes. A variety of different encoder options, linear motor technologies, and product sizes provide flexibility, accomodating performance and budget requirements. Features and options like limits and home sensors, high flex cabling, high performance bearings, and refined design packages add function and value.

Laser-grade precision testing ensures quality, and cleanroom capabilities build applications solutions anywhere that manufacturers need to meet clean production requirements. Parker is

capable of validating stage cleanroom classification according to either

Federal Standard 209E or ISO standard 14644-1 with an onsite cleanroom test chamber, and has years of experience adapting stages to meeting a variety of classifications. From a single axis component to multi-axis custom designed systems, Parker can provide solutions for the precision market.

Features

- · High resolution and repeatability
- Submicron precision
- Value and high end options
- Excellent torque density without weight in rotary products

MARKETS

INDUSTRIAL

The changing landscape of the industrial sector means manufacturers need to focus on innovative solutions that improve efficiency, performance, clean operation, and throughput. Taking advantage of advanced manufacturing trends and the potential of the connected products of Industry 4.0 provides an opportunity to increase performance and profit. Parker offers motion control components that deliver the speed and robust capabilities needed by industrial manufacturers.

Parker provides solutions for OEMs involved in the heavy manufacturing sector, automotive assembly and production, printing and publishing, textile manufacture, food and beverage packaging, and for companies manufacturing various other industrial products such as fabricated metals and building products.

Specific Applications

MATERIAL FORMING

- Tube Bending
- Press operations
- Fluid Power Migration

PACKAGING

- Palletizing
- Cartoning
- Primary PackagingBottle Filling
- Dottio i illing

IN-PLANT AUTOMOTIVE

- Custom machine builders
- Forming, fabricating
- RTU
- Test equipment

FLIGHT SIMULATION

- Gate/door actuation
- Stage automation
- Flight simulation

Parker Design

Parker is the design partner of choice for today's industrial manufacturers. To reduce complexity and give OEMs maximum flexibility, Parker offers user friendly and versatile industrial products with many adaptable options and features. A choice of frame sizes, drive train options, and bearing type, plus a range of screw and belt driven configurations, make it simple to design the right solution for any application. Rugged construction and high payload capacities deliver the performance needed in heavy duty applications.

Customizable options accomodate a variety of performance and installation requirements. Selections include mounting, carriage, and sensor options. Features are often available for harsh conditions, such as protective covers and purge ports. Accessories include force and limit sensors, shock absorbing bumpers, and couplings and housings. These options create industrial products that are tailor made solutions for any application.

Features

- Modular designs
- · Highly configurable product families
- · High performance, load to life characteristics
- Low maintenance

Additional Capabilities

Gantry Systems Page 293

Parker's gantry systems provide cost-effective, easy to integrate solutions that satisfy the vast majority of automation requirements. In addition to these standard gantry systems, Parker offers products with additional capabilities to fulfill the needs of special applications. Our engineering skill and manufacturing expertise have integrated these products into custom-tailored gantry solutions which have successfully addressed the most unique and exacting requirements of machine builders and integrators around the world.

Support Structures

Parker can include the support structure and machine guarding as part of your complete system solution. Parker's IPS extruded aluminum structures are suited for light to medium duty requirements. High strength steel supports are offered for applications involving greater loads and forces.

Motors, Drives, and Controls (Electrical Subsystems) Page 512

A high speed multi-axis Gantry Robot requires a complete electromechanical solution where the machine Interface, Control and Motor/Drive functions are seamlessly integrated with the mechanical elements. Parker's wide range of electrical products and subsystems enable Gantry Robots to be supplied to the customer at the level of integration most suitable for his need. Whether you need a basic mechanical unit, a unit including drives and motors, or a full-blown electromechanical system ready to run or link to a PLC, Parker has the best solution.

Our Virtual Engineer: Shorten Your Design Cycle

Parker's Virtual Engineer an innovative design tool for linear motion applications in industrial automation. Virtual Engineer presents an intuitive interface for the user to enter application details for speed, load, external forces, and then accurately sizes the product, generating a custom report and seamlessly creating an RFQ. Virtual Engineer provides a new level of design collaboration with Parker motion control experts, and by doing so, can take the load off your own engineering team, and reduce your machine design time.

The graphical interface allows input of payload position and moment input, as well as axis orientation. Trapezoidal, triangle, or custom motion profiles may be specified, and an animated motion profile is displayed to confirm.

Other features include

- · Product life estimation for provided specifications
- · Compare function for multiple products that meet your specifications
- "Save Progress" feature so you can return to a project at a later time. Virtual Engineer never goes on break, but you can!
- · Project collaboration: Share your project with your team or ours for additional help

Start using Virtual Engineer at parker.com/VirtualEngineer

Optimize Your Selection and Have Confidence in Your Results Using the "Compare" Feature

As you enter your motion specifications, a list of possible solutions appears on your screen. If any specification exceeds a particular actuator's capability, it is eliminated from the choices. After all specifications are entered, a "Compare" feature will show you the differences between the remaining products, including expected life and relative cost. This information can then be saved, downloaded, or submitted to Parker for a request for quote.

Virtual Engineer "My Projects" Platform

- Experience a truly collaborative design environment
- Share application sizing details, product selection, project notes, drawings and much more, with colleagues or Parker engineers
- Personalize your projects, with name changes, detailed notes, and more
- Live chat with Parker engineers to help you with questions as you navigate the tool

Cantilevered or offset from carriage Rotary Motion

Rotationally sition a Produ

Electromechanical Automation Products & Technologies

Standard Versus Precision

All of Parker's precision products have been specially design to provide your product with the highest degree of precision possible. As such all of Parker's How will actuator precision products are tested on our Laser handle the load? Interferometer to ensure that products meet all precision specifications in Carry / Support Push / Pull the way of straightness, flatness, bidirectional repeatability, and stage accuracy. Parker also provides a linear slope corrected value for all precision products. This thin the body the actuate Centered on carriage value can then be input into electronic controls to compensate for any mechanical errors electronically-providing you with a higher degree of precision than what pure mechanics alone can obtain.

Rod-Style Linear Actuator

A rod-style linear actuator provides linear motion via a rod that extends from the actuator providing a push/pull motion. The entire stroke of the unit happens exterior to the body of the actuator, so these actuators will require more space to capture the same stroke, compared to a rodless or high moment rodless actuator. Parker offers either a thrust dense ball screw version of this actuator or a high speed linear motor variation depending upon the needs of your application.

Rodless Actuators

2)

3

A rodless linear actuator provides linear motion via a moving carriage in which the stroke happens within the body of the actuator itself. A rodless linear actuator contains only one linear guide rail which is capable of supporting a load. Parker supplies a variety of rodless linear actuator ranging from economical belt drives, to thrust dense screw versions, to linear motor driven versions which have superior acceleration and speed capacity.

Industrial High Moment Rodless

Industrial (High Moment Rodless) Linear actuators provide linear motion via a moving carriage in which the stroke happens within the body of the actuator itself. A High Moment Rodless linear actuator contains two linear guide rails allowing the actuator to better handle cantilever or offset loads. As a result these actuators often carry greater loads when compared to their rodless equivalent. Parker produces a wide variety of high moment rodless actuators driven with a wide variety of drive train options including belts, screw, or linear motor.

4 High Precision Positioners

x 📙 LOAD

Precision positioning product refers to any positioner that can move with repeatability below 3 microns of bi-directional repeatably. All precision products contain dual linear guides which are intended to maintain the positioners stability over the length of travel. The guidance systems within these actuators are laser indicated, and maintain a very specific straightness and flatness. Parker produces a variety of these positioners with two drivetrains of either a precision ground ball screw or a direct drive linear motor.

Rotary Positioner

Unlike the prior four product types which create motion along a linear path, rotary positioners support motion around a fixed rotary path. Rotary positioners can be driven through internal gearing transferring rotary motor torque into linear motion through a worm gear which is then transferred into rotary motion at the table surface, providing significant mechanical advantage. Alternatively, rotary positioners can be direct driven, in that rotary motor (traditionally brushless DC) stator and rotor elements are packaged inside of a robust guidance structure which provides much higher payload capacity than traditional rotary motors, which are not typically designed for axial loading conditions. Parker manufactures both gear driven and direct driven rotary tables and integrates cross roller and radial bearing guidance to provide a range of various payload, precision and overall performance characteristics.

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

6

Product List

						M	4				. oto	, otor	Notor												IIDSI	~
				.5	crew	Screw	Screw	· /.		Servone	armo	and Me in	ar Mr. in	s	Ball		.0						1 mm	ad.*	. L	million
				dBall	ved Bar	Ind Bar	Ascrew	T Geal	Ct Drive	Less Lill	lesslin	coreth	of Beat.	CUISTIN	are Rall	5 Rolle	searing			0			Travel na	10°°	Ile WIOT	SPEED
		Model	 Polle	N' N'	U. Cro	1 1 es	SOT NO	ALL DIN	3 ^C 510	de vor	He WOY	NC Glic	e. Peci	SQU	a. Clo	Ball	B	5	10.	50 5 ⁵	55 7 ⁵	Nat	Norn.	Pro	III Mat	
		OSPE25	•			•						•								•	•	1000	500 (112)	41	250	
	ess	OSPE32	•			•						•								•	•	2000	1200 (267)	52	500	
	Rodl	OSPE50	•			•						•								•	•	3200	3000 (674)	87	1250	
		LCR30				•								•							•	600	90 (20)	30	150	
		HMRS08		•										•					•			1200	1800 (405)	80	600	
	lless	HMRS11		•										•								1500	4450	110	800	
	t Roc	HMRS15																				2000	8800	150	1000	
	men	HMBS18																				2100	16200	180	1200	
_	h Mo	HMRS24		•										•								2300	(3642) 26600	240	1600	
N N	I Hig	40024		•										•								2000	(5980)	50	450	
Ц Ц Д	stria	402XE	·										•					•				200	900 (203)	50	400	
CRE	Indu	403XE	•										•					•				655	1600 (360)	60	800	
s s		404XE	•										·						•			/00	1700 (382)	100	1440	
		401XR			•									•			•	•				600	490 (110)	41	1000	
		402XR			٠									٠			•	•				600	979 (220)	58	1000	
		404XR			•	•								•			•	•				700	1700 (375)	95	1200	
	ision	406XR			•									•			•					2000	6300 (1390)	150	1200	
	Prec	412XR			•									•				•				2000*	14700 (3241)	300	1175	
												м	NIATU	RE												
		MX45S			•	•									•		•	•				25	68 (15)	45	30	
		MX80S			•	•									•		•	•				150	80 (18)	80	200	
			_									_						IN	ARC-S	FC	_		THRUST		RPM	
	6	PMDD-B						•								•	•		110-0			-	1500 (337)	135	500	
	TAGE	PMDD-C														•	•					-	3300 (742)	175	500	
	RVOS	PMDD-D														•							4000 (900)	230	500	
	RY SE	PMDD-F																				-	11000	290	300	
	ROTA	PMDD-E															•						(2472) 15000	260	250	
	ß	FWDD-F						•								•	•						(3371)	500	200	
	IATURE CISION Y STAG	mPR080						•								•	•	•				-	39 (9)	80	600	
_	MIN PRE ROTAR	mPR100						•								•	•	•				-	118 (26)	104	600	
E S	EDGE	ZP200	•											•			•	•				25	735 (165)	200	440	
Б	ģ≊																									
TAR	ABLES	200RT 5in					•									•			•			-	111 (25)	197	15	
8	ARY TJ	200RT 6in					•									•			•			-	668 (150)	236	15	
) ROT/	200RT 8in					•									•			•			-	668 (150)	315	15	
	IDARD	200RT 10in					•									•			•			-	890 (200)	394	15	
	STAN	200RT 12in					•									•			•			-	890 (200)	472	15	
	ŝ	R100M					•								•				•			-	998 (220)	100	30	
	DRIVE I TABL	R150M					•								•				•			-	3992 (880)	150	30	
	ORMI	R200M					•								•				•			-	5988 (1320)	200	30	
	PREC	R300M					•								•				•			-	9980 (2220)	300	30	
																						_	()	_	_	1
	RE	mSR80									•			•			•					150	78 (18)	80	2000	
	I PREC	mSR100								•				•			•					500	118 (27)	100	2000	
Z,	H ^{GH}	MX80L								•					•		•	•				200	78 (18)	80	2000	
IVI	sion	404LXR							•					•			•	•				1000	1700 (375)	100	3000	
ORC	RECI	406LXR							•					•			•	•				1950	6300 (1390)	150	3000	
μŪμ	HIGH P	412LXR							•					•			•	•				3000*	14700	300	3000	
EAR	B	T1D/T1S															•	•				900	134 (30)	125	7000	
Ë	GRA.	T2D/T2S															•					2941	445 (100)	145	7000	
	RIAL	T3D/T3S																				2941	1068 (240)	190	7000	
	ISUD	T4D/T4S																				20/1	1780 (400)	220	7000	
1	Z	140/145								•				•			•	•				2941	1750 (400)	229	1000	1

PRODUCT SELECTION INFORMATION

Product List

							Driv	е Тур	be I	Beari	ing T	ype	Re	peata	bility (µr	n)	I	Additional nformation
			8	Drive	Screw	ular Serv	o Motor	ng alPolyan	ide Roll	arwheel		a 5	8 %		Travel - run	108d-1	I IIDS I	mn
		Model	\$°.	\$3.	111	Gh	Ste	୍ୱର୍ଦ	B	્ર છે.	<i>*</i> 0.	_ ক`	72	Mo	40.	Pr	Mo	
		OSPE25B	•			•						•		3000	160 (36)	41	2000	
		OSPE32B	•			•						•		5000	300 (67)	52	3000	
		OSPE50B	•			•						•		5000	850 (191)	87	5000	
		OSPEBHD20	•					•			_	•		5760	1600 (360)	73	3000	
	dless	OSPEBHD25	•					•				•		5700	3000 (674)	93	10000	
	Ro	OSPEBHD32	•					•				•		5600	(2248)	116	10000	
		OSPEBHD50	•					•				•		5500	(3372)	175	10000	
		OSPEBV20	•					•				•		1000	1600 (360)	93	3000	
		OSPEBV25	•					•				•		1500	3000 (674)	93	5000	
		LCR30	•			•		•					•	1000	90 (20)	30	870	
	nent	HMRB08	•					•				•		3000	1800 (405)	85	2000	
Ven Ven	Mor	HMRB11	•					•				•		4000	4450 (1000)	110	2000	
	High odles	HMRB15	•					•				•		6000	8800 (1978)	150	5000	
	strial R	HMRB18	•					•				•		6000	16200 (3642)	180	5000	
	Indu	HMRB24	•					•				•		6000	26600 (5980)	240	5000	
		HPLA080	•				•						•	5540	3000 (674)	80	5000	
		HHPLA120	•				•						•	9470	6000 (1358)	120	5000	
		HPLA180	•				•						•	9240	15000	180	5000	
		HLE60RB	•				•						•	4000	650 (150)	60	5000	
	SSS	HLE100RB	•				•						•	6200	1140 (256)	100	5000	
	Rodle	HLA150RB	•				•						•	7900	2280 (512)	150	5000	
		HLE60SR	•					•					•	3000	680 (157)	60	3000	
		HLE100SR	•					•					•	6150	1680 (377)	100	3000	
		HZR80	•										•	1500	2822 (635)	80	5000	
		HZR100	•				•						•	2000	4410 (992)	100	5000	
															ΑΧΙΔΙ			1
_	S	FTURGO												1000	FORCE	40.5	1007	
	DER	ETH032		•		•					•			1000	3700 (831) 9300	46.5	1067	
č,	ALIN	ETH050		•		•					•			1200	(2099)	63.5	1333	
	S S	ETH080		•		•					•			1600	(5640)	95	1707	
망	CTA	ETH100		•		•					•			2000	(12584)	120	800	
<u>5</u> 2	ELE	ETH125		•		•					•			2000	(25618)	150	833	
3																		

Electromechanical Automation Products & Technologies

This catalog is divided into several sections based on primary distinguishing characteristics, such as drive technology, degree of precision, travel range, and acceleration. See the Product Selection Information on the following pages for more information.

If you don't find what you are looking for, please contact us for information on other suitable Parker products.

Visit our Website

Complete up-to-date technical assistance can be found on the web at **parker.com/emn**. This includes all the latest information on current products, new product introductions, local assistance and support, plus a comprehensive "Engineering Reference Library."

- Complete Product Catalog
- Product Selection Wizards
- Performance Charts and Graphs
- Engineering Data and Calculations
- CAD Drawings
- Local Service and Support Directory
- On-Line Purchasing
- Application stories and videos

PRODUCT SELECTION INFORMATION

Screw-Driven Positioners

Parker high-precision screw driven tables are divided into families (or groups) which are distinguished by the primary bearing style and precision. All tables are offered with several drive mechanism options and are designed for direct connection to standard frame size stepper or servo motors. Parker offers the most comprehensive array of products in the industry and advanced product development. Screw-driven products integrate seamlessly with other Parker components including servo motors, motor drives, controls, interfaces, actuators, pneumatics, and structural components. Products are available with modular construction from standard catalog tables or custom systems designed and built to specification for any application.

Parker Screw-Driven Industrial Systems

- Easy, multi-axis connectivity
- Submicron precision
- Velocities up to 1.5 meters/second
- Cleanroom and vacuum compatible
- Thorough testing and certification

XR Series Precision Screw-Driven Positioners

The XR product family offers consistent accuracy, reliable performance, high strength, and unmatched versatility. **Page 22.**

HMR High Moment Rodless Series Industrial Screw Driven Positioners

.

The user-friendly and versatile HMR has enormous moment and payload capacity bundled in a low-profile, yet sleek package. The HMRS is powerful and precise. **Page 56.**

404XE Series Screw-Driven Positioners

The 404XE positioners combine versatility with rugged construction in a compact motion platform that is ideal for 24/7 process automation. **Page 107.**

OSPE-SB and OSPE-ST Medium-Capacity Screw Driven Positioners

The OSPE offers reliability, performance, easy handling, and optimized design flexibility. Ballscrew for precise positioning and Trapezoidal Screw for zero backdrive. **Page 118.**

XE Series Economy Screw-Driven Positioners

Rugged steel body construction, integrated precision ballscrew, and bearing guide in a highly accurate, cost-effective line of positioners. **Page 91.**

LCR Series Light-Capacity Screw Driven Positioners

The LCR Series is a completely preengineered, pre-tested, ready-to-use positioner solution for unmatched, easy-to- use flexibility. Page 142.

The 400XR Series

Screw Driven Positioners for Precision, High Force Applications

- Pre-engineered package • Performance matched components Environmental protection Laser certified precision 412XR 402XR 406XR 404XR Typical Enhancements Limit/home position sensors 401XR Linear encoder feedback • **Cleanroom preparation** Multi-axis brackets & adapters •
 - Numerous selectable motor mounts
 - Servo motors and drives
 - Programmable controls
 - Cable management system

The **400XR** precision linear positioner family has achieved global recognition for consistent accuracy, reliable performance, high strength, and unmatched versatility. The XRs have excelled in industries such as life sciences, fiber optics and instrumentation, where the highest degree of precision is required.

And yet, because of the rugged construction, strength, and sealed design, these units have been used extensively for industrial automation applications such as packaging, automotive, and more.

The XR family offers an unrivaled array of features and options which are easily matched to fit any application, from the very basic to the highly complex. Premier performance, modular compatibility, and quick delivery have made these tables the perfect building blocks for precision multiaxis systems.

(1) High Strength Aluminum Body

Extruded aluminum housing is precision machined to provide outstanding straightness and flatness.

(2) Square Rail Linear Bearing

These tables are equipped with square rail carriage support bearings which provide high load carrying capabilities, smooth precise motion and dependable performance.

(3) High Efficiency Ballscrew Drive

Precision ground, or rolled ballscrew drive (5, 10, 20, 25, 32 mm lead) offers high throughput, efficiency, accuracy and repeatability.

(4) Limit/Home Sensors

Proximity sensors establish "end of travel" and "home" location and are easily adjustable over entire length to restrict the travel envelope.

5 Motor Mounts

A large selection of servo and stepper motor sizes plus selectable mounting configurations (in-line, parallel) permit **hundreds** of motor mounting possibilities.

(6) IP30 Rated Strip Seals

An anodized aluminum cover combined with stainless steel strip seals provide IP30 protection to interior components and enhance the overall appearance.

Cleanroom Preparation

Class 10 cleanroom preparation is a standard option for the 400XR series. For detailed technical information on cleanroom preparation, contact Parker's Application Engineering Department at **1.800.245.6903**

Encoders

The linear encoder option offers direct positional feedback of the carriage location. The rotary shaft encoder couples directly to the drive shaft to nullify any incurred mechanical error (particularly useful with the parallel motor mount). Not shown.

Shaft Brake

The electromagnetic shaft brake option couples directly to the drive screw and is employed primarily on vertical axes to halt carriage motion during a power loss. Not shown.

Convenient Mounting Slots

Continuous T-slots along the side of the table body provide a convenient means of mounting the table to a work surface as well as mounting accessories to the table.

Positive Pressure Port

A standard port (1/8 NPT) for pressurizing the interior to prevent particle intrusion. (Standard on 404XR, 406XR, 412XR units.)

Easy Lube System

A standard option on some models, enables easy access for ballscrew and bearing lubrication.

SPECIFICATIONS

SPECIFICATIONS 401XR (41 mm wide profile) 402XR Series (58 mm wide profile)

The 401XR and 402XR Series positioners enhance the 400XR family of precision linear positioners, addressing applications which involve precise positioning of smaller payloads within a very small space envelope.

These ballscrew driven positioners were developed to address the needs of industries such as photonics, life sciences, semiconductor, and instrumentation, where technology advancements dictate miniaturization of work envelopes.

Carriage equipped with dowel locating

holes for repeatable positioning of

tooling or payload.

Common Specifications

		Prec	ision^	Stan	idard
		401XR	402XR	401XR	402XR
Bidirectional Repeatability 2 mm lead 5 or 10 mm lead	μm	±1.3 ±1.3	_ ±1.3	±5 ±12	_ ±12
Duty Cycle	%	100	100	100	100
Maximum Acceleration	m/sec² (in/sec²)	20 (773)	20 (773)	20 (773)	20 (773)
Normal Load Capacity ⁽¹⁾	kgf (lbs)	50 (110)	100 (220)	50 (110)	100 (220)
Axial Load Capacity ⁽¹⁾ 2 mm lead 5 or 10 mm lead	kgf (lbs)	5.5 (12.1) 15.5 (34.2)	_ 38 (84)	5.5 (12.1) 15.5 (34.2)	_ 38 (84)
Drive Screw Efficiency	%	80	80	80	80
Maximum Breakaway Torque	Nm (in-oz)	0.03 (4.2)	0.086 (12.0)	0.03 (4.2)	0.086 (12.0)
Maximum Running Torque ⁽²⁾	Nm (in-oz)	0.028 (4.0)	0.08 (11.3)	0.028 (4.0)	0.08 (11.3)
Linear Bearing Coefficient of Friction		0.01	0.01	0.01	0.01
Ballscrew Diameter 2 mm lead 5 or 10 mm lead	mm	6 8	- 12	6 8	- 12
Carriage Weight	kg (lbs)	0.045 (0.1)	0.11 (0.25)	0.045 (0.1)	0.11 (0.25)

* Requires linear encoder option E3 or E4. (1) Refer to life load charts found later in this section. (2) Ratings established at 2 rps.

Travel/Screw Lead Dependent Specifications

Travel (mm) 50 100 150 200 300 400	Pos	itional Ac	Straightness & Flatness		Inpi 40	ut Inertia	(10⁵ kg	J-m²)	Maxi Screw	mum Speed /sec)	Unit Weight (kg)			
(mm)						(00)/P			- 404			/300/		(00)/F
	Precision	Standard	Precision	Standard	401XR	402XR	2 mm	10 mm	5 mm	10 mm	401XR	402XR	401XR	402XR
50	10	20	-	-	20	-	0.6	-	-	-	100	-	1.0	-
100	10	20	10	20	20	20	0.9	-	12.0	-	100	90	1.2	2.3
150	12	20	12	20	20	20	1.1	-	15.0	-	100	90	1.3	2.6
200	16	30	16	30	25	25	-	4.7	20.0	-	100	90	1.5	2.8
300	18	40	18	40	25	25	-	5.2	-	25.0	100	90	1.7	3.2
400	-	-	21	40	-	30	-	-	-	29.0	-	95	_	3.8
600	_	-	25	50	_	30	_	-	_	39.0	_	50	_	4.8

*Consult factory for higher accuracy capabilities via slope correction or stage mapping via laser interferometry.

404XR Series (95 mm wide profile)

The 404XR is a sleek compact positioner (47.3 x 95 mm profile) capable of carrying 170 kg loads up to a distance of 600 mm. Its quick and accurate positioning capability can be attributed to a high strength extruded housing, square rail ball bearing system, and precision ground ballscrew drive.

With its low profile design the 404XR is ideal for height restricted applications, and its lightweight construction makes it well suited as secondary axes on multi-axis systems. These units offer a wide array of easily adapted options and accessories which permit easy configuration to specific requirements.

Common Specifications

		Precision	Standard
Bidirectional Repeatability ⁽⁵⁾ Ballscrew Leadscrew	μm	±1.3 —	±3 ±12
Duty Cycle Ballscrew Leadscrew ⁽⁷⁾	%	100 _	100 75
Maximum Acceleration	m/sec² (in/sec²)	20 (773)	20 (773)
Normal Load Capacity ⁽¹⁾	kgf (lbs)	170 (375)	170 (375)
Axial Load Capacity ⁽²⁾ Ballscrew Leadscrew	kgf (lbs)	90 (198) –	90 (198) 25 (55)
Drive Screw Efficiency Ballscrew - Inline Motor Mount Ballscrew - Parallel Motor Wrap Leadscrew - Inline Motor Mount ⁽⁷⁾ Leadscrew - Parallel Motor Wrap ⁽⁷⁾	%	90 N/A 30 N/A	90 81 30 27
Maximum Breakaway Torque	Nm (in-oz)	0.13 (18)	0.18 (26)
Maximum Running Torque (3)	Nm (in-oz)	0.11 (16)	0.17 (24)
Linear Bearing Coefficient of Friction		0.01	0.01
Screw Diameter Ballscrew Leadscrew ⁽⁷⁾	mm	16 —	16 12.7
Carriage Weight	kg (lbs)	0.70 (1.55)	0.70 (1.55)

- (1) Refer to life load charts found later in this section.
- (2) Axial load for parallel mount is limited by a maximum input torgue of 2.5 Nm.
- (3) Ratings established at 2 rps.
- (4) Consult factory for higher accuracy capabilities via slope correction or stage mapping via laser interferometry.
- (5) Consult factory for specifications with linear encoder.
- (6) Consult factory for higher screw speeds. (7) Leadscrew is available only in custom
 - builds.

Travel/Screw Lead Dependent Specifications

	Position	al Accuracy	/ ^{(4) (5)} (µm)	Straightnes	s & Flatness	Input In	ertia (10 ⁻	⁵ kg-m²)	Max Scre	w Speed (6)	Unit
Travel	Balls	crew	Leadscrew						(revs	/sec)	Weight
(mm)	Precision	Standard	(7)	Ballscrew		5 mm	10 mm	20 mm	Ballscrew	Leadscrew	(kg)
50	8	12	20	6	8	1.68	1.81	2.34	60	25	2.8
100	8	12	20	6	8	1.93	2.07	2.60	60	25	3.0
150	10	14	30	9	12	2.19	2.32	2.85	60	25	3.3
200	12	20	40	10	16	2.44	2.57	3.11	60	25	3.6
250	12	22	50	12	16	2.69	2.83	3.36	60	25	3.9
300	14	24	60	13	18	2.95	3.08	3.61	60	25	4.2
350	14	26	70	15	23	3.20	3.33	3.87	60	25	4.5
400	16	26	80	16	27	3.46	3.59	4.12	60	25	4.8
450	19	28	90	18	30	3.71	3.84	4.37	60	25	5.1
500	21	34	100	19	30	3.96	4.10	4.63	60	20	5.4
550	23	36	110	21	30	4.22	4.35	4.88	60	20	5.7
600	25	40	112	22	30	4.47	4.60	5.14	54	20	6.0

SPECIFICATIONS

406XR Series (150 mm wide profile)

The 406XR can position high loads (up to 630 kgf) over distances up to two meters. Because of its size and strength (270 Nm, 200 lb-ft moment load capacity) this durable table is ideal as the base unit in a multi-axis system.

Duty Cycle

0 to 600 mm Travel

Carriage Weight

700 to 2000 mm Travel

From high resolution to high throughput, selectable ballscrew leads (5, 10, 20, 25 mm) make the desired resolution/velocity ratio easy to achieve, and stainless steel seal strips alleviate environmental concerns.

mm

kg (lbs)

(1) Refer to life load charts found later in this

(2) Axial load for parallel mount is limited to: 140 lbs for the 5, 10 and 20 mm lead 104 kg (230 lbs) for 25 mm lead drives

Ratings established at 2 rps.

(4) Consult factory for higher accuracy capabilities via slope correction or stage mapping via laser interferometry.

Consult factory for specifications with linear encoder.

(6) Consult factory for higher screw speeds.

Travel/Screw Lead Dependent Specifications

	Positional A (µ	ccuracy ^{(4) (5)} m)	⁽⁵⁾ Straightness & Flatness d	In	put Inertia	ı (10⁻⁵ kg-r	n²)	Max Screw Speed ⁽⁶⁾	Unit Weight
(mm)	Precision	Standard	& Flatness	5 mm	10 mm	20 mm	25 mm	(revs/sec)	(kg)
100	8	12	6	3.34	3.85	5.90	-	60	8.7
200	12	20	10	3.92	4.43	6.48	-	60	10.0
300	14	24	13	4.50	5.01	7.06	-	60	11.3
400	16	26	16	5.08	5.59	7.64	-	60	12.6
500	21	34	19	5.65	6.17	8.22	-	55	13.9
600	25	40	22	6.23	6.75	8.80	-	44	15.2
700	-	92	25	36.51	37.02	-	40.61	47	19.2
800	-	94	29	39.96	40.47	-	44.07	47	20.7
900	-	103	32	43.41	43.93	-	47.52	47	22.2
1000	-	105	35	46.87	47.38	-	50.97	47	23.7
1250	-	118	42	55.50	56.01	-	59.61	35	27.6
1500	-	134	50	64.14	64.65	-	68.24	26	31.4
1750	-	154	57	72.77	73.28	-	76.88	20	35.2
2000	-	159	65	81.40	81.92	-	85.51	16	39.1

16

2.7 (5.94)

16

25

2.7 (5.94)

Screw Driv Tables

412XR Series (285 mm wide profile)

The 412XR is a rugged heavy duty linear table (285 mm x 105 mm profile) that enables massive loads (up to 1470 kgf) to be precisely positioned over distances up to two meters. Single point "easy lube" port is standard on carriage assembly for simple servicing and a convenient adapter plate (#100-6784-01) is available for easy X-Y configuration. An unrivaled array of options combined with mounting compatibility with the smaller 400XR tables makes the 412XR ideal as the base unit for multi-axis positioning of heavier payloads.

Common Specifications

		Stan	dard
Screw Lead	mm	5, 10, 25	32
Bidirectional Repeatability ⁽⁴⁾	μm	±5	±5
Duty Cycle	%	100	100
Maximum Acceleration	m/sec² (in/sec²)	20 (773)	20 (773)
Normal Load Capacity ⁽¹⁾	kg (lbs)	1470 (3241)	1470 (3241)
Axial Load Capacity	kg (lbs)	200 (441)	460 (1014)
Drive Screw Efficiency	%	90	80
Maximum Breakaway Torque	Nm (in-oz)	0.61 (86)	0.76 (108)
Maximum Running Torque ⁽²⁾	Nm (in-oz)	0.55 (78)	0.69 (98)
Linear Bearing Coefficient of Friction		0.01	0.01
Ballscrew Diameter	mm	25	32
Carriage Weight	kg (lbs)	12 (27)	13 (28)

(1) Refer to life load charts found later in this section.

(2) Ratings established at 2 rps.

(3) Consult factory for higher accuracy capabilities via slope correction or stage mapping via laser interferometry.

(4) Consult factory for specifications with linear encoder.

(5) Consult factory for higher screw speeds.

Travel/Screw Lead Dependent Specifications

Travel	Positional	Straightness	l	nput Inertia	(10 ^{-₅} kg-m	¹²)	Max Screv (revs/	/sec)	Unit Wei	ght (kg)
(mm)	μm)	& Flatness	5 mm	10 mm	25 mm	32 mm	5, 10, 25 mm	32 mm	5, 10, 25 mm	32 mm
150	64	9	27.20	29.45	46.76	98.20	47	42	39.6	41.5
250	66	12	30.21	32.46	49.78	106.28	47	42	42.9	45.0
350	71	15	33.23	35.48	52.79	114.37	47	42	46.2	48.5
650	91	24	42.27	44.52	61.83	138.63	47	42	56.1	59.0
800	94	29	46.79	49.04	66.35	150.76	47	42	61.0	64.2
1000	105	35	52.81	55.06	72.37	166.94	45	42	67.6	71.2
1250	118	42	58.84	61.09	78.40	183.11	34	41	74.2	78.2
1500	134	50	67.87	70.12	87.44	207.38	24	31	84.1	88.7
1750	154	57	75.41	77.66	94.97	227.59	18	24	92.4	97.5
2000	159	65	82.94	85.19	102.50	247.81	15	19	100.6	106.2

400XR Series Life/Load

The following performance information is provided as a supplement to the product specifications pages. The following graphs are used to establish the table life relative to the applied loads.

The useful life of a linear table at full catalog specifications is dependent on the forces acting upon it. These forces include both static components resulting from payload weight, and dynamic components due to acceleration/deceleration of the load. In multi-axes applications, the primary positioner at the bottom of the stack usually establishes the load limits for the combined axes. When determining life/load, it is critical to include the weight of all positioning elements that contribute to the load supported by the primary axis. Catalog load specifications are rated for 100 million inches of travel or 2540 km.

For final evaluation of life vs load, including off center, tension, and side loads, refer to the charts and formulas found on our web site at www.parker.com/emn/400XR

Normal Load (Compression)

These graphs provide a "rough cut" evaluation of the support bearing life/load characteristics. The curves show the life/load relationship when the applied load is centered on the carriage, normal (perpendicular) to the carriage mounting surface.

Catalog values are rated at 2,540 Km of life

Load (N)

2000 3000 4000 5000 6000 7000 8000 9000 10000

1000

0 1000

Axial Load (Thrust)

These graphs illustrate table ballscrew life relative to the axial load.

400XR Series Bearing Life/Load*

*For 401XR and 402XR moment loading capacities, please refer to the maintenance manual.

These charts are to be used in conjunction with the corresponding formulas found in the product manuals to establish the life/load for each bearing (4 per table).

Several dimensions, which are specific to each linear positioning table model, and the load geometry are required for these computations. These dimensions are supplied in the catalog information for each positioner. The dimensions are referenced as follows:

- **d1** bearing block center-to-center longitudinal spacing
- **d2** bearing rail center-to-center lateral spacing
- da Rail center-to-carriage mounting surface

	d1	d2	da
404XR	80	57	28
406XR	114	90.3	42.5
412XR	205	192	43

Refer to Parker's website **www.parker.com/emn/400XR** for moment loading and other engineering data.

CONFIGURATIONS

400XR Multi-Axis Cartesian Robot Configurations

XR Mounting Plate Options Second Axis (Y or Z)*

Base Axis		401	IXR			-	-		412XR	
(X) *	Orientation	50 mm	>50 mm	402XR	404XR	404LXR	406XR	406LXR	412LXR	Wedge
	X-Y	002-2126-01	002-2065-01	_	_	_	_	_	_	_
	X-Y Cartesian	002-2123-01	002-2068-01	_	-	-	_	_	-	-
401XR	X-Z	_	101-0955-01	—	-	—	—	—	—	—
	X-Z Side Mount	002-2123-01	101-0955-01	_	_	_	_	_	_	_
	X-Y	002-2130-01	002-2066-01	002-2066-01	_	_	_	_	_	_
402YB	X-Y Cartesian	002-2069-01	002-2069-01	002-2069-01	-	—	—	—	-	-
402AN	X-Z	-	002-2069-01	002-2069-01	-	-	—	-	-	-
	X-Z Side Mount	002-2125-01	002-2069-01	002-2069-01	_	-	-	-	-	-
	X-Y	100-9193-01	100-9193-01	100-9193-01	Direct Mount*	100-9584-01	—	—	—	100-9274-01
	X-Y Carriage to Carriage	-	-	-	100-3945-01	100-3945-01	-	-	-	-
404XR	X-Y Cartesian Right Hand	002-2162-02	002-2162-02	002-2162-02	-	-	-	—	—	—
404LAN	X-Y Cartesian Left Hand	002-2162-02	002-2162-02	002-2162-02	-	—	—	—	—	—
	X-Z	_	_	_	002-1840-01	_	_	_	_	_
	X-Z Side Mount	_	—	—	002-1839-01	_	—	_	-	-
	X-Y	100-9194-01	100-9194-01	100-9194-01	Direct Mount*	Direct Mount*	Direct Mount*	Direct Mount*	-	100-9274-01
406XR	X-Y Carriage to Carriage	-	-	-	100-4191-01	100-4191-01	100-4191-01	100-4191-01	_	_
406LXR	X-Y Cartesian	_	_	—	002-2163-01	002-2163-01	_	—	—	-
	X-Z	-	_	-	002-1823-01	_	002-1817-01	—	-	-
	X-Z Side Mount	-	_	—	002-1824-01	—	002-1818-01	—	-	-
412XR	X-Y	-	-	-	Direct Mount* or Toe Clamp	100-6784-01	-			
412LXR	X-Y Cartesian	_	_	_	_		002-2164-01	002-2164-01	_	_
ZP 200 Wedge	X-Y	-	-	-	100-9274-01	100-9274-01 or Toe Clamp	100-9274-01 or Toe Clamp	100-9274-01	-	_

* An adapter plate (100-3945-01) is required whenever the X-axis is a parallel motor mount model. If the Y-axis is 404XR with 50 mm stroke, a special plate or toe clamp option is required.

CONFIGURATIONS

400XR Multi Axis Configurations

These diagrams show the most popular variations of multi-axis configurations. Both standard and custom brackets are available. Standard X-Y orientation will place the X axis motor at the 6 o'clock position and the Y axis motor at the 3 o'clock position.

Figure 1 Two Axis (X-Y) Horizontal Mounting

Figure 2 Two Axis (X-Z) Vertical Mounting

Figure 3 Two Axis (X-Y) Inverted Mounting

Figure 4 Two Axis-Carriage to Carriage (Y Axis Inverted)

Figure 5 Two Axis (X-Y) Cartesian Horizontal Mounting

Figure 6 Three Axis (X-Y-Z) Cartesian Horizontal Mounting

Figure 7 Three Axis (X-Z-Y) Horizontal Mounting

Figure 8 Three Axis (X-Y-Z) Horizontal Mounting

Three Axis (X-Y-Z) Inverted Mounting

DIMENSIONS 401XR Dimensions

Download 2D & 3D files from www.parker.com/emn/401XR

15.6

Dimensions (mm)

5 mm dia.

(4) Tapped

Mtg. Holes

Shaft

Optional

Encoder Package

-40.9-

[[0

End View

NEMA 23/SM 23

NEMA 17

BE 23

49.5

Optional

34.9

49.5

15.6

6.5

15.6

4.0

_

8.0

25.2

19.5

17.6

LIMIT

Ð

20.5

C

Limit/Home

Sensor Pack

	Travel		Dimensions (mm)									
Model	(mm)	Α	в	С	D	Е	J					
401050XR	50	209.3	82.8	80.0	1	80.0	123.0					
401100XR	100	284.3	80.3	40.0	4	160.0	160.0					
401150XR	150	334.3	85.3	40.0	5	200.0	185.0					
401200XR	200	384.3	90.3	40.0	6	240.0	210.0					
401300XR	300	509.3	92.8	40.0	9	360.0	260.0					

	Order	Dimensions (mm)				
Motor Size	Code	F	G	н	Ι	
SM 16	M2	40.9	39.1	_	6.5	

57.2

40.9

57.2

57.2

39.1

57.2

ΜЗ

M37

M61

Motor Pilot Dia

Enlarged End View

(with Encoder and Limit/Home Sensor Pack Option)

In-Line Motor Adapters

Used to easily accommodate the mounting of different servo or stepper motors.

from Virtual Engineer at virtualengineer.com

Download 2D & 3D files from www.parker.com/emn/402XR

402XR Dimensions

(with Encoder and Limit/Home Sensor Pack Option)

	Travel	Dimensions (mm)				
Model	(mm)	Α	В	D	J	
402100XR	100	320.5	83.5	4	184.0	
402150XR	150	370.5	83.5	5	214.0	
402200XR	200	420.5	83.5	6	234.0	
402300XR	300	520.5	83.5	8	284.0	
402400XR	400	620.5	83.5	10	334.0	
402600XR	600	820.5	83.5	14	434.0	

	Order	Dimensions (mm)			
Motor Size	Code	F	G	н	
SM 16	M2	40.6	40.6	-	
NEMA 23/SM 23	M3	57.2	57.2	4.0	
NEMA 17	M37	40.6	40.6	-	
BE 23	M61	57.2	57.2	8.0	

In-Line Motor Adapters

Used to easily accommodate the mounting of different servo or stepper motors.

Free sizing and selection support from Virtual Engineer at virtualengineer.com

DIMENSIONS

Optional

Limit/Home

Sensor Pack

35.4 25.0

20.3

57.1

Download 2D & 3D files from www.parker.com/emn/404XR

DIMENSIONS

404XR Dimensions

404XR Standard In-Line Motor Mounting

In-line motor mounting allows the motor to be mounted directly to the drive screw via the selected motor coupling.

Used to easily accommodate the mounting of different frame sizes. These adapter plates can be ordered separately by part number below.

404XR Universal Motor Mounting

The new Universal Motor Adapter (UMA) makes adapting 3rd party motors to the 404XR easier than ever. The Universal Motor Adaptor option allow for the coupling of motor frame sizes from 62 mm on down, accommodating motor shaft diameters up to 16 mm. To determine if a 404XR has a mount to your preferred motor please visit **www.parker.com/emn/404XR**, and launch the online eConfigurator (note that these adapter kits establish fit to the actuator only, proper actuator sizing should still be conducted to ensure application performance).

404XR Parallel Motor Mounting

Parallel motor mounting is employed whenever a shorter overall unit length is needed. The motor is positioned along the sides or bottom of the table as designated by position A, B, or C. (No coupling required.)

Free sizing and selection support from Virtual Engineer at virtualengineer.com
Download 2D & 3D files from www.parker.com/emn/406XR

406XR Dimensions

		Travel	Ballscrew			L L	Jimensio	ns (m	m)		
Slot for Std	Model	(mm)	Ø	Α	в	С	D	Е	F	G	н
M4 Square Nut	4060100XR	100	16	408	8	1	100.0	12	1	100.0	8.0
70.1 - 4.2 7.5	4060200XR	200	16	508	8	1	100.0	12	1	100.0	8.0
	4060300XR	300	16	608	12	2	200.0	16	2	200.0	8.0
41.3	4060400XR	400	16	708	12	2	200.0	16	2	200.0	8.0
8.6 52.87	4060500XR	500	16	808	16	3	300.0	20	3	300.0	8.0
Slot for Std.	4060600XR	600	16	908	16	З	300.0	20	3	300.0	8.0
M5 Square Nut 2 Slots (Bottom) 73.5	4060700XR	700	25	1008	20	4	400.0	24	4	400.0	10.0
	4060800XR	800	25	1108	20	4	400.0	24	4	400.0	10.0
View of Slots in Extrusion	4060900XR	900	25	1208	24	5	500.0	28	5	500.0	10.0
	4061000XR	1000	25	1308	24	5	500.0	28	5	500.0	10.0
	4061250XR	1250	25	1558	32	7	700.0	32	6	600.0	10.0
	4061500XR	1500	25	1808	36	8	800.0	40	8	800.0	10.0
	4061750XR	1750	25	2058	40	9	900.0	44	9	900.0	10.0
	4062000XR	2050	25	2308	44	10	1000.0	48	10	1000.0	10.0

e1.

DIMENSIONS

DIMENSIONS

Dimensions (mm)

406XR In-Line Motor Mounting

In-line motor mounting allows the motor to be mounted directly to the drive screw via the selected motor coupling.

Used to easily accommodate the mounting of different frame sizes. These adapter plates can be ordered separately by part number below.

406XR Universal Motor Mounting

The new Universal Motor Adapter (UMA) makes adapting 3rd party motors to the 406XR easier than ever. The Universal Motor Adaptor option allow for the coupling of motor frame sizes from 90 mm on down, accommodating motor shaft diameters up to 20.5 mm. To determine if a 406XR has a mount to your preferred motor please visit **www.parker.com/emn/406XR**, and launch the online eConfigurator (note that these adapter kits establish fit to the actuator only, proper actuator sizing should still be conducted to ensure application performance).

406XR Parallel Motor Mounting

Parallel motor mounting is employed whenever a shorter overall unit length is needed. The motor is positioned along the sides or bottom of the table as designated by position A, B, or C. (No coupling required.)

Free sizing and selection support from Virtual Engineer at virtualengineer.com

Download 2D & 3D files from www.parker.com/emn/412XR

DIMENSIONS

412XR Dimensions

DIMENSIONS

In-line motor mounting allows the motor to be mounted directly to the drive screw via the selected motor coupling.

Used to easily accommodate the mounting of different frame sizes. These adapter plates can be ordered separately by part number below.

	Order		Dimensi		
Motor Size	Code	К	L	М	Ν
MPP092	M90	68.0	12.0	115.0	97.0
M105, SMN100	M33	100.0	-	115.0	115.0
NEMA 34	M4	68.0	12.0	115.0	97.0
NEO 34	M17	68.0	12.0	115.0	97.0
NEO 70	M21	68.0	-	115.0	97.0
NEO 92	M29	68.0	12.0	115.0	97.0

412XR Parallel Motor Mounting

Parallel motor mounting is employed whenever a shorter overall unit length is needed. The motor is positioned along the sides or bottom of the table as designated by position A, B, or C. (No coupling required.)

OPTIONS & ACCESSORIES

OPTIONS & ACCESSORIES

400XR Series Options Home or Limit Sensor Options

End of Travel and Home Sensors for the 400XR series are available in a variety of styles. The sensors can be ordered as part of the table or as separate components with the associated mounting hardware or in an enclosed sensor pack. A 5 meter high-flex extension cable (Part No. 003-2918-01) is included for use with the 401XR thru 406XR models having the locking connector option.

- NPN (Sinking) or PNP (Sourcing)
- Normally Closed (N.C.) or Normally Open (N.O.)
- Flying Leads or Locking Connector

Specifications

Input Power	5-30 VDC, 20 mA
Output	100mA max
Wire Color	(+) Supply: Brown
Code	(-) Supply: Blue NO Output: Black NC Output: White

401XR Limits and Home Sensor

Sensor / Bracket Detail

Order Code	Part Number*	Switch Type	Logic	Cable Length	Connector Option
H2 or L2	006-1639-01	N.C.	Sinking	3.0 m	Flying Leads
H3 or L3	006-1639-02	N.O.	Sinking	3.0 m	Flying Leads
H4 or L4	006-1639-03	N.C.	Sourcing	3.0 m	Flying Leads
H5 or L5	006-1639-04	N.O.	Sourcing	3.0 m	Flying Leads
H6 or L6	006-1639-09	N.C.	Sinking	150 mm	Locking Connector
H7 or L7	006-1639-08	N.O.	Sinking	150 mm	Locking Connector
H8 or L8	006-1639-11	N.C.	Sourcing	150 mm	Locking Connector
H9 or L9	006-1639-10	N.O.	Sourcing	150 mm	Locking Connector
H11 or L11	See chart below	N.C.	Sinking	See chart below	Sensor Pack
H12 or L12	See chart below	N.O.	Sinking	See chart below	Sensor Pack
H13 or L13	See chart below	N.C.	Sourcing	See chart below	Sensor Pack
H14 or L14	See chart below	N.O.	Sourcing	See chart below	Sensor Pack

* Applies to 401XR thru 406XR models. 412XR models have limits and homes internally mounted with a connector termination. Sensor triggers (targets) ordered separately.

406XR with Limit and Home Sensor Pack

Linear Encoder Options (Tape Scale)

5 VDC, 150mA

A linear position feedback device which mounts directly to the table carriage. (Factory installation required.)

- 1.0 µm resolution ٠
- 0.5 µm resolution
- 0.1 µm resolution

Specifications

Input Power

Output

Rotary Encoder Option

Modular rotary encoder couples directly to the drive screw for position feedback and is easily field installed. The rotary encoder cannot be installed with the brake assembly option.

5000 counts/rev ٠

factory for 412XR dimensions.

Specifications	
Input Power	5 VDC, 135 mA
Output	A/B quadrature and reference mark, differential line drive output
Resolution	1250 lines/rev equals 5000 counts post quadrature (1 µm with 5 mm lead ballscrew)
Cable Length	150 mm

A/B guadrature and reference mark,

401XR with Linear Encoder plus Sensor Pack

Brake Assembly Option

Electromagnetic brake assembly is used to prevent "backdriving" in vertical applications. The brake option includes a 5 meter extension cable. The brake option is easily field installed. The brake option cannot be installed with the rotary encoder option.

The second				Holdina	Dimensi	ons (mm)
-	Table Series	Part Number	Input Power	Torque	Α	В
A State A	401XR/402XR	-	—	—	_	—
	404XR	006-1627-01	24 VDC, 0.46 A	2.0 Nm	41.5	46.0
	406XR	006-1656-01	24 VDC, 0.5 A	4.5 Nm	49.9	57.5
	412XR	002-1916-01	24 VDC, 0.75 A	9.0 Nm	54.0	72.0
404XR with Brake Option						

OPTIONS & ACCESSORIES

Dowel Pinning Options*

Standard dowel pin locating holes are offered on most 400XR units to facilitate repeatable mounting of tooling or payload.*

In addition, pinning options are offered for precise orthogonal mounting of the second axis in a multi-axis system. In this case, the bottom side of the table base is match drilled and reamed to the first axis to provide exact orthogonal location.

This convenient option eliminates concerns regarding contamination or damage often associated with machining for locating pins in an assembled unit.

*Not available with 401XR or 402XR or 50 mm travel 404XR.

Two locating dowel pins shown in carriage of a 401XR.

Standard pinning of XY axes will achieve 125 arc-sec of orthogonality. Through transfer pinning, 30 arc-sec is achievable. For high degrees of orthogonality consult the factory.

OPTIONS & ACCESSORIES

400XR Universal Motor Adapter (inline only)

The UMA is designed to make it easier than ever for our machine designers to specify their linear stage with whatever motor they'd like, while avoiding the often drawn out "customization" process.

Quick Motor Integration

The Universal Motor Adapter (UMA) is an innovative motor mount component that allows for simple configuration of the 404XR or 406XR to a variety of servo or steppers from a plethora of manufacturers. Utilizing a vast database of motor mounting flanges, the UMA allows for rapid integration of hundreds of motors from numerous manufacturers.

Convenient Ordering

For customers choosing to mount a third party, non-Parker motor, the UMA alleviates the hassle and lead time of having to create a "customized" motor mount. Typically, designers would have to place an additional custom motor request for a specific mount, but now designers can simply configure the motor manufacturer right into the XR part number

Easy Selection with Our Online e-Configurator

Now with the UMA, you can easily choose the right option for your motor through our online e-Configurator, saving time and money. With the UMA integrated into the e-Configurator, simply selecting the desired motor manufacturer and model type will configure the actuator with the appropriate selected motor.

How to Order the Right Motor Mount

Motor mount configuration to 3rd party motors is now easier than ever through use of the universal motor adapter (UMA), and our online product configuration tool. Consult the online e-Configurator for a complete listing of supported motors.

If you do not find a specific motor you would like use in your application, please call our application's team at 1-800-358-9070.

STEP 1 In order to specify a 404 or 406 XR with a third party motor mount, launch the online configurator tool from www. parker.com/emn/400XR and for the appropriate 404 or 406 XR.	Product Number_0 Select Attributes	Configura ptions 4.0 series sele travel woold NG (METRICE GRADE ITY SENSORS NORMENTAL MOUNT TYPE	Ator TM: 404XR 4 3 0 0 X R M S D 2 4/J4 200mm XR - Square Rail Positioner M S - Standard 02 - Smmi Baltaprew H1 - Ne Home Sensor L1 - Ne Limit Sensors R1 - Class 1000 Compatable 1 - Please Stellatt Obt	H1 L1 R1			
STEP 2 Configure the XR with all desired options and then specify the motor mount type. Select Standard for Parker motors or Universal for other motors.							
Select the motor man	STEP 3 Parker Europe Parker North America Select the motor manufacturer. Parker SSD						
After motor manufacturer, choose t motor series from that manufacturer. automatically select the appropria mount for the 400 X	STEP 4 the exact This will tte motor (R stage.	Plea N034 N070 N092 OS21 o PM-FA PM-FE PX60 S57 Se	ase Select One or OS22 or OS2H AL 3L eries				
Finally, select from either Bellows or style coupling	STEP 5 Oldham options.	Plea BW - E OH - 0	ase Select One Bellows Ildham				

Riser Plate Accessory

Used to raise the table base to provide clearance for motors.

Model	Part Number
401XR	002-2063-01
402XR	002-2064-01
404XR	002-3619-01
406XR	002-3625-01
412XR	_
412XR	_

Table Series	Α	В	С
401XR	65.0	50.4	17.0
402XR	90.0	75.4	10.0

406XR Part Number: 002-3625-01

Toe Clamp Accessory

Used for convenient outboard mounting of table to a base plate, riser plates, Z-axis bracket, or other 400XR table. All hardware is included.

Model	Part Number
404XR	002-3618-01
406XR	002-3624-01
412XR	002-2160-01

406XR Part Number: 002-3624-01

412XR Part Number: 002-2160-01

ORDERING INFORMATION 401XR

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	(12)
	Order	Example:	401	100	XR	М	S	D9	H3	L2	C3	M2	E2	R1
1	① Series * 401				8	Lir L1	nit Sei	nsor ** None	irrant C	inking [ada		
2	 Travel – mm * 050 50 100 100 					L2 L3 L4		N.C. Current Sinking Flying Leads N.O. Current Sinking Flying Leads N.C. Current Sourcing Flying Leads						
	150 150 200 200 300 300					L5 L6 L7		N.O. Current Sourcing Flying Leads N.C. Current Sinking Locking Connector N.O. Current Sinking Locking Connector					ctor ctor	
3	③ Model XR Linear Table					L9 L1 L1	1 2	N.C. Current Sourcing Locking Connector N.O. Current Sourcing Locking Connector N.C. Current Sinking Sensor Pack					lector	
4	M ountii M	ng Metric					L1: L1:	- 3 4	N.C. C. N.O. C.	urrent S urrent S	ourcing	Sensor Sensor Sensor	r Pack r Pack	
5	M Metric Grade S Standard P Precision (E3 or E4 encoder option required)			ed)	9	Mc C1 C2 C3	otor Co	r Coupling No Coupling 6.3 mm (0.25 in) Bore Oldham 6.3 mm (0.25 in) Bore Bellows						
6	Drive So D3 D9	crew * 10 mm Lead 2 mm Lead					C5 C2 C2	4 5	9.5 mm 5 mm ((5 mm (n (0.375 0.20 in) 0.20 in)	in) Bor Bore C Bore B	e Bellov Idham ellows	VS	
7	Home S H1 H2 H3 H4	Sensor ** None N.C. Current Sinking Flyi N.O. Current Sinking Flyi N.C. Current Sourcing Flyi	ng Leads ng Leads ying Lead	S		10	M 2 M2 M3 M3 M6	otor M 2 3 37 51	ount SM 16 NEMA NEMA BE 23 I	In-Line 23 In-Li 17 In-Li n-Line I	Mountir ne Mou ne Mou Mountir	ng Inting (0 Inting Ig	.375" d	lia. shaft)
	H5 H6 H7 H8 H9 H11	N.O. Current Sourcing Fl N.C. Current Sinking Loc N.O. Current Sinking Loc N.C. Current Sourcing Loc N.O. Current Sourcing Loc N.C. Current Sinking Ser	ying Lead king Con cking Con ocking Co ocking Co sor Pack	s nector nector nnector nnector		1	En E1 E2 E3 E4	coder	Optior None 1.0 μm 0.5 μm 0.1 μm	n Resolu Resolu Resolu	tion tion tion			
	н12 H13 H14	N.O. Current Sinking Ser N.C. Current Sourcing Se N.O. Current Sourcing Se	isor Pack ensor Pac ensor Pac	k k		(12)	R1		Require	ed Desiç	gnator			

* Drive Screw Lead Availability

Troval	401XR					
Iravei	2 mm	10 мм				
50	•					
100	•					
150	•					
200		•				
300		•				

** 50 mm stroke 401XR may only allow room for 2 sensors in sensor pack.

Free sizing and selection support from Virtual Engineer at virtualengineer.com

Screw Driven Tables

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	12		
	Order I	Example:	402	100	XR	М	S	D9	H3	L2	C3	M2	E2	R1		
1	Series * 402					8	Lir L1	nit Ser	nsor None	urropt S	inking F		ode			
(2)	Travel –	mm *					13		N O Ci	irrent S	Sinking F	Ivina Le	aus eads			
	100	100					_0 L4		N.C. Ci	urrent S	ourcina	Flvina l	eads			
	150	150					L5		N.O. Ci	urrent S	Sourcing	I Flying I	_eads			
	200	200					L6		N.C. CI	urrent S	inking L	ocking	Conne	ctor		
	300	300					L7		N.O. Cı	urrent S	Sinking L	_ocking	Conne	ctor		
	400 600	400					L8		N.C. Cu	urrent S	ourcing	Locking	g Conn	ector		
	000	000					L9		N.O. Ci	urrent S	Sourcing	ng Locking Connector				
3	Model						L1 ⁻	1	inking S	Sensor Pack						
e	XR	Linear Table			L1:	Pack										
					L1:	L13 N.C. Current Sourcing Sensor Pack										
(4)	Mountir	ng			L14	4	N.O. Cı	urrent S	Sourcing	Sensor	Pack					
	М	Metric														
						9	Mo	otor Co	oupling	J						
5	Grade						C1		No Cou	Ipling						
	S	Standard					C2		6.3 mm	n (0.25 i	n) Bore	Oldham	۱			
	Р	Precision (E3 or E4 end	oder option	require	ed)		C3		6.3 mm	n (0.25 i	n) Bore	Bellows	3			
							C4		9.5 mm	n (0.375	in) Bor	e Oldha	m*			
6	Drive So	crew *					C5		9.5 mm	n (0.375	in) Bor	e Bellov	/S			
	D2	5 mm Lead					C2	4	5 mm ((0.20 in)	Bore O	Idham				
	D3	10 mm Lead					C2	5	5 mm ((0.20 in)	Bore B	ellows				
_							*NE	EMA 23 f	rame siz	e only (N	//3, M61)					
(7)	Home S	ensor				10	Ма	tor M	ount							
	H1	None				U				معاليهم	Maxuatiu					
	H2	N.C. Current Sinking Fl	ying Leads				IVI2	<u>-</u>				ig nting				
	H3	N.O. Current Sinking F	ying Leads				M	27		20 -L 17 n i		nting				
	H4	N.C. Current Sourcing	Flying Leads	3			Me	57 51		n Lino I	Mountin					
	H5	N.O. Current Sourcing	Flying Leads	3			IVIC	,	DL 201		viouritii	ig				
	Hb	N.C. Current Sinking L	OCKING CONF	nector		11	Fn	coder	Ontior	•						
	H/	N.O. Current Sinking L	OCKING CONF	1ector			F1	couci	None	•						
		N.O. Current Sourcing	LOCKING COI	nector			E2		10.um	Resolu	tion					
	ПУ Ц11	N.C. Current Sourcing	LUCKING CO	mector			E3		0.5 um	Resolu	tion					
		NO Current Sinking S	ensur Pack				E4		0.1 um	Resolu	tion					
	F112	N.C. Current Sinking S	Concor Dool						or pill							
	ніз H14	N.O. Current Sourcing	Sensor Pac	ĸ k		(12)	R1		Require	d Desig	gnator					
			2 5.1001 1 00			0			•		-					

* Drive Screw Lead Availability

Troval	402	2XR
Iravei	5 mm	10 mm
100	•	
150	•	
200	•	
300		•
400		•
600		•

404XR

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	(12)	13	14)			
	Order	Example:	404	450	XR	М	S	- D33	H4	L2	C3	M4	E1	B1	R1	P1			
1	Series 404								H11 H12 H13	N.C N.O	. Currer	nt Sinkii nt Sinkii	ng Sens ng Sens	sor Pack sor Pack	<** <** ck**				
2	Travel – 050	m m * 50 (no pinning	g availabl	e)					H13 H14	N.O	. Currei	nt Sour	cing Sei	nsor Pa	ck ck**				
	100 150	100	0	,				8	Travel	Limit	Senso	r Asse	mbly (1	wo se	nsors)				
	200	200							L1	Nor	e-Free	Travel (only)						
	250	250							L2	N.C	. Currer	nt Sinkii	ng Flyin	g Leads	6				
	300	300							L3	N.O	. Currei	nt Sinki	ng Flyin	g Leads	6				
	350	350							L4	N.C	. Currer	nt Sour	cing Flyi	ng Lea	ds				
	400	400							L5	N.O	. Currei	nt Sour	cing Flyi	ing Lea	ds	+			
	450 500	450 500							L6	N.C	. Currer	nt Sinkii	ng w/Lc	CKING C	Connect	or^			
	550 550	550								N.O	Currer	nt Sinki at Sour	ng w/Lo	CKING C		.or" otor*			
	600	600								N.O		nt Sour	cing w/L	ocking	Conno	ctor*			
									111	N.C	Currer	nt Sinkii	na Sens	or Pacl	001116 <**	CLOI			
3	Model								112	N O	Currei	nt Sinki	ng Sens	or Pacl	<**				
	XR	Linear Table							L13	N.C	. Currer	nt Sour	cina Ser	nsor Pa	ck**				
	Mountir	a							L14	N.O	. Currei	nt Sour	cing Sei	nsor Pa	.ck**				
J	M	Metric																	
		Mouno							Motor	Interfa	ace Op	otion							
(5)	Grade								• Stan	dard P	arker N	lotor A	Adapter	s (go ti	o Stand	ard			
0	S	Standard							Park	er opti	ons in i	blue)							
	Р	Precision (only	available	with D2	2, D3, C	04 drive			-OR-										
		screws)							• Univ Univ	niversal Motor Adapter for other motors (go to Juiversal Motor Adapter in grey)									
6	Drive Se	crew								•									
	D1	Free Iravel						9	Motor	Coup	ling	,				,			
	D2	5 mm Ballscre	W							INO (g (requ	ired for	parallel	mountii	ng)			
	D3	10 mm Ballsch	ew ew (etcer		مام مرمان	\ \		ers	C2	0.20	50" Diui	nam owo (ro	auirod f	or prodi	olon ara	ndo)			
	D4 D21***	1 mm V Throad	ew (stant	Jaru gra	de only)		pţ	C4	0.20		ows (ie nam	quired in		SIGHTYL	100)			
	D30***	2 mm V Thread	d Loadeo	row				da	C5	0.37	75" Roll	owe (re	auired f	or preci	sion ar	ade)			
	D33***	5 mm V Thread	d Leadsc	rew				Ā	C6	11 r	nm Old	ham	quildan		olori git	100)			
	D34***	0 10" V Thread	d Leadsci	ew.				ğ	C7	11 r	nm Bel	lows (re	equired f	or prec	ision ar	ade)			
	D35***	0.10" Acme Th	nread Lea	adscrew				jo	C10	14 r	nm Old	ham (N	175 mot	or optic	n)				
	200							2	C11	14 r	nm Bel	lows (N	175 mot	or optic	n)				
7	Home S	Sensor Asseml	bly (one	senso	r)			<u>ě</u>	C22	9 m	m Oldh	am			'				
	H1	None-Free Trav	vel (only)		-			ar	C23	9 m	m Bello	WS							
	H2	N.C. Current S	Sinking Fly	/ing Lea	ds				C24	5 m	m Oldh	am (M3	37 moto	r optior	ı)				
	H3	N.O. Current S	Sinking Fly	ying Lea	lds			arc	C25	5 m	m Bello	ws (M3	37 moto	r option	ı)				
	H4	N.C. Current S	Sourcing F	Flying Le	eads			į	C26	8 m	m Oldh	am (M7	'1 moto	r optior	1)				
	H5	N.O. Current S	Sourcing I	Flying Le	eads			tar	C27	8 m	m Bello	ws (M7	'1 moto	r option)				
	H6	N.C. Current S	Sinking Lo	ocking C	onnect	or*		Ś	C28	0.18	375" Ole	dham (N	V 37 mo	tor opti	on)				
	H7	N.O. Current S	Sinking Lo	ocking C	connect	or*			C29	0.18	375" Be	llows (N	137 mo	tor opti	on)				
	H8	N.C. Current S	Sourcing l	_ocking	Conne	ctor*					(Moto	or Cou	pling co	ontinue	ed next	page)			
	H9	N.O. Current S	Sourcing l	_ocking	Conne	ctor*		* Sono	ore with k	oking or	opportor	includo	5 m ovtr	neion or	blo				

* Sensors with locking connector include 5 m extension cable.
** Sensor Pack includes 3 m cable.
*** Leadscrew is available only in custom builds - it is not a standard option.

Fill in an order code from each of the numbered fields to create a complete model order code.

	1								-																	٠						
i.	1	17	17	2	t.	2		•	(۰.	2		1	r	٦	h		2	1	1	۰.	2		n	t	1	n		1	\sim	^	11
	1	v	ιu	_	Ľ		1		L		_	L		L	,	11	1	1	u	L			1	1	LI			L		┍	L	
														-				- 1	-													•

Doulsou

1

ē

	C30	0.250" Oldham (couplings for leadscrew grade)	
	C31	0.250" Bellows (couplings for leadscrew grade)	
	C32	0.375" Oldham (couplings for leadscrew grade)	
	C33	0.375" Bellows (couplings for leadscrew grade)	
	C39	9 mm Bellows (couplings for leadscrew grade)	
	Motor M	lount *	
	M1	No Motor Mount	
	M2	SM 16 In-Line Mounting	
	M3	NEMA 23 & SM 23 In-Line Mounting	
	M4		
n	M5	SM 16 Parallel Mounting, "A" Location	
ē	IVI6	SM 16 Parallel Mounting, "B" Location"	
ğ	M/	SM 16 Parallel Mounting, "C" Location"	
ğ	M8	NEMA 23 Parallel Mounting, "A" Location"	
I	M9	NEMA 23 Parallel Mounting, "B" Location	
2	M10	NEMA 23 Parallel Mounting, "C" Location	
2	M11	SM 23 Parallel Mounting, "A" Location*	
	M12	SM 23 Parallel Mounting, "B" Location	
E F	M13	SM 23 Parallel Mounting, "C" Location	
đ	M21		
ר ר	M37	NEMA 17 In-Line Mounting	
	M42	SM232AQ NPSN Servo Motor In-Line Mounting	
ğ	M46	HV232-02-10 Stepper Motor In-Line Mounting	
D.	M49	Handcrank without Readout	
ก	UCIVI	(0.10" or 1 mm leads only)	
	M51	HDY55 In-Line Mounting	
	M61	BE 23 In-Line Mounting	
	M62	BE 23 Parallel Mounting. "A" Location*	
	M63	BE 23 Parallel Mounting. "B" Location*	
	M64	BE 23 Parallel Mounting, "C" Location*	
	M71	PM-FAL In-Line Mounting	
	M72	PM-FAL In-Line Mounting, "A" Location*	
	M73	PM-FAL In-Line Mounting, "B" Location*	
	M74	PM-FAL In-Line Mounting, "C" Location*	
	M75	PM-FBL In-Line Mounting	
	* See 404×	R dimensions for maximum allowable motor shaft	

diameter. Parallel motor mounts not available with leadscrew drives.

Continue to step 1 for Encoders in the order process.

Mater Oas

٢		ouping
	BW	Bellows coupling option
	ОН	Oldham coupling option
Universal Motor Adapter	Motor M ∪###	ount Consult the online eConfigurator at www. parker.com/emn/404XR to create a complete part number for the desired 404XR with motor mounting to a 3 rd party motor. For more details on how to use the online configurator, see "How to Order the Right Motor Mount" in this product catalog
1	Encoder E1 E2 E3 E4	Option No Encoder 1.0 µm Resolution Linear Encoder (tape scale) 0.5 µm Resolution Linear Encoder (tape scale) 0.1 µm Resolution Linear Encoder (tape scale)
	E5	Rotary Shaft Encoder (not available with brake)
(12)	Brake O	ption
	B1 B2	No Brake Shaft Brake (Refer to 404XR holding torque specifications to confirm maximum load. Not available with rotary encoder)
13	Cleanroo	om Preparation
	R1	Standard Environment
	R2	Class 10 Compatible (consult factory)
	R5	Standard Environment with Easy Lube System †
14)	Pinning	Option *
	P1	No multi-axis pinning
	P2***	X axis transfer pinning to Y or Z axis - 30 arc-sec *
	P3***	Y axis transfer pinning to X axis - 30 arc-sec
	P4***	\angle axis transfer pinning to X axis - 30 arc-sec

- P5*** X axis transfer pinning to Y axis - 125 arc-sec
- P6*** Y axis transfer pinning to X axis - 125 arc-sec

[†] Sensor pack options L11-L14 cannot be ordered with R5 option on 404XR. Linear encoder options E2-E4 cannot be ordered with R5 option on 404XR. R5 option not available for 50mm travel

404XR units. Consult factory if required. * Pinning option is for pinning to other 404XR and 406XR tables. Transfer pinning is not available on some XR to LXR models. Contact factory for more information. Pinning XY orientation standard with Y motor at 3 o'clock position.

** Z pinning uses bracket (see figures 7, 8 and 9 in "400XR Multi Axis Configurations") ***Consult factory for multi-axis pinning options and quotation

Free sizing and selection support from Virtual Engineer at virtualengineer.com

406XR

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	(12)	13	(
	Order	Example:	406	900	XR	М	S -	D3	H4	L1	C7	M4	E1	B1	R1	
)	Series							8	Trave	l Limit	Senso	r Assei	mbly (t	wo sen	isors)	
	406								L1	Nor	ne					
)	Travel -	. mm *							L2	N.C	C. Currer	nt Sinkir	ng Flying	Leads		
/	100	100							L3	N.C	Currei	nt Sinkir at Source	ng Fiying Sing Fiying) Leads	~	
	200	200								IN.C		IL SOURC	ing Fiyir	ig Lead	S	
	300	300								IN.C	Currer	nt Sourc		iy Leau	S	or ³
	400	400								IN.C		it Sirikii at Sinkir	ig w/Lo	oking Co		
	500	500								IN.C			ig w/LO	ooking C		UI Sto
	600	600								IN.C		it Sourc	ing w/L) (_+
	700	700								IN.C	Curren	nt Sourc	a Sopo	OCKING V	***	510
	800 900	800								N.C		nt Sinikii at Sinikir	iy Selis	or Poole	***	
	1000	1000								N.C	Curror	nt Sinikii	iy Selis	OF FACK	1/***	
	1250	1250										nt Sourc	ny Sei Sing Sor	sor Pac	n v ***	
	1500	1500							L14	N.C	. Ouriei		Jing Ger	1301 1 40	νr	
	1750	1750														
	2000	2000														
	Model															
	XR	Linear Table														
	Mounti	ng														
	Μ	Metric														
)	Grade *															
	S	Standard														
	Р	Precision														
	Drive S	crew *														
	D1	Free Travel														
	D2	5 mm Ballscrew	/													
	D3	10 mm Ballscre	W					*	Drive S	crew Le	ad Avai	lability				
	D4	20 mm Ballscre	W							Prec	ision		Ctondo		_	
	D5	25 mm Ballscre	W						Travel	Gra	ade		Standa		e la-	
								_	100	<u>5 mm</u>	10 mm	<u>5 mm</u>	10 mm	20 mm	1 25 mi	m
	Home S	Sensor Assemb	ly (one	sensor	-)				200	•	•	•	•	•		
	H1	None							400	•	•	•	•	•		_
	H2	N.C. Current Si	nking Fly	ring Lea	ds				500	•	•	•	•	•		
	H3	N.O. Current Si	nking Fly	ring Lea	ds				600	•	•	•	•	•		
	H4	N.C. Current Sc	purcing F	lying Le	ads			-	700			•	•		•	
	H5	N.O. Current Sc	ourcing F	lying Le	ads				900			•	•		•	
	H6	N.C. Current Si	nking Lo	cking C	onnecto	or**			1000			•	•		•	
	H7	N.O. Current Si	nking Lo	cking C	onnect	or**		⊢	1250			•	•		•	
	H8	N.C. Current Sc	burcing L	ocking	Connec	ctor**			1750			•	•		•	
	H9	N.O. Current Sc	ourcing L	ocking	Connec	ctor**			2000			•	•		•	
	H11	N.C. Current Si	nking Se	nsor Pa	ck***			** 0	100 KG 111		0000001	or lock	o E no o d	opolon -	oblo	
	H12	N.O. Current Si	nking Se	ensor Pa	ick***			*** Se	isors with nsor Pac	1 IOCKING k include	connecto s 3 m ca	or include ible.	e o m ext	ension c	apie.	
	H13	N.C. Current Sc	ourcing S	Sensor F	ack***			00								

N.O. Current Sourcing Sensor Pack***

H14

Screw Driven Tables

Motor Interface Option

• Standard Parker Motor Adapters (go to Standard Parker options in **blue**)

-OR-

• Universal Motor Adapter for other motors (go to Universal Motor Adapter in grey)

9 Motor Coupling

-	C1	No Coupling (required for parallel mounting)
F	C2	0.250" Oldham
ğ	C3	0.250" Bellows (required for precision grade)
ž	C4	0.375" Oldham
L v	, C5	0.375" Bellows (required for precision grade)
Ϋ́	C6	11 mm Oldham
Pa	C7	11 mm Bellows (required for precision grade)
τġ	C8	0.500" Oldham
ar Z	• C9	0.500" Bellows (required for precision grade)
nc	C10	14 mm Oldham
ŝta	C11	14 mm Bellows (required for precision grade)
0)	C12	16 mm Oldham
	C13	16 mm Bellows (required for precision grade)
10)	Motor N	fount *
0	M1	No Motor Mount
	М3	NEMA 23 & SM 23 In-Line Mounting
	M4	NEMA 34 In-Line Mounting
	M11	SM 23 Parallel Mounting, "A" Location*
	M12	SM 23 Parallel Mounting, "B" Location*
	M13	SM 23 Parallel Mounting, "C" Location*
Ś	M14	NEMA 34 Parallel Mounting, "A" Location
ter	M15	NEMA 34 Parallel Mounting, "B" Location
ap	M16	NEMA 34 Parallel Mounting, "C" Location
βġ	M17	Neometric 34 In-Line Mounting
ŗ	M18	Neometric 34 Parallel Mounting, "A" Location
g	M19	Neometric 34 Parallel Mounting, "B" Location
ž	M20	Neometric 34 Parallel Mounting, "C" Location
ř	M21	Neometric 70 In-Line Mounting
ž	M22	Neometric 70 Parallel Mounting, "A" Location
Da	M23	Neometric 70 Parallel Mounting, "B" Location
р	M24	Neometric 70 Parallel Mounting, "C" Location
lar	M29	Neometric 92 In-Line Mounting
pu	M61	BE 23 In-Line Mounting
ŝta	M62	BE 23 Parallel Mounting, "A" Location
0)	M63	BE 23 Parallel Mounting, "B" Location
	M64	BE 23 Parallel Mounting, "C" Location
	M75	PMI-FBL In-Line Mounting
	M90	
	M91	MPD000 Devellet Merunting, "A" Location
	M92	MPD000 Parallel Mounting, "B" Location
	* Soc 406	VIPPU92 Parallel Wounting, "C" Location
	diameter. S	SM 23 parallel motor mounts not available with leadscrew
	drivee	

Motor Coupling

BW	Bellows coupling option
ОН	Oldham coupling option

Motor Mount

Universal Motor

Adapter

(11) **Encoder Option** F1 No Encoder E2 1.0 µm Resolution Linear Encoder (tape scale) E3 0.5 µm Resolution Linear Encoder (tape scale) 0.1 µm Resolution Linear Encoder (tape scale) E4 E5 Rotary Shaft Encoder (not available with brake) (12) **Brake Option** B1 No Brake B2 Shaft Brake (Refer to 406XR holding torque specifications to confirm maximum load. Not available with rotary encoder) (13) **Cleanroom Preparation** R1 Standard Environment R2 Class 10 Compatible (consult factory) R5 Standard Environment with Easy Lube System **†** (14) **Pinning Option * P1** No multi-axis pinning P2*** X axis transfer pinning to Y or Z axis - 30 arc-sec ** P3*** Y axis transfer pinning to X axis - 30 arc-sec P4*** Z axis transfer pinning to X axis - 30 arc-sec [†]Please consult factory if selecting option R5. * Pinning option is for pinning to other 404XR and 406XR tables. Transfer pinning is not available on some XR to LXR models. Contact factory for more information. Pinning XY orientation standard with Y motor at 3 o'clock position. ** Z pinning uses bracket (see figures 7, 8 and 9 in "400XR Multi Axis Configurations")

***Consult factory for multi-axis pinning options and quotation

Continue to step 1 for Encoders in the order process.

Free sizing and selection support from Virtual Engineer at virtualengineer.com

412XR

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	(12)	13	(14)
	Order	Example:	412	T03	XR	М	s -	D2	H3	L3	C15	M4	E3	B1	R1	P1
		•														
1	Series							8	Travel	Limit	Sensor	*				
	412								L1 12	N C	ie Currer	nt Sinkir	na Elvini	n I eads		
2	Travel -	mm							L3	N.C). Currer	nt Sinkir	na Flvin	a Leads	5	
	T01	150							L4	N.C	. Currer	nt Sourd	cing Flyi	ng Lead	ds	
	T02	250							L5	N.C). Currer	nt Sourc	cing Flyi	ng Lea	ds	
	103 T04	350							* Include	es a 3 m	eter exte	nsion ca	ble with	flying lea	ad termin	ation. A
	T04	800							7.5 mete	er exten	sion cable	e can be	e orderec	l separat	tely.	
	T06	1000						\bigcirc	Motor	Coup	lina					
	T07	1200						J	C1	No	Couplin	n				
	T08	1500							C4	0.3	75" Oldr	9 nam				
	T09	1750							C5	0.3	75" Bello	OWS				
	110	2000							C6	11	mm Old	ham				
(3)	Model								C7	11	mm Bell	OWS				
0	XR	Linear Table							C8	0.5	00" Oldh	nam				
									C9	0.5	00" Bello	OWS				
4	Mounti	ng							C10	14	mm Old	ham				
	М	Metric							C11	14	mm Bell	OWS				
									C12	16	mm Old	ham				
5	Grade								C13	16	mm Bell	ows				
	S	Standard							C14	0.7	50" (19 i 50" (19 i	mm) Ol	dham			
									C15	0.7	50" (191	mm) Be	ellows			
6	Drive S	Crew														
	ום פח	5 mm Loadscro														
	D2 D3	10 mm Leadscre														
	D5	25 mm Leadscr														
	D6	32 mm Leadscr	ew													
7	Home S	ensor *														
<u> </u>	H1	None														
	H2	N.C. Current Sir	nking Fly	ing Lea	ds											
	H3	N.O. Current Sir														

H4 N.C. Current Sourcing Flying Leads

H5 N.O. Current Sourcing Flying Leads

* Includes a 3 meter extension cable with flying lead termination. A 7.5 meter extension cable can be ordered separately.

Free sizing and selection support from Virtual Engineer at virtualengineer.com

Fill in an order code from each of the numbered fields to create a complete model order code.

Screw Driven Tables

10 Motor Mount

- M1 No Motor Mount
- M4 NEMA 34 In-Line Mounting
- M14 NEMA 34 Parallel Mounting, "A" Location
- M15 NEMA 34 Parallel Mounting, "B" Location
- M17 Neometric 34 In-Line Mounting
- M18 Neometric 34 Parallel Mounting, "A" Location
- M19 Neometric 34 Parallel Mounting, "B" Location
- M21 Neometric 70 In-Line Mounting
- M22 Neometric 70 Parallel Mounting, "A" Location
- M23 Neometric 70 Parallel Mounting, "B" Location
- M29 Neometric 92 In-Line Mounting
- M30 Neometric 92 Parallel Mounting, "A" Location
- M31 Neometric 92 Parallel Mounting, "B" Location
- M33 M105 & SMN100 In-Line Mounting
- M90 MPP092 In-Line Mounting
- M91 MPP092 Parallel Mounting, "A" Location
- M92 MPP092 Parallel Mounting, "B" Location
- M93 MPP092 Parallel Mounting, "C" Location

11 Encoder Option

- E1 No Encoder
- E2 1.0 µm Resolution Linear Encoder (tape scale)
- E3 0.5 µm Resolution Linear Encoder (tape scale)
- E4 0.1 µm Resolution Linear Encoder (tape scale)
- **E5** 5.0 μm Resolution Linear Encoder (tape scale)
- E6 Rotary Shaft Encoder (not available with brake)
- E7 Sine Encoder

12 Brake Option

- B1 No Brake
- B2 Shaft Brake (Refer to 412XR holding torque specifications to confirm maximum load. Not available with rotary encoder)

13 Cleanroom Preparation

- R1 Class 1000 with Strip Seals
- R2 Class 100 without Strip Seals

(i) Pinning Option *

- P1 No multi-axis pinning
- P2*** X axis transfer pinning to Y or Z axis 30 arc-sec **
- P3*** Y axis transfer pinning to X axis 30 arc-sec (includes a required 15 mm thick adapter)
- P4*** Z axis transfer pinning to X axis 30 arc-sec

* Pinning option is for pinning to other 404XR and 406XR tables. Transfer pinning is not available on some XR to LXR models. Contact factory for more information. Pinning XY orientation standard with Y motor at 3 o'clock position.

 ** Z pinning uses bracket (see figures 7, 8 and 9 in "400XR Multi Axis Configurations")

***Consult factory for multi-axis pinning options and quotation

The HMRS Series

Screw-Driven Actuators

for Industrial, High-Thrust, High Payload Positioning Applications

version of the HMR family. The large diameter ball screw assembly allows this positioner to achieve very high thrust force capacity. Having multiple screw lead options for every frame size promotes flexibility for diverse application demands. The HMRS can also achieve greater positional precision than the belt driven counterpart. The compact design allows integration of the HMRS into any machine layout, providing superior dynamic performance with minimal space utilization.

FEATURES

$(\mathbf{1})$ **Drive shaft**

Designed to pair with a large assortment of motor and gearhead options

 $(\mathbf{2})$ High force ball screw Multiple lead options for every frame size,

offering high thrust and high throughput

(3) Carriage assembly

Low profile, high strength aluminum construction with threaded and pinning mounting options

Lubrication ports (4)

Easy access maintenance (1x per side) allows for single point lubrication for all bearing trucks and the ball nut at any location along travel

- (5) Corrosion resistant steel sealing band Magnetically fastened to the actuator body and provides IP54 sealing
- (6) Slotted profile Dovetail grooves for actuator & sensor mounting
- $(\mathbf{7})$ **Recirculating profile rail bearing** Two rails and four bearing trucks total for maximized payload capacity

Profile Options

Basic profile - for applications where actuator is fully supported, this option provides a lower profile option.

Reinforced profile - for long un-supported spans (i.e. gantry style applications).

Carriage Options

Standard carriage or tandem carriage for higher load capabilities

IP20 rated without protective cover, or IP54 rated protective cover with seal strip cover assemblies-ideal for harsh environments

Actuator Mounting Options

HMR actuators can be mounted from the underside into t-nuts in the bottom t-slots or via toe clamps into the t-slots on the side of the extrusion.

Pinning options are also available for mounting, carriage to base and carriage to carriage. Consult factory for additional information.

Multi-axis Systems

A wide range of adapter plates and intermediate drive shafts simplifies engineering and installation.

*Please consult factory for your individual system design.

Other Options & Accessories

HMRS actuators can be outfitted with a variety of different options.

In addition to the standard configurable options highlighted in Options & Accessories, a list of commonly used non-standard options are highlighted below. Please contact us for assistance

in choosing any of these or any other unique configurations.

- Purge ports
- Parallel motor mount
- ...and many more

SPECIFICATIONS HMRS Series (HMRS08 and HMRS11)

Parker's High Moment Rodless (HMR) Series electric linear actuator is one of the most user friendly and versatile actuator lines on the market today.

Guided by two square rail bearings, the HMR has enormous moment and payload capacity bundled in a low-profile, yet sleek package. With five different frame sizes, two different drive train options, multiple mounting, carriage and sensor options, and an IP54 protective cover option—along with a multitude of other customizable features—the HMR was truly designed with flexibility in mind.

Common Specifications

Actuator Size				HMR	S08	HMRS11						
Screw Type			12	x 5	12 >	(12	16	x 5	16 x	16		
Screw Lead	s _{lin}	mm	5		1:	2	:	5	16	6		
Screw Diameter		mm		12	2			1	6			
Duty Cycle		%		10	0			10	00			
Linear Speed (Max)	v _{max}	m/s	0.2	25	0.	.6	0.	.25	0.8	В		
Acceleration (Max)	a _{max}	m/s²				1	0					
Repeatability (unidirectional)		μm				±	20					
Order Stroke (Max) (1)		mm		120	00			15	00			
Thrust Force (Max)	$\mathbf{F}_{A_{max}}$	N Ibs		82 18	0 5			22 49	00 95	00 05		
Thrust Force @ 2540 km Life	F A _{max}	N	82 18	0	65 14	50 16	15	550 49	115 25	50 9		
		Nm	0.	0.7 1.7				.9	6.	6.1		
Torque on Drive Shaft (Max)	M _{Amax}	in-lb	6.	2	15	.0	16.8		54.0			
Torque on Drive Shaft	M	Nm	0.	7	1.	.3	1	.3	3.	1		
@ 2540 km Life	WA _{max}	in-lb	6.	2	11.5		11.5		27.	.4		
Torque – No Load	M ₀	Nm in-lb	0. 1.	2 8	0. 1.	.2 .8	0 2.7).3	0.4 3.5	4 5		
Inertia @ Zero Stroke	\mathbf{J}_0	kgmm ²		4			13					
Per Meter of Stroke	J_{OS}	kgmm²/m		14	ļ			4	5			
Per 1 kg Moved Mass	J m	kgmm²/kg	0.	6	3.	7	0	.6	6.	5		
Unit Weight (by Order Code Option)			В	С	R	S	В	С	R	S		
@ Zero Stroke	m 0	kg	1.8	2.1	2.2	2.5	3.5	3.9	4.6	5.0		
Per Meter of Stroke m _{OS} kg/m		kg/m	3.7	4.7	4.8	5.7	6.6	7.6	8.8	9.9		
Carriage (by Order Code Option) ⁽²⁾	m _C	kg	C 1.	0	1 0.	l .7	1	0 .6	1 1.:	3		
Ambient Temperature Range		°C				-20 t	o +80					
IP Rating ⁽³⁾						IP	54					

Note- For force and moment load specifications, see HMRS Loading Conditions

⁽¹⁾ Longer lengths available - please consult factory

⁽²⁾ For tandem carriage weight add mass from column '0' and '1'

⁽³⁾ For unit with protective covers - IP20 without covers

HMRS Series (HMRS15, HMRS18, and HMRS24)

Common Specifications

Actuator Size			HMRS15					HMF	RS18		HMRS24				
Screw Type			20	x 5	20 :	x 20	25 :	x 10	25 >	x 25	32 >	: 10	32 :	x 32	
Screw Lead	s _{lin}	mm	ť	5	2	20	1	0	2	5	1	0	3	2	
Screw Diameter		mm		2	20			2	5			3	2		
Duty Cycle		%		1	00			1(00			1(00		
Linear Speed (Max)	v _{max}	m/s	0.	25		1	0	.5	1.:	25	0.	5	1	.6	
Acceleration (Max)	a _{max}	m/s²						1	0						
Repeatability (unidirectio	nal)	μm						±	20						
Order Stroke (Max) ⁽¹⁾		mm		20	000			21	00			23	00		
Thrust Force (Max)	F _{Amax}	N Ibs		26 5	800 85			48 1,0	00)80			55 1,2	00 238		
Thrust Force @ 2540 km Life	orce F _{Amax} N xm Life Ibs					60 86	33 74	00 43	39 89	60 91	35 78	00 88	48 10	80 98	
Torque on Drive Shaft (Max)	M A _{max}	Nm in-lb	2 19	.2 9.5	9 79	9 9.7	8 73	.3 3.5	20.8 184.1		9. 84	5 .1	30 26).4 9.0	
Torque on Drive Shaft @ 2540 km Life	M A _{max}	Nm in-lb	1 14	.6 1.2	7 66	.5 6.4	5 50	.7).4	17 15	'.1 1.3	6. 54	1 .0	2 23	?7 9.0	
Torque – No Load	M 0	Nm in-lb	0 6	.7 .2	0 8	.9 .0	0 8	.9 .0	8	1 .9	1 8.	9	1 9	.1 .7	
Inertia @ Zero Stroke Per Meter of Stroke Per 1 kg Moved Mass	J ₀ J _{OS} J _m	kgmm ² kgmm ² /m kgmm ² /kg	0	1 10 .6	4 07 10).1	35 245 2.5 15.8				96 639 2.5 2			5.9	
Unit Weight (by Order Code Option)		в	с	R	S	в	с	R	S	в	с	R	S		
@ Zero Stroke m ₀		kg	5.2	6.1	7.1	7.9	8.9	10.0	11.2	12.3	16.5	18.1	20.5	22.2	
Per Meter of Stroke	kg/m	12.1	13.9	15.5	17.2	15.5	17.7	19.1	21.4	25.6	28.3	30.7	33.4		
Carriage (by Order Code Option) ⁽²⁾	kg	0 2.6		1 1.8		0 4.7		1 3.7		0 9.2		7	1 .3		
Ambient Temperature Ra	°C	-20 to +80													
IP Rating ⁽³⁾						IP	54								

Note- For force and moment load specifications, see HMRS Loading Conditions

(1) Longer lengths available - please consult factory

 $^{(2)}$ For tandem carriage weight add mass from column '0' and '1'

⁽³⁾ For unit with protective covers - IP20 without covers

HMRS Loading Specifications (Max) - HMRS08 and HMRS11 Life and loading characteristics shown for both belt and screw driven units.

Rated Life			HMR08	HMR11
2540 km	$\mathbf{F}_{Y}/\mathbf{F}_{Z}$	N (lb)	1800 (405)	4450 (1001)
2540 km Tandem	\mathbf{F}_{Y} / \mathbf{F}_{Z}	N (lb)	2700 (608)	6675 (1508)
8000 km	$\mathbf{F}_{\mathbf{Y}}/\mathbf{F}_{\mathbf{Z}}$	N (lb)	1250 (281)	3000 (675)
8000 km Tandem	\mathbf{F}_{Y} / \mathbf{F}_{Z}	N (lb)	1875 (422)	4500 (1013)
	M _X	Nm (in-lb)	45 (398)	155 (1372)
2540 km	M _Y	Nm (in-lb)	80 (708)	200 (1770)
	MZ	Nm (in-lb)	80 (708)	200 (1770)
	M _X	Nm (in-lb)	68 (602)	235 (2080)
2540 km Tandem	MY	Nm (in-lb)	120 (1062)	300 (2655)
	MZ	Nm (in-lb)	120 (1062)	300 (2655)
	M _X	Nm (in-lb)	30 (266)	105 (929)
8000 km	M _Y	Nm (in-lb)	55 (487)	135 (1195)
	MZ	Nm (in-lb)	55 (487)	135 (1195)
	M _X	Nm (in-lb)	45 (398)	160 (1416)
8000 km Tandem	MY	Nm (in-lb)	80 (708)	205 (1814)
	MZ	Nm (in-lb)	80 (708)	205 (1814)

HMRS Stroke dependent speed - HMRS08 and HMRS11

Actuator Size			HMF	RS08	HMRS11			
Screw Diam	eter (mm	ı)	1	2	1	6		
Screw Lead	(mm)		5	12	5	16		
	200	[mm]	250	600	250	800		
	400	[mm]	250	600	250	800		
	600	[mm]	152	366	197	631		
(s/u	800	[mm]	102	245	132	424		
<u> </u>	1000	[mm]	73	176	95	304		
ke	1200	[mm]	55	132	71	228		
stro	1400	[mm]	-	-	56	178		
ler s	1600	[mm]			45	143		
orc	1800	[mm]	-	-	-	-		
d at	2000	[mm]	-	-	-	-		
eec	2200	[mm]	-	-	-	-		
ds é	2400	[mm]	-	-	-	-		
ible	2600	[mm]	-	-	-	-		
issi	2800	[mm]	-	-	-	-		
ern	3000	[mm]	-	-	-	-		
× A	3200	[mm]	-	-	-	-		
Ma	3400	[mm]	-	-	-	-		
	3600	[mm]	-	-	-	-		
	3800	[mm]	-	-	-	-		
	4000	[mm]	-	-	-	-		

HMRS Loading Specifications (Max) - HMRS15, HMRS18, HMRS24

Rated Life			HMR15	HMR18	HMR24
2540 km	$\mathbf{F}_{\mathbf{Y}}/\mathbf{F}_{\mathbf{Z}}$	N (lb)	8,800 (1,980)	16,200 (3,645)	26,600 (5,985)
2540 km Tandem	${\bm F}_{Y/}{\bm F}_{Z}$	N (lb)	13,200 (2,970)	24,300 (5,468)	39,900 (8,978)
8000 km	\mathbf{F}_{Y} / \mathbf{F}_{Z}	N (lb)	6,000 (1,350)	11,000 (2,475)	18,200 (4,095)
8000 km Tandem	\mathbf{F}_{Y} / \mathbf{F}_{Z}	N (lb)	9,000 (2,025)	16,500 (3,713)	27,300 (6,143)
	M _X	Nm (in-lb)	430 (3,806)	940 (8,320)	2,150 (19,029)
2540 km	MY	Nm (in-lb)	560 (4,956)	1,230 (10,886)	2,430 (21,507)
	MZ	Nm (in-lb)	560 (4,956)	1,230 (10,886)	2,430 (21,507)
	M _X	Nm (in-lb)	645 (5,708)	1,410 (12,480)	3,225 (28,544)
2540 km Tandem	M _Y	Nm (in-lb)	840 (7,435)	1,845 (16,330)	3,645 (32,261)
	MZ	Nm (in-lb)	840 (7,435)	1,845 (16,330)	3,645 (32,261)
	M _X	Nm (in-lb)	290 (2,567)	640 (5,664)	1,460 (12,922)
8000 km	M _Y	Nm (in-lb)	380 (3,363)	840 (7,435)	1,660 (14,692)
	MZ	Nm (in-lb)	380 (3,363)	840 (7,434)	1,660 (14,692)
	M _X	Nm (in-lb)	435 (3,850)	960 (8,497)	2,190 (19,383)
8000 km Tandem	M _Y	Nm (in-lb)	570 (5,045)	1,260 (11,152)	2,490 (22,038)
	MZ	Nm (in-lb)	570 (5,045)	1,260 (11,152)	2,490 (22,038)

HMRS Stroke dependent speed - HMRS15, HMRS18, HMRS24

Actuator Size			HM	RS15	НМ	RS18	HMRS24		
Screw Diame	eter (mm)	2	20	2	25	3	32	
Screw Lead	(mm)		5	20	10	25	10	32	
	200	[mm]	250	1,000	500	1,250	500	1,600	
	400	[mm]	250	1,000	500	1,250	500	1,600	
	600	[mm]	250	1,000	500	1,250	500	1,600	
(s/u	800	[mm]	169	678	382	956	423	1,354	
Ē	1000	[mm]	122	486	277	694	312	997	
ke (<u>e</u> 1200		91	366	211	526	239	765	
itro	1400	[mm]	71	285	165	413	189	605	
ero	1600	[mm]	57	228	133	333	153	491	
ord	1800	[mm]	47	187	109	274	127	406	
lat	2000	[mm]	39	156	92	229	107	342	
eed	2200	[mm]	33	132	78	195	91	291	
ds	2400	[mm]	28	113	67	167	79	251	
ible	2600	[mm]	-	-	58	145	68	219	
Jiss	2800	[mm]	-	-	51	128	60	193	
ern	3000	[mm]	-	-	45	113	53	171	
Х.	3200	[mm]	-	-	40	100	48	152	
Aa	3400	[mm]	-	-	-	-	43	137	
	3600	[mm]	-	-	-	-	39	123	
	3800	[mm]	-	-	-	-	35	112	
	4000	[mm]	-	-	-	-	32	102	

HMRS Weight, Mass, and Inertia

Weight and mass HMRS

Product size		HMRS08			HMRS11					HMRS15				
							Wei	ght of	actua	ator				
Version of actuator (see order cod	e)		В	С	R	S	В	С	R	S	В	С	R	S
Weight actuator. 0 - order stroke	1.8	2.1	2.2	2.5	3.5	3.9	4.6	5.0	5.2	6.1	7.1	7.9		
Weight actuator per 1 meter m _{mt} [kg/m]		3.7	4.7	4.8	5.7	6.6	7.6	8.8	9.9	12.1	13.9	15.5	17.2	
							Ν	/loving	g mass	5				
Version of carriage (see order code		0)	1		0)	1		()	Ī	I	
Weight carriage*	[kg]	1.0		0.7		1.6		1.3		2.6		1.8		

Weight and mass HMRS

Product size			HMF	RS18		HMRS24				
					We	ight o	factua	ator		
Version of actuator (see order code)	В	С	R	S	В	С	R	S		
Weight actuator. 0 - order stroke	m _o	[kg]	8.9	10.0	11.2	12.3	16.5	18.1	20.5	22.2
Weight actuator per 1 meter	m _{mt}	[kg/m]	15.5	17.7	19.1	21.4	25.6	28.3	30.7	33.4
					1	Moving	g mas	S		
Version of carriage (see order code)	(כ		1	(כ	1			
Weight carriage*	4.7		3.7		9.2		7.3			

*For tandem carriage weight add mass from column '0' and '1'

Total mass HMRS: $m_{tot} = m_0 + m_c + order stroke * m_{mt}$

Inertia HMRS

Product size			HMF	RS08	HMF	RS11	HMRS15		
Pitch (see order code)			5 12		5 16		5	20	
Inertia actuator. 0 - order stroke	$J_{_0}$	[kgmm ²]	2	ł	1	3	14		
Inertia actuator per 1 meter	J _{mt}	[kgmm²/m]	1	4	4	5	1(07	
Inertia per 1 kg moving mass	J_{kg}	[kgmm ² /kg]	0.6	3.7	0.6	6.5	0.6	10.1	

Inertia HMRS

Product size			HMF	RS18	HMRS24		
Pitch (see order code)			10	25	10	32	
Inertia actuator. 0 - order stroke	J_{0}	[kgmm ²]	3	5	9	6	
Inertia actuator per 1 meter	J _{mt}	[kgmm²/m]	24	45	63	39	
Inertia per 1 kg moving mass	J_{kg}	[kgmm²/kg]	2.5	15.8	2.5	25.9	

Total inertia HMRS: $J_{tot} = J_0$ + order stroke * J_{mt} + m_C * J_{kg} + m * J_{kg}

HMR Loading Conditions

Loading conditions, including external forces and moment loading, are application dependent. The center of gravity for the mass/payload attached to the carriage must be determined in order to properly size the ideal actuator for your application. Please note that when selecting the proper HMR actuator for your system the sum of all loading should not exceed "1" as per the formula below.

Loads, forces and bending moments

Calculating Load Factors - Combined Normal and Moment Load

HMRx150

HMRx180

HMRx240

The sum of combined loads (static and dynamic) must not exceed "1" at any time as shown in the formula below:

Internal lever arm I,

Dimensions - Internal lever arm I _{zi}												
Product size		l _{zi}										
HMRx085	[mm]	33.0										
HMRx110	[mm]	39.5										

[mm]

[mm]

[mm]

Free sizing and selection support from Virtual Engineer at virtualengineer.com

50.0

57.5

68.0

HMRS Thrust/Life Curve

Performance expectancy depends on the application's required force. An increase in force will reduce performance.

HMRS18 Performance / Thrust force

HMRS11 Performance / Thrust force

HMRS24 Performance / Thrust force

DIMENSIONS

HMRS Maximum Permissible Unsupported Length — Determining actuator mounting placement

HMR Series actuators need to be mounted onto a solid machine base or frame structure using appropriately positioned actuator mounts. This ensures that the actuator will not undergo excessive deflection based on the application's load and length requirements.

The greater the load and/or the longer the unsupported length between mounts, the more the actuator is susceptible to deflection.

Deflection is also dependent on the carriage orientation (F_Z for standard mounted actuator or F_Y for a side mounted actuator).

Max. admissible loads [N] and supporting distances [mm] (self-supporting- reinforced profile only)

Example F_z HMR 11:

For a 3160 N load the distance "d" between supporting elements is 700 mm. For mounting accessories see "Actuator Mounting" in Options & Accessories.

Ð

Maximum Permissible Unsupported Length

Determining actuator mounting placement

Use the appropriate deflection graph to ensure that the application load does not exceed the deflection curve. Supporting the actuator within the recommended maximum distance "k" will ensure that the installation will have a maximum deflection equal to 0.01% of distance "k."

To further reduce deflection, simply reduce the distance between actuator mounts as described in the examples below.

For a 3160 N load the distance "d" between supporting elements is 900 mm. For mounting accessories see "Actuator Mounting" in Options & Accessories.

HMRS Dimensions - (mm)

HMR actuators can be configured with either "Basic" or "Reinforced" profiles based on application demands. Basic profiles are suitable for applications where the actuator is secured to a machine base and constantly supported. Reinforced profiles can be utilized in applications with unsupported spans. See Maximum Permissible Unsupported Length for mounting support requirements.

Note: The same T-slot profile is used for both profile types

DIMENSIONS

Download 2D & 3D files from www.parker.com/emn

Dimension table - HMRS

Product s	ize	ØA	В	ØD ^{H7}	Е	ØF ^{H7}	G	HB	HR	Κ	LB	LC	LR	LS
HMRS08	[mm]	42.0	M4	34.0	3.0	6.0	11.0	26.0	37.0	85.0	60.0	52.5	71.0	63.5
HMRS11	[mm]	51.0	M6	39.0	5.0	10.0	18.0	32.0	52.0	110.0	69.5	60.5	89.5	80.5
HMRS15	[mm]	72.0	M8	54.0	4.0	12.0	31.0	36.0	60.0	150.0	90.0	74.0	114.0	98.0
HMRS18	[mm]	80.0	M8	64.0	2.5	15.0	33.0	44.0	67.5	180.0	111.5	93.5	134.5	116.5
HMRS24	[mm]	95.0	M10	80.0	2.5	20.0	37.0	55.0	83.0	240.0	125.0	104.5	153.0	132.5

Dimension table - HMRS

Product s	size	М	MA	MB	MC	Ν	NA	NB	NC	PB	PR	PS	PT	PU	Q
HMRS08	[mm]	50.0	5.2	4.5	1.5	4.5	3.4	3.0	2.5	19.3	30.3	12.0	9.0	7.1	16.0
HMRS11	[mm]	70.0	5.2	4.5	1.8	4.5	3.4	3.0	2.5	23.5	43.5	12.0	9.0	8.5	20.0
HMRS15	[mm]	96.0	6.2	6.8	3.0	6.5	5.2	4.6	3.5	15.0	39.0	12.0	9.0	15.0	20.0
HMRS18	[mm]	116.0	8.0	7.8	4.5	8.5	5.2	4.5	3.5	28.0	51.0	12.0	9.0	18.0	20.0
HMRS24	[mm]	161.0	10.0	10.2	5.3	8.5	5.2	4.5	3.5	46.0	74.0	12.0	9.0	16.5	20.0

Dimension table - carriage standard HMRS

Product size	e	JB	JD	CL	RS	т	TAS	ta	TBS	tb	TCS	tc	TDS	td	TES
HMRS08	[mm]	33.5	30.0	195.0	128.0	74.0	97.0	M4x12	70.0	M4x12	40.0	M4x12	-	-	-
HMRS11	[mm]	37.5	34.0	225.0	150.0	96.0	122.0	M5x12	97.0	M5x12	65.0	M5x12	25.0	M5x12	-
HMRS15	[mm]	37.5	34.0	266.0	191.0	120.0	170.0	M5x12	122.0	M5x12	110.0	M5x12	70.0	M5x12	-
HMRS18	[mm]	40.0	34.0	311.0	231.0	150.0	202.0	M6x12	170.0	M5x10	122.0	M5x10	110.0	M5x12	90.0
HMRS24	[mm]	40.0	34.0	371.0	291.0	192.0	262.0	M8x16	202.0	M6x12	170.0	M5x10	140.0	M8x16	122.0

Dimension table - carriage standard HMRS

Product size		te	TFS	tf	tg	ØTKH7	TL	U	U1
HMRS08	[mm]	-	-	-	-	7.0	1.5	83.0	5.5
HMRS11	[mm]	-	-	-	-	7.0	1.5	105.0	7.0
HMRS15	[mm]	-	-	-	M5x12	7.0	1.5	135.0	15.0
HMRS18	[mm] N	/l6x12	-	-	M6x12	9.0	1.5	165.0	15.0
HMRS24	[mm] N	//5x10	110.0	M5x12	M8x16	12.0	1.5	210.0	24.0

Free sizing and selection support from Virtual Engineer at virtualengineer.com

HMRS Order Stroke - (mm)

Order stroke dependent dimensions

- ES = Effective Stroke
- SS = Safety Stroke
- CD = Carriage distance
- CL = Carriage length Standard
- S = Stroke
- OS = Order Stroke
- OAL = Over All Length

Standard design with one carriage

Order stroke OS = Effective stroke ES + 2 x Safety stroke SS Over all length OAL = order stroke OS + carrier length CL + 2 x dimension end cap X

Tandem design with two carriages

Order stroke OS = Effective stroke ES + 2 x Safety stroke SS + Carrier distance CD (not shown) Over all length OAL = Order stroke OS + 2 x carrier length CL + 2 x dimension end cap X

Dimensions -	Carriage and	l end cap	HMRS
--------------	--------------	-----------	------

Product size		CL	Q	Х
HMRS08	[mm]	195.0	16.0	54.0
HMRS11	[mm]	225.0	20.0	65.0
HMRS15	[mm]	266.0	20.0	62.0
HMRS18	[mm]	311.0	20.0	66.0
HMRS24	[mm]	371.0	20.0	73.0

Order Stroke Safety Distance:

The mechanical end position should not be used as a mechanical end stop, thus an additional *Safety Distance* at both ends of travel must be incorporated into the Order Stroke. The safety distance for servo-driven systems is equivalent to the travel distance per one revolution of the drive shaft. AC motor-driven systems with VFDs require a larger safety distance than servo systems. For further information and design assistance, please consult factory.

OPTIONS & ACCESSORIES

HMRS Screw Driven Actuators Gearhead Mounting Kit Options

Gearhead Mounting Kits include a coupling housing, coupling, and flange.

0

 $\begin{array}{l} \mathsf{A} = \mathsf{Bolt} \ \mathsf{circle} \ \mathsf{diameter} \\ \mathsf{B} = \mathsf{Screw} \ \mathsf{for} \ \mathsf{bolt} \ \mathsf{circle} \\ \mathsf{C} = \mathsf{Square} \ \mathsf{dimension} \\ \mathsf{D} = \mathsf{Pilot} \ \mathsf{diameter} \\ \mathsf{E} = \mathsf{Pilot} \ \mathsf{depth} \\ \mathsf{F} = \mathsf{lnput} \ \mathsf{dirve} \ \mathsf{shaft} \ \mathsf{diameter} \\ \mathsf{G} = \mathsf{lnput} \ \mathsf{dirve} \ \mathsf{shaft} \ \mathsf{length} \\ \mathsf{LCH} = \mathsf{Length} \ \mathsf{coupling} \ \mathsf{housing} \\ \mathsf{MF} = \mathsf{Motor} \ \mathsf{flange} \end{array}$

Actuator	0 Order									
Size	Code ¹	Α	В	С	D	Е	F	G	LCH	MF
HMRS08	C0	44	M4x0.7	60	35	6	12	25	28	20
HMRS11	A7	70	M5x0.8	60	50	15	16	40	37	35
	C0	44	M4x0.7	60	35	6	12	25	37	20
	C1	62	M5x0.8	80	52	8	16	40	37	35
	BX	70	M5x0.8	60	50	10	16	25	37	20
HMRS15	A7	70	M5x0.8	85	50	15	16	40	54	30
	A 8	100	M6x1	90	80	20	22	52	54	42
	C1	62	M5x0.8	84	52	12	16	40	54	30
	C2	80	M6x1	92	68	5	22	46	54	36
	BX	70	M5x0.8	85	50	5	16	25	54	20
	BY	100	M6x1	92	80	15	20	40	54	30
	A 8	100	M6x1	100	80	30	22	52	70	40
	C2	80	M6x1	92	68	6	22	46	70	30
HIVING 10	BY	100	M6x1	92	80	15	20	40	70	30
	BZ	130	M8x1.25	115	110	25	24	50	70	40
	A9	130	M8x1.25	115	110	25	32	68	85	40
HMRS24	C3	108	M8x1.25	125	90	17	32	70	85	40
	BZ	130	M8x1.25	115	110	5	24	50	85	20

¹ When ordering with actuator, use order code () to specify appropriately sized gearhead mounting kit. See Ordering Information.

Mounted Gearhead with Motor Mounting Kits include a coupling housing, coupling, flange, and gearhead with coupler and flange.

Actuator	(9) Ordor	0 Ordor					Dir	nensions					
Size	Code ¹	Code ²	Α	в	С	D	Е	F	G	LCH	LGH	MAK	MF
	Jx	AB	66.68	M4x0.7	55	38.10	3.5	6.35	20.8	28	48.5	15.7	20
	Jx	AC	66.68	M5x0.8	57	38.11	6	9.53	20.8		48.5	26	20
Actuator Size HMRS08 4 4 4 4 4 4 4 4 4 4 4 4 4	Jx	AD	66.68	M5x0.8	57	38.11	6	9.53	31.8		48.5	26	20
	Jx	B6	63	M5x0.8	55	40	8	9	23	8	48.5	19	20
	Fx	A 3	100	M6x1	82	80	5	14	30	37	59.8	18	35
	Fx	AB	66.68	M4x0.7	62	38.10	4	6.35	20.8	37	59.8	16.5	35
	Fx	AC	66.68	M5x0.8	62	38.15	4	9.53	20.8	37	59.8	16.5	35
	Fx	AD	66.68	M5x0.8	62	38.15	4	9.53	31.8	37	59.8	16.5	35
	Fx	AE	98.43	M5x0.8	86.8	73.03	7	12.70	37.1	37	59.8	22.5	35
	Fx	AF	98.43	M5x0.8	86.8	73.03	7	12.70	31.8	37	59.8	22.5	35
	Fx	AH	63	M5x0.8	62	40	4	9	23	37	59.8	16.5	35
	Fx	AN	70	M5x0.8	62	50	4	14	30	37	59.8	16.5	35
	Fx	B 6	63	M4x0.7	62	40	4	9	23	37	59.8	16.5	35
	Jx	AB	66.68	M4x0.7	55	38.10	3.5	6.35	20.8	37	48.5	15.7	20
HMRS11	Jx	AC	66.68	M5x0.8	57	38.11	6	9.53	20.8	37	48.5	26	20
	Jx	AD	66.68	M5x0.8	57	38.11	6	9.53	31.8		48.5	26	20
	Jx	B 6	63	M5x0.8	55	40	8	9	23	37	48.5	19	20
	Kx	AB	66.68	M4x0.7	62	38.10	4	6.35	20.8	37	67	16.5	35
	Kx	AC	66.68	M4x0.7	62	38.10	4	9.53	20.8	37	67	16.5	35
	Kx	AD	66.68	M5x0.8	62	38.10	8.5	9.53	31.8	37	67	22.5	35
	Kx	AE	98.43	M6x1	85	73.05	10	12.70	37.1	37	67	30	35
	Kx	AF	98.43	M5x0.8	80	73.05	7	12.70	31.8	37	67	22.5	35
	KX	AH	63	M5x0.8	62	40	4	9	23	37	67	16.5	35
	KX	AN	70	M4x0 7	62	50	1	14	30	37	67	16.5	35
	NX	DO	03	W4XU./	02	40	4	9	23	37	0/	10.0	30

¹ When ordering with actuator, use order code () (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: **F** = PS60 **G** = PS90 **H** = PS115 **J** = PV040TA **K** = PV60TA **L** = PV090TA **M** = PV115TA

Gearhead size example: $\mathbf{F} = PS60$ $\mathbf{G} = PS90$ $\mathbf{H} = PS115$ $\mathbf{J} = PV0401A$ $\mathbf{K} = PV001A$ $\mathbf{L} = PV0901A$ $\mathbf{M} = P$ Gearhead ratio and mounting orientation: (Replace "x" to specify)

 $\mathbf{1} = \text{ratio } 3:1^{\circ}$ $\mathbf{2} = \text{ratio } 5:1$ $\mathbf{3} = \text{ratio } 10:1^{\circ}$

3:1 ratio not available on "J" PV040TA gearhead

² Use order code (see Ordering Information) to specify appropriately sized motor mounting kit.

e D

Mounted Gearhead with Motor Mounting Kit Options

(continued from previous page)

	9 0 Dimensions												
Actuator Size	Order Code ¹	Order Code ²	Α	в	с	D	Е	F	G	LCH	LGH	MAK	MF
	Fx	A 3	100	M6x1	82	80	5	14	30	54	59.8	18	30
	Fx	AB	66.68	M4x0.7	62	38.10	4	6.35	20.8	54	59.8	16.5	30
	Fx	AC	66.68	M5x0.8	62	38.15	4	9.53	20.8	54	59.8	16.5	30
	Fx	AD	66.68	M5x0.8	62	38.15	4	9.53	31.8	54	59.8	16.5	30
	Fx	AE	98.43	M5x0.8	86.8	73.03	7	12.70	37.1	54	59.8	22.5	30
	Fx	AF	98.43	M5x0.8	86.8	73.03	7	12.70	31.8	54	59.8	22.5	30
	Fx	AH	63	M5x0.8	62	40	4	9	23	54	59.8	16.5	30
	Fx	AN	70	M5x0.8	62	50	4	14	30	54	59.8	16.5	30
	Fx	B 6	63	M4x0.7	62	40	4	9	23	54	59.8	16.5	30
	Gx	A2	63	M5x0.8	90	40	3	11	23	54	69.5	20	42
	Gx	A3	100	M6x1	90	80	10	14	30	54	69.5	20	42
	Gx	A4	115	M8x1.25	100	95	10	19	40	54	69.5	28.5	42
	Gx	AB	66.68	M5x0.8	90	38.15	3	6.35	20.8	54	69.5	20	42
	Gx	AC	66.68	M5x0.8	90	38.15	3	9.53	20.8	54	69.5	20	42
	Gx	AD	66.68	M5x0.8	90	38.15	3	9.53	31.8	54	69.5	20	42
	Gx	AE	98.43	M5x0.8	90	73	10	12.70	37.1	54	69.5	20	42
	Gx	AF	98.43	M5x0.8	90	73	10	12.70	31.8	54	69.5	20	42
	Gx	AH	63	M5x0.8	90	40	3	9	23	54	69.5	20	42
	Gx	AL	100	M6x1	90	80	10	16	40	54	69.5	20	42
	Gx	AN	70	M5x0.8	90	50	10	14	30	54	69.5	20	42
	Gx	AP	90	M6x1	90	70	10	19	40	54	69.5	20	42
HMRS15	Gx	B1	90	M5x0.8	90	60	10	11	23	54	69.5	20	42
	Gx	B 3	95	M6x1	90	50	10	14	30	54	69.5	20	42
	Gx	B6	63	M4x0.7	90	40	3	9	23	54	69.5	20	42
	Кх	AB	66.68	M4x0.7	62	38.1	4	6.35	20.8	54	67	16.5	30
	Кх	AC	66.68	M4x0.7	62	38.1	4	9.53	20.8	54	67	16.5	30
	Кх	AD	66.68	M5x0.8	62	38.1	8.5	9.53	31.8	54	67	22.5	30
	Кх	AE	98.43	M6x1	85	73.05	10	12.70	37.1	54	67	30	30
	Кх	AF	98.43	M5x0.8	80	73.05	7	12	31.8	54	67	22.5	30
	Кх	AH	63	M5x0.8	62	40	4	9	23	54	67	16.5	30
	Kx	AN	70	M5x0.8	62	50	11	14	30	54	67	22.5	30
	Kx	B6	63	M4x0.7	62	40	4	9	23	54	67	16.5	30
	Lx	A2	63	M5x0.8	90	40	3	11	23	54	85.5	20	36
	Lx	A3	100	M6x1	90	80	10	14	30	54	85.5	20	36
	Lx	A4	115	M8x1.25	100	95	10	19	40	54	85.5	28.5	36
	Lx	AB	66.68	M4x0.7	90	38.15	3	6.35	20.8	54	85.5	20	36
	Lx	AC	66.68	M5x0.8	90	52	10	9.53	20.8	54	85.5	20	36
	Lx	AD	66.68	M5x0.8	90	52	10	9.53	31.8	54	85.5	20	36
	Lx	AE	98.43	M5x0.8	90	73.03	10	12.70	37.1	54	85.5	28.5	36
	Lx	AF	98.43	M5x0.8	90	73	10	12.70	31.8	54	85.5	20	36
	Lx	AH	63	M5x0.8	90	40	10	9	23	54	85.5	00.5	36
	Lx	AL	100	MGX1	90	80	10	16	40	54	85.5	28.5	36
	Lx	AN	70	M5x0.8	90	50	10	14	30	54	85.5	20	36
	Lx	AP	90	M6x1	90	70	10	19	40	54	85.5	28.5	36
Screw Driven Tables

(Continued from previous page)

Actuator	O Dimensions												
Size	Code ¹	Code ²	Α	В	С	D	Е	F	G	LCH	LGH	MAK	MF
	Gx	A2	63	M5x0.8	90	40	3	11	23	70	69.5	20	40
	Gx	A3	100	M6x1	90	80	10	14	30	70	69.5	20	40
	Gx	A 4	115	M8x1.25	100	95	10	19	40	70	69.5	28.5	40
	Gx	AB	66.68	M5x0.8	90	38.15	3	6.35	20.8	70	69.5	20	40
	Gx	AC	66.68	M5x0.8	90	38.15	3	9.53	20.8	70	69.5	20	40
	Gx	AD	66.68	M5x0.8	90	38.15	3	9.53	31.8	70	69.5	20	40
	Gx	AE	98.43	M5x0.8	90	73	10	12.70	37.1	70	69.5	20	40
	Gx	AF	98.43	M5x0.8	90	73	10	12.70	31.8	70	69.5	20	40
	Gx	AH	63	M5x0.8	90	40	3	9	23	70	69.5	20	40
	Gx	AL	100	M6x1	90	80	10	16	40	70	69.5	20	40
	Gx	AN	70	M5x0.8	90	50	10	14	30	70	69.5	20	40
	Gx	AP	90	M6x1	90	70	10	19	40	70	69.5	20	40
	Gx	B1	90	M5x0.8	90	60	10	11	23	70	69.5	20	40
HMRS18	Gx	B3	95	M6x1	90	50	10	14	30	70	69.5	20	40
	Gx	B 6	63	M4x0.7	90	40	2.5	9	23	70	69.5	20	40
	Lx	A2	63	M5x0.8	90	40	3	11	23	70	85.5	20	30
	Lx	A3	100	M6x1	90	80	10	14	30	70	85.5	20	30
	Lx	A 4	115	M8x1.25	100	95	10	19	40	70	85.5	28.5	30
	Lx	AB	66.68	M4x0.7	90	38.15	3	6.35	20.8	70	85.5	20	30
	Lx	AC	66.68	M5x0.8	90	52	10	9.53	20	70	85.5	20	30
	Lx	AD	66.68	M5x0.8	90	52	10	9.53	31	70	85.5	20	30
	Lx	AE	98.43	M5x0.8	90	73.03	10	12.70	37.1	70	85.5	28.5	30
	Lx	AF	98.43	M5x0.8	90	73	10	12.70	31.8	70	85.5	20	30
	Lx	AH	63	M5x0.8	90	40	10	9	23	70	85.5		30
	Lx	AL	100	M6x1	90	80	10	16	40	70	85.5	28.5	30
	Lx	AN	70	M5x0.8	90	50	10	14	30	70	85.5	20	30
	Lx	AP	90	M6x1	90	70	10	19	40	70	85.5	28.5	30
	Hx	A4	115	M8x1.25	115	95	10	19	50	85	90.2	24	40
	Hx	AF	98.40	M5x0.8	115	73.03	10	12.70	31.8	85	90.2	24	40
	Hx	AK	130	M8x1.25	115	110	10	19	40	85	90.2	24	40
	Hx	AL	100	M6x1	115	80	10	16	40	85	90.2	24	40
	Hx	AQ	165	M10x1.5	140	130	10	28	60	85	90.2	35	40
HMRS24	Hx	AP	90	M6x1	115	70	10	19	40	85	90.2	24	40
	Mx	A4	115	M8x1.25	115	95.05	10	19	50	85	110	24	40
	Mx	AF	98.40	M5x0.8	115	73	10	12.70	31.8	85	110	24	40
	Mx	AK	130	M8x1.25	115	110.05	10	24	40	85	110	35	40
	Mx	AL	100	M6x1	115	80	10	16	40	85	110	24	40
	Mx	AP	90	M6x1	115	70	10	19	40	85	110	35	40

¹ When ordering with actuator, use order code O (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: **F** = PS60 **G** = PS90 **H** = PS115 **J** = PV040TA **K** = PV60TA **L** = PV090TA **M** = PV115TA Gearhead ratio and mounting orientation: (Replace "x" to specify)

1 = ratio 3:1 * **2** = ratio 5:1 **3** = ratio 10:1

³3:1 ratio not available on "J" PV040TA gearhead ² Use order code (see Ordering Information) to specify appropriately sized motor mounting kit.

Motor Mounting Kit Options

Gearhead Mounting Kits include a coupling housing, coupling, and flange.

Actuator	0 Order		Dimensions								
Size	Code ¹	Α	В	С	D	Е	F	G	LCH	MF	
	A2	63	M5x0.8	60	40	10	11	23	28	20	
	AB	66.68	M4x0.7	60	38.10	10	6.35	20.8	28	20	
	AC	66.68	M5x0.8	60	38.10	10	9.53	20.8	28	20	
	AD	66.68	M5x0.8	60	38.10	15	9.53	31.8	28	27	
	AE	98.43	M6x1	85	73.03	15	12.70	37.1	28	33	
	AF	98.43	M5x0.8	85	73.03	15	12.70	31.8	28	27	
	AG	75	M5x0.8	70	60	10	11	23	28	20	
HMRS08	AH	63	M5x0.8	60	40	10	9	23	28	20	
	AN	70	M5x0.8	60	50	15	14	30	28	25	
	B0	75	M6x1	70	60	15	14	30	28	25	
	B1	90	M5x0.8	75	60	10	11	23	28	20	
	B2	90	M5x0.8	75	60	15	14	30	28	25	
	B3	95	M6x1	80	50	15	14	30	28	25	
	B 6	63	M4x0.7	60	40	10	9	23	28	20	
	B7	70	M5x0.8	60	50	15	8	30	28	25	
	B 8	70	M5x0.8	60	50	15	12	30	28	25	
	A2	63	M5x0.8	60	40	5	11	23	37	15	
	AB	66.68	M4x0.7	60	38.10	10	6.35	20.8	37	15	
	AC	66.68	M5x0.8	60	38.10	10	9.53	20.8	37	15	
	AD	66.68	M5x0.8	60	38.10	15	9.53	31.8	37	25	
	AE	98.43	M6x1	85	73.03	20	12.70	37.1	37	33	
	AF	98.43	M5x0.8	85	73.03	15	12.70	31.8	37	27	
	AG	75	M5x0.8	70	60	10	11	23	37	20	
HMRS11	AH	63	M5x0.8	60	40	5	9	23	37	15	
	AL	100	M6x1	92	80	15	16	40	37	36	
	AN	70	M5x0.8	60	50	15	14	30	37	25	
	BO	/5	M6X1	70	60	15	14	30	37	25	
	B1	90	M5x0.8	80	60	10	11	23	37	20	
	B2 B2	90	NISXU.8	80	60	15	14	30	37	25	
	D3 D7	95		60	50	15	0	30	37	20	
	B8	70	M5x0.8	60	50	15	12	30	37	25	

Screw Driven Tables

	A2	63	M5x0.8	84	40	3	11	23	54	20
	A3	100	M6x1	92	80	5	14	30	54	20
	A4	115	M8x1.25	100	95	15	19	40	54	30
	AE	98.43	M6x1	85	73.03	15	12.70	37.1	54	25
HMRS15	AF	98.43	M5x0.8	85	73.03	10	12.70	31.8	54	20
Thurloro	AL	100	M6x1	92	80	15	16	40	54	30
	AN	70	M5x0.8	85	50	5	14	30	54	20
	AP	90	M6x1	84	70	15	19	40	54	30
	B 0	100	M6x1	85	60	5	14	30	54	20
	B2	90	M5x0.8	85	60	5	14	30	54	20
	A3	100	M6x1	92	80	5	14	30	70	20
	A4	115	M8x1.25	100	95	15	19	40	70	30
	AF	98.43	M5x0.8	90	73.03	10	12.70	31.8	70	20
	AK	130	M8x1.25	115	110	25	24	40	70	40
	AL	100	M6x1	92	80	15	16	40	70	30
	AP	90	M6x1	90	70	15	19	40	70	30
	B 0	75	M6x1	90	60	10	14	30	70	20
	B2	90	M6x1	90	60	10	14	30	70	20
	A4	115	M8x1.25	110	95	5	19	50	85	20
MVIN324	AK	130	M8x1.25	115	110	5	24	40	85	20

(Continued from previous page)

¹ When ordering with actuator, use order code (1) to specify appropriately sized motor mounting kit. See Ordering Information.

Direct Motor Mount Options

Direct Motor Mounting options include a coupling housing, coupling, and flange.

 $\begin{array}{l} C = Square \ dimension \\ LCH = Length \ coupling \ housing \\ LM = Length \ motor \\ MF = Mounting \ flange \end{array}$

Actuator	(9) Order	0 Order					
Size	Code ¹	Code ¹	Mounted Motor	С	LCH	LM	MF
	00	К0	BE233FJ-KPSN	60	28	143.2	27
	00	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	28	178	27
HMRS08	00	K2	BE344LJ-KPSN	85	28	188	27
	00	K3	BE344LJ-KPSB	85	28	231	27
	00	K4	PM-FBL04AMK	60	28	108.2	25
	00	K5	PM-FBL04AMK2 (w/ Brake)	60	28	148.2	25
	00	K0	BE233FJ-KPSN	60	37	143.2	25
	00	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	37	178	25
	00	K2	BE344LJ-KPSN	85	37	188	27
HMRS11	00	K3	BE344LJ-KPSB	85	37	231	27
	00	K4	PM-FBL04AMK	60	37	108.2	25
	00	K5	PM-FBL04AMK2 (w/ Brake)	60	37	148.2	25
	00	MO	MPP0923D1E-KPSN	92	37	178	36
	00	M1	MPP0923D1E-KPSB	92	37	212.5	36
	00	K2	BE344LJ-KPSN	85	54	188	20
	00	K3	BE344LJ-KPSB	85	54	231	20
	00	K4	PM-FBL04AMK	85	54	108.2	20
	00	K5	PM-FBL04AMK2 (w/ Brake)	85	54	148.2	20
	00	K6	PM-FCL10AMK	84	54	152.7	30
HMRS15	00	K7	PM-FCL10AMK2 (w/ Brake)	84	54	193	30
	00	MO	MPP0923D1E-KPSN	92	54	178	30
	00	M1	MPP0923D1E-KPSB	92	54	212.5	30
	00	M2	MPP1003D1E-KPSN	100	54	174.5	30
	00	M3	MPP1003D1E-KPSB	100	54	223	30
	00	M4	MPP1003R1E-KPSN	100	54	174.5	30
	00	M5	MPP1003R1E-KPSB	100	54	223	30

	00	K2	BE344LJ-KPSN	90	70	188	20
	00	К3	BE344LJ-KPSB	90	70	231	20
	00	K6	PM-FCL10AMK	90	70	152.7	30
	00	K7	PM-FCL10AMK2 (w/ Brake)	90	70	193	30
	00	M 0	MPP0923D1E-KPSN	92	70	178	30
	00	M1	MPP0923D1E-KPSB	92	70	212.5	30
	00	M2	MPP1003D1E-KPSN	100	70	174.5	30
niving 10	00	M3	MPP1003D1E-KPSB	100	70	223	30
	00	M4	MPP1003R1E-KPSN	100	70	174.5	30
	00	M5	MPP1003R1E-KPSB	100	70	223	30
	00	M6	MPP1154B1E-KPSN	115	70	203.2	40
	00	M7	MPP1154B1E-KPSB	115	70	251.7	40
	00	M8	MPP1154P1E-KPSN	115	70	203.2	40
	00	M9	MPP1154P1E-KPSB	115	70	251.7	40
	00	M2	MPP1003D1E-KPSN	110	85	174.5	20
	00	M3	MPP1003D1E-KPSB	110	85	223	20
	00	M4	MPP1003R1E-KPSN	110	85	174.5	20
	00	M5	MPP1003R1E-KPSB	110	85	223	20
	00	M6	MPP1154B1E-KPSN	115	85	203.2	20
HMRS24	00	M7	MPP1154B1E-KPSB	115	85	251.7	20
111111024	00	M8	MPP1154P1E-KPSN	115	85	203.2	20
	00	M9	MPP1154P1E-KPSB	115	85	251.7	20
	00	MA	MPP1424C1E-KPSN	142	85	223.7	30
	00	MB	MPP1424C1E-KPSB	142	85	275.3	30
	00	MC	MPP1424R1E-KPSN	142	85	223.7	30
	00	MD	MPP1424R1E-KPSB	142	85	275.3	30

(continued from previous page)

¹ When ordering with actuator, use order code (9) to specify no gearhead mounting kit, and order code (0) to specify mounted motor. See Ordering Information.

Mounted Gearhead and Motor Options

Mounted Gearhead and Motor options include a coupling housing, flange, and gearhead with coupler, flange, and motor.

MF = Mounting flange

-LCH

	٩	0			Dimensions							
Actuator Size	Order Code ¹	Order Code ²	Mounted Motor	С	LCH	LGH	LM	MAK	MF			
	Jx	K0	BE233FJ-KPSN	60	28	48.5	143.2	26	20			
HMRS08	Jx	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	28	48.5	178	26	20			
	Fx	K0	BE233FJ-KPSN	60	37	59.8	143.2	16.5	35			
	Fx	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	37	59.8	178	16.5	35			
	Fx	K2	BE344LJ-KPSN	60	37	59.8	188	22.5	35			
	Fx	K3	BE344LJ-KPSB	60	37	59.8	231	22.5	35			
	Fx	K4	PM-FBL04AMK	60	37	59.8	108.2	16.5	35			
	Fx	K5	PM-FBL04AMK2 (w/ Brake)	60	37	59.8	148.2	16.5	35			
	Jx	K0	BE233FJ-KPSN	60	37	48.5	143.2	26	20			
HMRS11	Jx	К1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	37	48.5	178	26	20			
	Кх	K0	BE233FJ-KPSN	80	37	67	143.2	22.5	35			
	Kx	К1	BE233FJ-KPSN with Brake (CM233FJ-115027)	80	37	67	178	22.5	35			
	Кх	K2	BE344LJ-KPSN	80	37	67	188	22.5	35			
	Кх	K3	BE344LJ-KPSB	80	37	67	231	22.5	35			
	Кх	K4	PM-FBL04AMK	80	37	67	108.2	22.5	35			
	Kx	K5	PM-FBL04AMK2 (w/ Brake)	80	37	67	148.2	22.5	35			

¹ When ordering with actuator, use order code (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: $\mathbf{F} = PS60$ $\mathbf{G} = PS90$ $\mathbf{H} = PS115$ $\mathbf{J} = PV040TA$ $\mathbf{K} = PV60TA$ $\mathbf{L} = PV090TA$ $\mathbf{M} = PV115TA$ Gearhead ratio and mounting orientation: (Replace "x" to specify)

1 = ratio 3:1 **2** = ratio 5:1 **3** = ratio 10:1 3:1 ratio not available on "J" PV040TA gearhead

² Use order code **()** (see Ordering Information) to specify appropriately sized motor mounting kit.

(continued from previous page)

	9	0				Dime	nsions		
Actuator	Order	Order		•					
Size	Code ¹	Code ²	Mounted Motor	С	LCH	LGH	LM	MAK	MF
	Fx	K0	BE233FJ-KPSN	85	54	59.8	143.2	16.5	30
	Fx	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	85	54	59.8	178	16.5	30
	Fx	K2	BE344LJ-KPSN	85	54	59.8	188	22.5	30
	Fx	K3	BE344LJ-KPSB	85	54	59.8	231	22.5	30
	Fx	K4	PM-FBL04AMK	85	54	59.8	108.2	16.5	30
	Fx	K5	PM-FBL04AMK2 (w/ Brake)	85	54	59.8	148.2	16.5	30
	Gx	K2	BE344LJ-KPSN	90	54	69.5	188	20	42
	Gx	K3	BE344LJ-KPSB	90	54	69.5	231	20	42
	Gx	K6	PM-FCL10AMK	90	54	69.5	152.7	20	42
	Gx	K7	PM-FCL10AMK2 (w/ Brake)	90	54	69.5	193	20	42
	Gx	MO	MPP0923D1E-KPSN	90	54	69.5	178	20	42
	Gx	M1	MPP0923D1E-KPSB	90	54	69.5	212.5	20	42
	Gx	M2	MPP1003D1E-KPSN	90	54	69.5	174.5	28.5	42
	Gx	М3	MPP1003D1E-KPSB	90	54	69.5	223	28.5	42
	Gx	M4	MPP1003R1E-KPSN	90	54	69.5	174.5	28.5	42
HMRS15	Gx	M5	MPP1003R1E-KPSB	90	54	69.5	223	28.5	42
	Кх	K0	BE233FJ-KPSN	84	54	67	143.2	22.5	30
	Кх	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	84	54	67	178	22.5	30
	Кх	K2	BE344LJ-KPSN	84	54	67	188	22.5	30
	Кх	K 3	BE344LJ-KPSB	84	54	67	231	22.5	30
	Кх	K4	PM-FBL04AMK	84	54	67	108.2	22.5	30
	Кх	K5	PM-FBL04AMK2 (w/ Brake)	84	54	67	148.2	22.5	30
	Lx	K2	BE344LJ-KPSN	92	54	85.5	188	20	36
	Lx	K3	BE344LJ-KPSB	92	54	85.5	231	20	36
	Lx	K6	PM-FCL10AMK	92	54	85.5	152.7	28.5	36
	Lx	K7	PM-FCL10AMK2 (w/ Brake)	92	54	85.5	193	28.5	36
	Lx	MO	MPP0923D1E-KPSN	92	54	85.5	178	28.5	36
	Lx	M1	MPP0923D1E-KPSB	92	54	85.5	212.5	28.5	36
	Lx	M2	MPP1003D1E-KPSN	92	54	85.5	174.5	28.5	36
	Lx	М3	MPP1003D1E-KPSB	92	54	85.5	223	28.5	36
	Lx	M4	MPP1003R1E-KPSN	92	54	85.5	174.5	28.5	36
	Lx	M5	MPP1003R1E-KPSB	92	54	85.5	223	28.5	36

 ¹ When ordering with actuator, use order code () (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: F = PS60 G = PS90 H = PS115 J = PV040TA K = PV60TA L = PV090TA M = PV1 Gearhead ratio and mounting orientation: (Replace "x" to specify)
 1 = ratio 3:1 2 = ratio 5:1 3 = ratio 10:1 J = PV040TA K = PV60TA L = PV090TA M = PV115TA

1 = ratio 3:1 **2** = ratio 5:1 **3** = ratio 10: 3:1 ratio not available on "J" PV040TA gearhead

² Use order code (see Ordering Information) to specify appropriately sized motor mounting kit.

(continued next page)

Mounted Gearhead and Motor Options

(continued from previous page)

	9	0		Dimensions							
Actuator	Order	Order		-							
Size	Code ¹	Code ²	Mounted Motor	С	LCH	LGH	LM	MAK	MF		
	Gx	K2	BE344LJ-KPSN	100	70	69.5	188	20	40		
	Gx	K3	BE344LJ-KPSB	100	70	69.5	231	20	40		
	Gx	K6	PM-FCL10AMK	100	70	69.5	152.7	20	40		
	Gx	K7	PM-FCL10AMK2 (w/ Brake)	100	70	69.5	193	20	40		
	Gx	MO	MPP0923D1E-KPSN	100	70	69.5	178	20	40		
	Gx	M1	MPP0923D1E-KPSB	100	70	69.5	212.5	20	40		
	Gx	M2	MPP1003D1E-KPSN	100	70	69.5	174.5	28.5	40		
	Gx	M 3	MPP1003D1E-KPSB	100	70	69.5	223	28.5	40		
	Gx	M4	MPP1003R1E-KPSN	100	70	69.5	174.5	28.5	40		
HMRS18	Gx	M5	MPP1003R1E-KPSB	100	70	69.5	223	28.5	40		
	Lx	K2	BE344LJ-KPSN	92	70	85.5	188	20	30		
	Lx	K3	BE344LJ-KPSB	92	70	85.5	231	20	30		
	Lx	K6	PM-FCL10AMK	92	70	85.5	152.7	28.5	30		
	Lx	K7	PM-FCL10AMK2 (w/ Brake)	92	70	85.5	193	28.5	30		
	Lx	MO	MPP0923D1E-KPSN	92	70	85.5	178	28.5	30		
	Lx	M1	MPP0923D1E-KPSB	92	70	85.5	212.5	28.5	30		
	Lx	M2	MPP1003D1E-KPSN	92	70	85.5	174.5	28.5	30		
	Lx	M 3	MPP1003D1E-KPSB	92	70	85.5	223	28.5	30		
	Lx	M4	MPP1003R1E-KPSN	92	70	85.5	174.5	28.5	30		
	Lx	M5	MPP1003R1E-KPSB	92	70	85.5	223	28.5	30		
	Hx	M6	MPP1154B1E-KPSN	115	85	90.2	203.2	24	40		
	Hx	M7	MPP1154B1E-KPSB	115	85	90.2	251.7	24	40		
	Hx	M 8	MPP1154P1E-KPSN	115	85	90.2	203.2	24	40		
	Hx	M9	MPP1154P1E-KPSB	115	85	90.2	251.7	24	40		
	Hx	MA	MPP1424C1E-KPSN	115	85	90.2	223.7	35	40		
HMRS24	Hx	MB	MPP1424C1E-KPSB	115	85	90.2	275.3	35	40		
	Hx	MC	MPP1424R1E-KPSN	115	85	90.2	223.7	35	40		
	Hx	MD	MPP1424R1E-KPSB	115	85	90.2	275.3	35	40		
	Mx	M6	MPP1154B1E-KPSN	125	85	110	203.2	35	40		
	Mx	M7	MPP1154B1E-KPSB	125	85	110	251.7	35	40		
	Mx	M 8	MPP1154P1E-KPSN	125	85	110	203.2	35	40		
	Mx	M9	MPP1154P1E-KPSB	125	85	110	251.7	35	40		

¹ When ordering with actuator, use order code (() (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: F = PS60 G = PS90 H = PS115 J = PV040TA K = PV60TA L = PV090TA M = PV115TA Gearhead ratio and mounting orientation: (Replace "x" to specify)
1 = ratio 3:1 2 = ratio 5:1 3 = ratio 10:1
³:1 ratio not available on "J" PV040TA gearhead
² Use order code (() (see Ordering Information) to specify appropriately sized motor mounting kit.

Limit & Home Sensors

The HMR uses Parker's Global Sensor line, which can be mounted in the longitudinal t-slots running along the actuator body. These sensors mount flush to the extrusion body, minimizing the overall width of the actuator.

Parker's Global Sensors feature short circuit protection, power up pulse protection, and reverse polarity protection.

The sensor cable can be concealed under the yellow T-slot covers which are provided with each unit.

For internally configured sensors, the cables are routed internally and exit and the end cap of the unit through industrially hardened M8 connectors.

Common Specifications:

Electric current drain: 100 mA (max) Switching current: 10 mA (max) Supply voltage: 10 – 30 VDC Switching Frequency: 1 kHz

In the event internal sensors are configured, they cannot be re-positioned in the field. The pre-set location is configured in the part number model code. Please consult factory for further assistance.

Permanent magnets integrated into the carriage assembly actuate the sensors as the carriage traverses it linear travel.

All actuators pre-configured with a sensor pack, come pre-configured with a 5 meter extension cable, with flying leads.

Magnetic LED Cylinder Sensors

Model Number	Function	Logic	Cable
P8SAGPFAX		PNP	0
P8SAGNFAX	NO	NPN	3 m
P8SAGPCHX	N.O.	PNP	0.3 m cable with
P8SAGNCHX		NPN	M8 connector*
P8SAGQFAX		PNP	0 m
P8SAGMFAX	NC	NPN	3 111
P8SAGQCHX	N.C.	PNP	0.3 m cable with
P8SAGMCHX		NPN	M8 connector*

* 003-2918-01 is a 5 m extension cable to flying leads for these cables

Limit & Home Sensor Dimensions

P8S-... cable with flying leads

P8S-... cable with M8 rotable

Installation for Magnetic T-Slot Sensors

Protective Cover Options

Two versions available: Covers can be field retrofitted if initially configured without covers.

Consult maintenance manual or factory support for assistance in specifying replacement covers and installation procedures.

Coupling Housing

Dimension table - Coupling housing long HMRS / HMRB [mm]

Product size	ØΑ	ØВ	Ø D _{m6}	Е	ØO	L	М	Ν	Order no.
HMRx08 ⁽¹⁾	42	4.5	34	2	30	28	49	37	56568FIL
HMRx11 ⁽¹⁾	51	6.6	39	1	35	37	60	42	56566FIL
HMRx15 ⁽¹⁾	72	9.0	54	2	50	54	84	58	50353FIL
HMRx18 ⁽¹⁾	80	9.0	64	2	60	70	90	68	50655FIL
HMRx24 ⁽¹⁾	95	11.0	80	2	77	85	107	85	56415FIL

⁽¹⁾Suitable for all types of HMRS

 $^{\mbox{\tiny (1)}}\mbox{Suitable for HMRB}$ with motor orientation 000° top

(HMRBxxxAP; HMRBxxxAD)

⁽¹⁾Suitable for HMRB with motor orientation 180° bottom and profile version Basic (HMRBxxBCP; HMRBxxBCD; HMRBxxCCP; HMRBxxCCD)

Dimension table - Coupling housing short HMRB [mm]

Product size	ØΑ	ØВ	ØD _{m6}	Е	ØO	L	М	Ν	Order no.
HMRB08 ⁽¹⁾	42	4.5	34	2	30	13	49	37	56567FIL
HMRB08 ⁽²⁾	42	4.5	34	2	30	17	49	37	56569FIL
HMRB11 (1) (2)	51	6.6	39	1	35	15	60	42	56565FIL
HMRB15 ⁽¹⁾⁽²⁾	72	9.0	54	2	50	30	84	58	56412FIL
HMRB18 ⁽¹⁾⁽²⁾	80	9.0	64	2	60	42	90	68	56413FIL
HMRB24 (1) (2)	95	11.0	80	2	77	60	107	85	56414FIL

⁽¹⁾Suitable for HMRB with motor orientation 090° front and 270° rear (HMRBxxxBD; HMRBxxxDD)

⁽²⁾Suitable for HMRB with motor orientation 180° bottom re-inforced profile (HMRBxxRCP; HMRBxxRCD; HMRBxxSCP; HMRBxxSCD)

OPTIONS & ACCESSORIES

Coupling

Ball screw

Dimension table - motor coupling HMRS [mm]

Product size	F ₁	F_2	F	Κ	L	L ₁	L ₂	ØO	Order no.
HMRS08	6	9	5 - 12	25	34	11	12	27.5	56562FIL
HMRS11	10	9	6 - 16	30	35	11	13	32.5	13210FIL
HMRS15	12	9	8 - 24	40	66	25	16	58.0	56400FIL
HMRS18	15	14	10 - 28	55	78	30	18	68.0	56402FIL
HMRS24	20	14	14 - 38	65	90	35	20	73.0	56510FIL

Belt

Dimension table - motor coupling HMRB [mm]

Product size	F ₁	F ₂	F	К	L	L ₁	L ₂	ØO	Order no.
HMRB08	10	9	5 - 12	25	34	11	12	27.5	56563FIL
HMRB11	12	9	6 - 16	30	35	11	13	32.5	56560FIL
HMRB15	15	10	8 - 24	40	66	25	16	58.0	16239FIL
HMRB18	18	14	10 - 28	55	78	30	18	68.0	56411FIL
HMRB24	24	15	14 - 38	65	90	35	20	73.0	16260FIL

Shock Absorbing Bumper

HMR actuators come factory installed with impact protection bumpers. These carriage-mounted bumpers can compensate the energy released by unintentional impact and afford some protection against mechanical damage.

Two bumpers (four total) are fitted to each side of the carriage.

Shock absorbers for impact protection

Product size		HMRx08	HMRx11	HMRx15	HMRx18	HMRx24
Shock absorber		TA12-5	TA12-5	TA12-5	TA17-7	TA17-7
Energy absorption [Nm/s	troke]	3.0	3.0	3.0	8.5	8.5

Distance-force and energy-distance characteristic curve (dynamic) – frame sizes HMRx08, HMRx11, HMRx15

Travel [mm]

Dowel Sleeves

Dowel sleeves can be used to provide pinning functionality between the carriage mounting surface and the payload. These sleeves have a tightly toleranced outer diameter to accurately locate between the bore in the carriage and the end effector, but have a hollow center granting access to the threaded hole in the carriage underneath the pin bore. This means that these dowel pin bore can additionally function as a threaded connection to the carriage. See Dimensions for carriage mounting detail.

Part Number	Description	HMR Frame Size
56455FIL	7mm Dowel Sleeve- 4 Pack	HMRx08, HMRx11, HMRx15
56456FIL	7mm Dowel Sleeve- 10 Pack	HMRx08, HMRx11, HMRx15
56457FIL	9mm Dowel Sleeve- 4 Pack	HMRx18
56458FIL	9mm Dowel Sleeve- 10 Pack	HMRx18
56459FIL	12mm Dowel Sleeve- 4 Pack	HMR24

Actuator Mounting

Dimension table - Product width HMR [mm]

	Toe-clamp n	nounting (mm)	T-nut mounting (mm)		
Product size	MP	KP	М		
HMRx08	97	115	50		
HMRx11	122	140	70		
HMRx15	170	190	96		
HMRx18	202	226	116		
HMRx24	262	286	161		

Holding force per mounting set [N]

		Toe-c	lamp		T-nut					
Product size	In longitudinal direction of the actuator*	Screw 2x	Tightening torque [Nm]	Max. load per screw	In longitudi- nal direction of the actu- ator*	Screw 1x	Tightening torque [Nm]	Max. load per screw		
HMRx08	800	M4	3	900	1,000	M5	6	1,200		
HMRx11	800	M4	3	900	1,000	M5	6	1,200		
HMRx15	1,820	M5	6	1,200	1,600	M6	10	1,700		
HMRx18	2,610	M6	10	1,700	2,700	M8	20	3,400		
HMRx24	2,610	M6	10	1,700	3,200	M10	40	5,500		

*A friction factor of 0.15 between profile and mounting surface was taken as a basis for the calculation of the forces that can be transmitted in longitudinal direction, Screw property class 8.8.

Actuator Mounting

Dimension table - T-nut mounting HMR [mm]

Product size	Α	В	С	ØD	Μ	Ν	Order no. *
HMRx08	8.0	4.0	11.5	M5	5.0	0.5	56351FIL
HMRx11	8.0	4.0	11.5	M5	5.0	0.5	56351FIL
HMRx15	10.5	6.4	22.5	M6	6.4	0.6	56352FIL
HMRx18	13.5	6.7	22.5	M8	8.5	1.0	56353FIL
HMRx24	16.5	8.9	28.5	M10	10.5	1.0	56354FIL
* D ! !!	10						

* Packing unit 10 pc

Dimension table - Toe-clamp mounting HMR [mm]

HMRx08 18.0 40.0 7.5 20.0 15.0 9.0 0.0 4.5 0.0 2.8 56363FIL	L
HMRx11 18.0 40.0 7.5 20.0 15.0 9.0 0.0 4.5 0.0 2.8 56363FIL	L
HMRx15 25.0 60.0 10.0 30.0 20.0 10.0 10.0 5.5 4.0 3.9 56355FIL	L
HMRx18 28.0 80.0 12.0 40.0 23.0 12.0 11.0 6.6 4.7 5.9 56356FI	L
HMRx24 28.0 80.0 12.0 40.0 23.0 12.0 11.0 6.6 4.7 5.9 56356FII	L

* Packing unit 1 pair (2 toe-clamps) and associated hardware

ORDERING INFORMATION

Select an order code from each of the numbered fields to create a complete HMR screw-driven model order number. Include hyphens and non-selective characters as shown in example below.

					1	2	3	0	•)	5		6	\bigcirc	8			9	0
O	rder Nur	nber Example:	HMR	S	15	В	05	(D –	1000	-	Α	В	1	0	0	F1	A7
		•																
1	Frame \$	Size (Profile Widtl	h)				G	5	Limit	Sanco	r* /+	woo	onco	rc)				
	08	85 mm					Q	No home conser										
	11	110 mm							U D**			Ne se	ensor	liata	ا م میں	Mai	un tilen er	
	15	150 mm							В"" 1 4 /4	PIN	1P, 3	vvire	e, N.C.	., inte	rnai	IVIOL	inung	
	18	180 mm							L^/^	NP	'N, G	3 VVIre	э, N.C	., Inte	ernal	IVIO	unting	
	24	240 mm							D	PN Ext	P, 3 terna	VVire al Mo	e, N.C. punting	., M8 g (P88	Plug S-GC	g, 0.3 2CH	3 m Ca X)	able,
2	Actuato	or Design (see Dim	nensions	for fu	urther	detail))		N	NP Ext	N, 3	3 Wire	ə, N.C	., M8 1 (P89	Plu S-GN	g, 0. ИСН	3 m C X)	able,
	в	Basic Profile with	Ball Bear	ing G	Guide,				*P/N 00	03-2918-	01, 5	M ext	ension (cable ir	nclude	ed		
	•	Basic Profile with	Ball Bear	ina G	auide.				re-pos	ernal sw sitioned	in th	es are ne fiel	e selec d.	tea th	ley c	anno	t be m	anually
	C	IP54 with Outer C	Cover		,		(8	3)	Limit	/Home	Sei	nsor	Posit	ion*				
	R**	Reinforced Profile	with Ball	Bea	ring Gı	uide,	-	-	0	No	Hor	me S	ensor					
	No Outer Cover								1	10	mm	n						
	S** Reinforced Profile with Ball Bearing Guide, IP54 with Outer Cover								2	20	mm	ı						
_									3	30	mm	I						
3	Screw I	ead by Frame Size	e (w/plai	n driv	ve sha	ft)			4	40	mm	1						
	05	5 mm lead for size	ze 08, 11,	, 15					5	50	mm	1						
	10	10 mm lead for s	size 18, 24	4					6	60	mm	1						
	12	12 mm lead for s	size 08						7	/0	mm	1						
	16	16 mm lead for s	size 11						8	08	mm	1						
	20	20 mm lead for s	size 15						9 Δ	90 10(ገጠ ጋ mr	n m						
	25	25 mm lead for s	2izo 18						В	11(0 mr	m						
	20	20 mm lead for a							c	120	0 mr	m						
	32	SZ MIMIEAU IUI S	5128 24						D	130) mr	m						
(4)	Carriag	e Design							Е	14() mr	m						
Ŭ	0	Standard							F	150) mr	m						
	1	Tandem							G	160) mr	m						
	•	landonn							H	17() mr	m						
5	Order S	troke							J	180) mr	m						
-		4 digit input in mr	n (see ma	ax str	oke bv	r frame	e		ĸ	190) mr	m						
	XXXX	size in Specification	ons)				-		L *If limit	200 and hon	J Mi ne se	11 ensors	select	ed, this	s is th	ne dis	tance t	hat limit
NOT can Sen	E: If trave be used, r sor can be Home S	l is less than 75mm e not both. If travel is le used. Sensor* (one sens	either Hom ess than 2 or)	ne or I 0mm,	Limit S only a	ensors Home			sensor 50mm selecte	from lim from lim	sition it ser ositic	ned fro nsor at oned ti	om both t drive e his dist	ends end. If ance fi	, horr only rom t	he ser home he dr	nsor po e senso ive end	sitioned r
J	0						(9)	Mour	nted Ge	earh	neads	S					
	U A **		lotawa - l	Mar	ntin -		e		(see Op	otions & A	cces	sories	for fram	e size a	availal	bility a	nd dime	ensions)
	A** K**	NPN, 3 Wire, N.O	., internal) Interna	IVIOU I MOI	untina		0	D	Gear	head a	nd I	Moto	or Moi	untin	a Ki	ts		
	С	PNP, 3 Wire, N.O	., M8 Plug	g, 0.3	3 m Ca	ıble,	-	- '	Gearh	ead Mo	ounti	ing K	it			-		
	-	External Mounting	g (P&S-GI	PCH)	K) 3 m C	able			(see Op	otions & A	cces	sories	for avail	ability a	and di	mens	ions)	
	M ∗D/N 000 (External Mounting	g (P8S-GI	NCH) NCH	3 m Ca K)	auie,		Motor Mounting Kit (Including Flange and Coupling For Direct Drive Motor or Flange on Mounted Gearhea					ng arhead					
	*If interna	al switches are selec	cable include	eu anno	t be ma	nually	,	(see Options & Accessories for availability and dimensions)										
	re-positioned in the field.							Mounted Motor (Mated to Mounted Gearhead				ead						

**Indicates longer lead time options

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

(see Options & Accessories for availability and dimensions)

FEATURES

XE Series Positioners

Dependable, Cost-Effective Positioning

- Integrated bearing and carriage assembly
- Rigid U-channel, steel body
- High force per dollar value
- Easily adapted into multiaxis configuration
- Small package size as compared to actuators with separate bearing arrangements

Key Design Advantages

- Integrated precision screw and linear guidance
- Flexible motor mounting options
- **Rigid steel U-Channel body**
- Packaged adjustable limit sensors
- Precision ballscrew drive train

402XE

403XE

	401XE	402XE	403XE
Maximum Travel (mm)	160	220	655
Maximum Payload (N)	156	882	1,569
Maximum Acceleration (m/s ²)	20	20	20

Parker's XE series, mono-carrier style linear positioners combine a rugged steel body with an integrated precision ball screw and bearing guide - producing a highly accurate, cost-effective line of linear positioners.

The XE series is the ideal linear positioner for applications in the manufacturing of electronics, semi-conductors, or life science applications requiring high precision, long life and compact packaging.

OEM's looking to produce machines that position moderate payloads with tight space constraints should look no further than the XE series of linear positioners. The XE series has superior load-life characteristics

The XE Series offers complete flexibility, from motormounting options to cleanroom compatibility and a variety of offerings in between. Whether the application calls for a hardcover protection for the linear guide, cleanroom compatible solutions,

custom motors mounted at the factory, or an aesthetically appealing engineered limit sensor package, the 401/402/403XE can be customized to fit the task at hand. when compared to a lead screw driven positioner in similar packaging. The mono-carrier style arrangement of the XE series gives it the highest payload per packaging of any Parker ball screw driven linear stage.

FEATURES

1 Integrated Precision Screw and Linear Guidance

Bearing provides a low profile, high accuracy, smooth motion, and robust adjustment free design over the life of the actuator.

2 Flexible Motor Mounting Options

Provides a variety of motor drive options, including servo and stepper motors, which can either be mounted inline or parallel to the stage.

(3) Rigid Steel U-Channel Body

Provides structural rigidity for minimal deflection. With the steel U channel body and integrated bearing design, the structural rigidity of the 401/402/403XE is significantly stiffer than most aluminum body positioners. The increased stiffness results in reduced overall cost due to the elimination of support structures.

(4) Packaged Adjustable Limit Sensors

Provide adjustable stroke lengths, easily connected, fewer cables to manage, and no pinch points in an aesthetically pleasing manner.

5 Precision Ballscrew Drive Train

Provides smooth motion with high accuracy and high mechanical efficiency.

Motor Mounting Flexibility

With standard inline and parallel motor

mounting options for the NEMA 11, NEMA 17, NEMA 16, NEMA 23, and other Parker Automation motors, the XE Series allows the user to select the motor of their choice without being restricted to one model. To further customize the application solution, the 401/402/403XE can be ordered ready to mount onto most other manufacturers' motors as well.

Low-Profile Design

The highly integrated ballscrew and guide bearing design allows for a greatly reduced overall height when compared to traditional stacking of a bearing and screw assembly. This results in a more compact footprint.

Hardcover Protection

or added protection to the bearing system and drive train, an optional hardcover is available. This will bring the positioner to an IP20 rating and prevent large particles from entering and damaging the screw or bearings.

SPECIFICATIONS

The XE series combines a rugged steel body construction with an integrated precision ball screw and bearing guide producing a highly accurate, cost effective line of tables ideal for applications in the hard disk, semiconductor, medical, machine building and many other industries.

		401	40	02	4	03
Series	Units	2 mm lead	2 mm lead	5 mm lead	5 mm lead	10 mm lead
Travel (max)	mm	160	220	220	655	655
Repeatability Inline Motor Mount Parallel Motor Mount	μm	±10 ±30	±5 ±15	±5 ±30	±5 ±30	±5 ±60
Breakaway Torque	Nm	0.012	0.06	0.06	0.15	0.15
Maximum Input Speed	rev/sec	50	50	50	50	50
Maximum Velocity	mm/sec	100	100	250	250	500
Maximum Load (Normal and Inverted)	kg	16	90	90	160	160
Maximum Moment Pitch Yaw Roll	Nm	10 11 28	46 51 134	46 51 134	101 120 260	101 120 260
Screw Diameter	mm	6	8	8	10	10
Screw Efficiency Inline Motor Mount Parallel Motor Mount	%	90 86	90 86	90 86	90 86	90 86
Linear Bearing Coefficient of Friction	-	0.01	0.01	0.01	0.01	0.01
Running Torque	Nm	0.011	0.05	0.05	0.1	0.1
Maximum Axial Load	kg	5	13	17	31	27
Moment of Inertia I _X of Guide Rail I _Y of Guide Rail	mm ⁴	2710 23,600	14,400 137,000	14,400 137,000	38,800 314,000	38,800 314,000
Weight of Carriage	kg	0.05	0.26	0.26	0.3	0.3
Maximum Acceleration	G's	2	2	2	2	2
Rated Duty Cycle	%	100	100	100	100	100

Travel-Dependent Performance Specifications

401 XE

Travel Length (Order Option Code)

P	erformance Specification	Units	01	02	03
	Travel	mm	60	110	160
	Flatness	μm	15	15	15
	Straightness	μm	15	15	15
m Lead	Accuracy Inline Motor Mount Parallel Motor Mount	μm	65 95	70 100	75 105
2 m	Input Inertia Inline Motor Mount Parallel Motor Mount	kg-m² x 10⁻ ⁶	0.122 0.327	0.171 0.376	0.224 0.429
	Weight Inline Motor Mount*	kg	0.41	0.49	0.58

* Adding the parallel motor mount option adds 0.08 kg for the NEMA 11 option, and 0.10 kg for the NEMA 17 option.

402 XE

			Т	ravel Length (Or	der Option Code	2)
Pe	erformance Specification	Units	01	02	03	04
	Travel	mm	70	120	170	220
	Flatness	μm	15	15	15	15
	Straightness	μm	15	15	15	15
2 mm Lead	Accuracy Inline Motor Mount Parallel Motor Mount	μm	70 85	75 90	85 100	90 105
	Input Inertia Inline Motor Mount Parallel Motor Mount	kg-m ² x 10 ⁻⁶	0.615 0.820	0.772 0.977	0.929 1.134	1.090 1.295
	Weight Inline Motor Mount*	kg	1.19	1.40	1.60	1.81
	Travel	mm	70	120	170	220
	Flatness	μm	15	15	15	15
	Straightness	μm	15	15	15	15
n Lead	Accuracy Inline Motor Mount Parallel Motor Mount	μm	70 85	75 90	85 100	90 105
5 m	Input Inertia Inline Motor Mount Parallel Motor Mount	kg-m ² x 10 ⁻⁶	0.741 0.946	0.898 1.103	1.060 1.265	1.210 1.415
	Weight Inline Motor Mount*	kg	1.19	1.40	1.60	1.81

* Adding the parallel motor mount option adds 0.11 kg for the NEMA 17 option, 0.15 kg for the NEMA 23 option, and 0.12 kg for the SM16 option.

Travel-Dependent Performance Specifications

403 XE

		Travel Length (Order Option Code)								
Pe	erformance Specification	Units	01	02	03	04	05	06	07	08
5 mm Lead	Travel	mm	55	105	205	305	405	505	605	655
	Flatness	μm	15	15	15	15	25	25	25	25
	Straightness	μm	15	15	15	15	25	25	25	25
	Accuracy Inline Motor Mount Parallel Motor Mount	μm	70 100	80 110	90 120	95 125	100 130	110 140	120 150	130 160
	Input Inertia Inline Motor Mount Parallel Motor Mount	kg-m ² x 10 ⁻⁶	1.720 1.925	2.100 2.305	2.870 3.075	3.630 3.835	4.400 4.605	5.170 5.375	5.930 6.135	6.690 6.900
	Weight Inline Motor Mount*	kg	1.85	2.25	2.85	3.55	4.25	4.85	5.55	6.20
	Travel	mm	55	105	205	305	405	505	605	655
	Flatness	μm	15	15	15	15	25	25	25	25
	Straightness	μm	15	15	15	15	25	25	25	25
10 mm Lead	Accuracy Inline Motor Mount Parallel Motor Mount	μm	70 130	80 140	90 150	95 155	100 160	110 170	120 180	130 190
	Input Inertia Inline Motor Mount Parallel Motor Mount	kg-m ² x 10 ⁻⁶	2.500 2.705	2.880 3.085	3.650 3.855	4.420 4.625	5.180 5.385	5.950 6.155	6.700 6.905	7.100 7.305
	Weight Inline Motor Mount*	kg	1.85	2.25	2.85	3.55	4.25	4.85	5.55	6.20

* Adding the parallel motor mount option adds 0.11 kg for the NEMA 17 motor option, 0.15 kg for the NEMA 23 option, and 0.12 kg for the SM16 option.

Standard XY Mounting Configurations with other XE products

Bottom				
Stage	401XE	402XE	403XE	404XE
401XE	Х			
402XE	Х	Х		
403XE	Х	Х	Х	
404XE		Х	Х	Х

XE Series Load-Life Performance

The following performance information is provided as a supplement to the product specification pages. The useful life of a linear table at full catalog specifications is dependent on the forces acting upon it.

These forces include both static components resulting from payload weight, and dynamic components due to acceleration/ deceleration of the load. In multiaxis applications, the primary positioner at the bottom of the stack usually establishes the load limits for the combined axes.

When evaluating life versus load, it is critical to include the weight of all positioning elements that contribute to the load supported by the primary axis. The following graphs are used to establish the table life relative to the applied loads. For more information, download the product manual at **parker.com/emn** or contact our applications department at (800) 245-6903.

Screw Driven Tables

XE Series Load-Life Performance

DIMENSIONS 401XE Dimensions (mm)

401XE with Hard Cover

401XE without Hard Cover

Order Code	Travel (mm)	Α	В	F	н	J
01	60	118	61	1	4	25
02	110	168	86	2	6	25
03	160	218	111	3	8	25

Free sizing and selection support from Virtual Engineer at virtualengineer.com

401XE with NEMA 11 & 17 Inline Motor

Motor Option*	Motor Size	М	Ν	R
M11	NEMA 11	28.2	28.2	50.5
M17	NEMA 17	43.0	37.0	48.5

*When configuring an XE stage and selecting your motor option in Ordering Information, note that the "M" motor options come with motors while "N" options are only prepped for those motors.

°

402XE Dimensions (mm)

DIMENSIONS

402XE Dimensions (mm)

403XE Dimensions (mm)

*When configuring an XE stage and selecting your motor option in Ordering Information, note that the "M" motor options come with motors while "N" options are only prepped for those motors.

403XE Dimensions (mm)

Design Flexibility with Standard X-Y Bracket Options

OPTIONS & ACCESSORIES

Packaged Limit Sensors

The XE series uses the Parker global mini sensors for home and limit sensing. These sensors are packaged within a miniature sensor housing which allows the flying-leads style cables to exit with 3 meters of cable from the point of the sensor. To further accommodate each application's unique needs, the sensors can be specified as either NPN, PNP, normally open, or normally closed varieties. The unmatched design of the sensor pack on the XE series, allows for fully adjustable sensors along the travel length of the positioner, which creates no pinch points for other cables or hoses to be sliced.

The limit/home switch installed on the XE series is a Hall effect sensor tripped by a magnet located on a flag which is attached to the moving carriage. On the switch body an LED indicates activation. Normally open sensors are typically used for home sensing and normally closed are typically used for limits. With a current sinking sensor, the output lead provides a path to ground when activated, and with a current sourcing sensor, the output lead provides a positive (+) voltage potential relative to ground. Refer to your controller's manual for sensor compatibility. Limit/home switch information is below.

Spare Limit/Home Sensors									
	Switching								
Part Number	Туре	Logic	Cabling						
P8SAMMFAZ	NPN	NC							
P8SAMNFAZ	NPN	NO	2 Motor Elving Loodo						
P8SAMPFAZ	PNP	NO	3 Meter, Flying Leads						
P8SAMQFAZ	PNP	NC							

A CONTRACTOR

OPTIONS & ACCESSORIES

Limit sensor mounting screws are reverse-thread style so tightening the screw loosens the limit sensor in the track and vice versa.

Specifications

Operating Voltage: 10-30 VDC Repeatability: $\leq \pm 0.1$ mm EMC: EN 60 947-5-2 Short circuit protections: Yes Reverse Polarity Protection: Yes Enclosure Rating: IP 67 Operating Temperature Range: -25° to 75° C (-13° to 167° F)

Wiring Connection

Pin	Wire	Function
1	Brown	+ VDC
4	Black	NO
3	Blue	– VDC

Riser Plates

Most of the motors used with the 401/402/403XE and some of the 404XE motors have a taller profile than the positioner. Thus the motor can interfere with the positioner mounting surface.

To accommodate riser plates can be provided to space the unit above the mounting surface. See XE product manual for dimensional details and part numbers. Also available are X-Y transition plates for XE to XE mounting.

Cleanroom & Raydent Coatings

Cleanroom ratings are possible with the XE product. The actual cleanroom rating will be dependent upon such variables as the location of the sniffer device, the velocity of the table, etc. Consult the factory for specific cleanroom-capability details or test results.

Demo Units

Order 803-0346 for a multiaxis demo unit to learn the product and display for shows and presentations. The demo will come in a watertight pelican carrying case and will be ready for demonstration programmed from the factory.

, M17,

ck

ese

ons me е

hard

ORDERING INFORMATION **XE** Series

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	. 9	10	1	(12)	
Ord	er Ex	ample:	401	01	XE	S	D9	H0	LO	L	N00	C1	E0	R0	
1	Series	5			6	Hom	ne Sen	sor (Qt	y 1)			10	Motor	Coupling	J
	401					H0	No	home s	ensor ^Q				C1	No coup	ler
	402					HA	NP	N, N.C.	, flying le	eads ^Q			C2	0.25" Ol	dham
	403					HB	NP	N, N.O.	, flying le	eads ¤			C3	0.25" Be	llows
						нс	PN	P, N.C.,	flying le	ads ^Q			C4	0.375" C	Idham
2	Travel	(mm)				HD	PN	P, N.O.,	flying le	ads ^Q			C5	0.375" E	Bellows
		401XE	402XE	403XE									C 6	5 mm O	idham
	01	60	70	55	7	Limi	t Sens	ors (Qt	y 2)				C7	5 mm Be	ellows
	02	110	120	105		L0	No	limits se	ensors ^a	!			C 8	8 mm Old	dham
	03	160	170	205		LA	NP	N, N.C.	, flying le	eads ^Q			C9	8 mm Be	ellows
	04	_	220	305		LB	NP	N, N.O.	, flying le	eads ^Q					
	05	_	_	405		LC	PN	P, N.C.,	flying le	ads ^Q		11	Motor	Encoder	
	06	_	_	505		LD	PN	P, N.O.,	flying le	ads ^Q			E0	No enco	der
	07	_	_	605									E2	500 line	encoder
	08	_	_	655	(8)	Mot	or Mou	unt Orie	entatior	n				M23 mo	e only with
					Ŭ	L	Inlir	ne moto	r mount	ing ^Q					
3)	Family	/				Α	Par	allel mo	tor mou	inting*		(12)	Enviro	nmental	Option
\bigcirc	XE	XE Series	5			в	Par	allel mo	tor mou	nting*		0	R0	No cove	r ^Q
						с	Par	allel mo	tor mou	nting*			R1	Hard cov	ver ^Q
4)	Grade	•				* Refe	er to dim	nension d	drawings	for orier	ntation				
0	s	Standard	ł									Q	Need	an XE in	a Hurry
					(9)	Mot	or opti	on				т	ho Q al		signatos
5)	Drive	Screw ^Q			\bigcirc	N00	No	motor r	nount ^o			s	hin on	tions th	at will a
9	D9	2 mm lea	nd (401, 40	2 onlv) 1)		N11	NE	MA 11 r	notor m	iount ^{1) (}	2	fa	astest	delivery	possible
	D2	5 mm lea	ad (402, 40	3 only) ²⁾		N17NEMA 17 motor mountoptionsN16SM 16 servo motor mountstroke					ptions	s are only good for t and screw combina			
	D3	10 mm le	ead (403 o	nlv) ³⁾							troke a				
	¹⁾ D9 is	a quick ship	option for a	all 401XE		N40	PM	-FAL se	ervo mot	or mou	unt ^{2) Q}	denoted above, with any			
travel options and 01 – 02 options for the 402XE. ²⁾ D2 is a quick ship option for the 03 – 04 for the 402XE, and the 01, 02 and 03 option for the 403XE.			N23	NEI	MA 23 i	nline ma	otor mo	ount ²⁾	and limit sensor option,						
		or	M11	NE	MA 11 s	stepper	motor ¹)	a	vailabl	e with o	r withou			
		r	M17	NE	MA 17 s	stepper	motor		С	over o	ption.				
³⁾ D3 is a quick ship option for the $04 - 06$				M16	SM	162AE-	N10N s	ervo m	otor,						
	options	ior the 403	λE			M40	MP	E 0402	A4E-KC	1N ²⁾					
						M23	NF	MA 23 9	stepper	motor ²	1				
						¹⁾ 401 ²⁾ Not	XE only availabl	le on 401	IXE						

Free sizing and selection support from Virtual Engineer at virtualengineer.com

404XE Series Positioners

(95 mm wide profile)

Versatile Compact Motion Platform

- Economy Grade Positioning
- 100% Duty Cycle
- High Strength Design
- Easy Multi-Axis Mounting
- Locating Dowel Holes

6

Key Design Advantages

- Three leadscrew options
- Two carriage options
- Standard inline and parallel motor mounting
- Optional hardcover available
- LXR and XR mounting compatible (toe clamp only)

	404XE	
Maximum Travel (mm)	700	
Maximum Payload (N)	1,202	
Maximum Acceleration (m/s ²)	20	

404XE

Reliable and Cost Effective Positioning

The 404XE positioners combine versatility with rugged construction in a compact motion platform that is ideal for 24/7 process automation. A high efficiency ballscrew drive, recirculating square rail bearings and high strength aluminum body are the result of innovative engineering that has reduced costs while improving performance.

Unmatched Options and Features

A vast assortment of "designer friendly" options and features simplify the engineering challenges often confronted with "base model" positioning devices. Features like precision dowel holes, linear feedback, sensor packs, parallel motor mounting, brakes, and cleanroom preparation simplify and speed your machine design process.

Multi-Axis Systems

XY and XYZ systems are easily configured and pinned so that

factory orthogonality can be reproduced in the field. Motors and cable management systems connect to the XE tables in a straightforward and simple manner.

Technology Evolution

The XE is direct mounting compatible with our precision series XR ballscrew tables and our LXR linear motor tables. It is possible to mix-andmatch various levels of technology on a per axis basis allowing the most cost effective optimized application solutions.

FEATURES

- 1 Three leadscrew options Providing travel up to 700mm
- (2) Two carriage options

Two choices available – short (2 bearing trucks) and long (4 bearing trucks)

- 3 Standard inline and parallel motor mounting Options for Parker and non-Parker Automation motors
- (4) Optional hardcover

An optional hardcover is available. This will bring the positioner to an IP20 rating and prevent large particles from entering and damaging the screw or bearings.

5 Standard mounting

Compatible with XR and LXR Series (Toe Clamp Only)

(6) End of travel and home sensors

Sensors for the 404XE series are available in a variety of styles.

Standard XY Mounting Configurations with other XE products

Bottom				
Stage	401XE	402XE	403XE	404XE
401XE	Х			
402XE	Х	Х		
403XE	Х	Х	Х	
404XE		Х	Х	Х
Screw Driven Tables

SPECIFICATIONS

The 404XE is the largest of the XE positioning table line, with a width of approximately 4" and travel length up to 700mm depending on selected carriage size. Ballscrew options range from 5mm lead to 20mm lead, and several motor mount and limit/home switch options are available, as well as feedback and brake options.

Travel Dependent Characteristics

Common Specifications

Bidirectional Beneatability	
T01 to T11 models	+20 micron
T12 to T15 models	+30 micron
Duty Cycle	100%
	20 m/soc^2
Max Acceleration ⁽¹⁾	(773 in/sec ²)
Normal Load Capacity ⁽²⁾	
NL (short carriage)	61.3 kgf (135 lbs)
VL (long carriage)	122.6 kgf (270 lbs)
Axial load capacity ⁽²⁾	
5 mm lead ballscrew	60 kgf (132 lbs)
10 mm lead ballscrew	70 kgf (154 lbs)
20 mm lead ballscrew	70 kgf (154 lbs)
Drive Screw Efficiency	90%
Max Break-Away Torque	0.25 Nm (35in-oz)
Max Running Torque (rated @ 2 RPS)	0.21 Nm (30in-oz)
Linear Bearing - Coefficient of Friction	0.01
Ballscrew Diameter	
5 & 10 mm lead	16 mm
20 mm lead	15 mm
Carriage Weight	
NL (short carriage)	0.215 kg (0.47 lbs)
VL (long carriage)	0.495 kg (1.09 lbs)

(1) Applies to units with VL carriage

(2) Refer to life/load charts.

	Tra (m	Travel Positional (mm) Accuracy ^{(3) (4)}		Inj NL C (1	put Inei arriage 0⁵ kg-r	rtia Units n²)	Input Inertia VL Carriage Units (10 ⁻⁵ kg-m²)			Max. Screw Speed	Ma (m	ax. Velo eters/s	Total Table Weight (kg)		
Code	NL	VL	(μm)	5 mm	10 mm	20 mm	5 mm	10 mm	20 mm	(RPS)	5 mm	10 mm	20 mm	NL	VL
T01	25	-	42	.81	-	-	-	-	-	72	0.36	0.73	1.50	1.42	1.70
T02	50	-	50	.94	.98	-	-	-	-	72	0.36	0.73	1.50	1.61	1.89
T03	100	33	58	1.19	1.23	1.12	1.21	1.30	1.4	72	0.36	0.73	1.50	1.95	2.23
T04	150	83	66	1.44	1.48	1.32	1.46	1.55	1.6	72	0.36	0.73	1.50	2.35	2.63
T05	200	133	74	1.69	1.73	1.51	1.71	1.80	1.79	72	0.36	0.73	1.50	2.59	2.87
T06	250	183	82	1.94	1.99	1.70	1.96	2.06	1.99	72	0.36	0.73	1.50	2.97	3.25
T07	300	233	90	2.20	2.24	1.90	2.21	2.31	2.18	72	0.36	0.73	1.50	3.34	3.62
T08	350	283	98	2.45	2.49	2.09	2.47	2.56	2.37	72	0.36	0.73	1.50	3.50	3.78
Т09	400	333	106	2.70	2.74	2.29	2.72	2.81	2.57	72	0.36	0.73	1.50	3.83	4.11
T10	450	383	114	2.95	2.99	2.48	2.97	3.07	2.76	72	0.36	0.73	1.50	4.09	4.37
T11	500	433	122	3.21	3.25	2.67	3.22	3.32	2.96	72	0.36	0.73	1.50	4.22	4.50
T12	550	483	130	3.46	3.50	2.87	3.48	3.57	3.15	72	0.36	0.73	1.50	4.55	4.83
T13	600	533	138	3.71	3.75	3.06	3.73	3.82	3.34	69	0.34	0.68	1.32	4.87	5.15
T15	700	633	154	4.21	4.25	3.45	4.23	4.33	3.73	52	0.26	0.52	1.00	5.12	5.40

(3) Positional accuracy applies to in-line motor configurations only. Positional specifications are based on "no-load" conditions and apply to individual axes only.
 (4) Consult factory for specs with linear feedback.

404XE Life/Load Performance

The following performance information is provided as a supplement to the product specifications pages. The useful life of a linear table at full catalog specifications is dependent on the forces acting upon it. These forces include both static components resulting from payload weight and dynamic components due to acceleration/deceleration of the load. In multi-axes applications, the primary positioner at the bottom of the stack usually establishes the load limits for the combined axes.

When determining life/load, it is critical to include the weight of all positioning elements that contribute to the load supported by the primary axis. The following graphs and formulas are used to establish the table life relative to the applied loads. **Catalog load specifications are rated for 100 million inches of travel or 2.540 km.**

Table Life/Thrust (Axial) Load

This graph illustrates table ballscrew life relative to the axial load.

Table Life/Load Chart Pitch Moment - NL (Short Carriage)

This graph illustrates table linear bearing life as a result of pitch moment.

Table Life/Compression (Normal) Load

This graph provides an evaluation of the support bearing life/load characteristics. The curves show the life/ load relationship when the applied load is centered on the carriage, normal (perpendicular) to the carriage mounting surface.

For final evaluation of life versus load, including offcenter, tension, and side loads, refer to the pitch/ moment chart for the NL carriage units or the bearing load charts (next page) for the VL carriage units.

404XE Life/Load Performance

Bearing Life/Load for VL Long Carriage Units

These charts are to be used to evaluate the VL Carriage units. They should be used in conjunction with the corresponding formulas (found under "Product Information" at www.parkermotion.com) to establish the life/load for each bearing (4 per table).

Several dimensions, which are specific to each linear positioning table model, and the load geometry are required for these computations. These dimensions are supplied in the catalog information for each positioner. The dimensions are referenced as follows:

- d1 Bearing block center-to-center longitudinal spacing
- d2 Bearing rail center-to-center lateral spacing
- da Rail center-to-carriage mounting surface

	d1	d2	da
404XE	80	57	28

Refer to Parker's website **www.parker.com/emn** for moment loading and other engineering data.

DIMENSIONS

Download 2D & 3D files from www.parker.com/emn/404XE

DIMENSIONS

	Carriage	e Travel		
Designation	NL (short)	VL (long)	Α	В
T01	25	-	141.0	75.5
T02	50	-	166.0	88.0
T03	100	33	216.0	113.0
T04	150	83	266.0	138.0
T05	200	133	316.0	163.0
T06	250	183	366.0	188.0
T07	300	233	416.0	213.0
T08	350	283	466.0	238.0
T09	400	333	516.0	263.0
T10	450	383	566.0	288.0
T11	500	433	616.0	313.0
T12	550	483	666.0	338.0
T13	600	533	716.0	363.0
T15	700	633	816.0	413.0

Screw Driven Tables

400XE Series Motor Mount Dimensions

In-Line Motor Mount

In-line motor mounting allows the motor to be mounted directly to the drive screw via the selected motor coupling.

41.0

4.3

58.0

In-Line Adaptor Plates

Used to easily accommodate the mounting of different frame sizes. These adapter plates can be ordered separately by part number below.

In-line NEMA 23

SM16

M2

9.5

In-line NEOMETRIC 70 /SMN060

45.0

45.0

In-line NEMA 34

Parallel Motor Mounting

Dimensions (mm)

OPTIONS AND ACCESSORIES

Home or Limit Sensor

End of Travel and Home Sensors for the 404XE series are available in a variety of styles. The sensors can be ordered as part of the table or as separate components with the associated mounting hardware or in an enclosed sensor pack. A 5 meter high-flex extension cable (Part No. 003-2918-01) is available for use with models having the locking connector option.

- NPN (Sinking) or PNP (Sourcing)
- Normally Closed (N.C.) or Normally Open (N.O.)
- Flying Leads or Locking Connector

With Limits and Home Sensors

With Limits and Home Sensor Pack

Input Power Output Wire Color Code

5-30 VDC, 20 mA 100 mA max (+) Supply: Brown (-) Supply: Blue NO Output: Black NC Output: White

Order Code	Part No.* (Includes Mounting Bracket)	Switch Type	Logic	Cable Length	Connection Option
H2 or L2	006-1639-01	N.C.	Sinking	3.0 m	Flying Leads
H3 or L3	006-1639-02	N.O.	Sinking	3.0 m	Flying Leads
H4 or L4	006-1639-03	N.C.	Sourcing	3.0 m	Flying Leads
H5 or L5	006-1639-04	N.O.	Sourcing	3.0 m	Flying Leads
H6 or L6	006-1639-09	N.C.	Sinking	150 mm	Locking Connector
H7 or L7	006-1639-08	N.O.	Sinking	150 mm	Locking Connector
H8 or L8	006-1639-11	N.C.	Sourcing	150 mm	Locking Connector
H9 or L9	006-1639-10	N.O.	Sourcing	150 mm	Locking Connector

*Sensor triggers (targets) ordered separately.

Brake Assembly

Electromagnetic brake assembly used to prevent "backdriving" in vertical applications. Includes 5 meter cable.

Table Series	Part Number	Input Power	Holding Torque
404XE	006-1627-01	24 VDC, 0.46 A	2.0 N-m

Screw Driver Tables

404XE

Rotary Encoder

Modular rotary encoder couples directly to the drive screw for position feedback. 150 mm cable included.

Part Number 06-1629-01

Input Power Output

Resolution

5 VDC, 135 mA A/B quadrature and reference mark, differential line drive output 1250 lines/rev equals 5000 counts post

quadrature (1 μ m with 5 mm lead ballscrew)

Riser Plate

Used to raise the table base to provide clearance for motors larger than NEMA 23 frame size.

Part Number 002-3619-0 (All hardware included)

Linear Feedback

A magnetic linear position feedback device which mounts directly to the table carriage. (Factory installation required.)

Input Power Output

Resolution

5 VDC, 240 mA A/B quadrature and reference marks, differential line drive output 5.0 μmm

Dowel Pinning

Standard dowel pin locating holes are offered on all 400XE units to facilitate repeatable mounting of tooling or payload.

Multi-axis options are offered with P20 for the base 'X' Axis and P33-59 for the 'Y' orientation and

Two locating dowel pins shown in carriage

mounting method. "Clock position" call-outs refer to the position of the motor end of the table. The multiaxis option allows the user to choose the motor orientation and mounting style.

P43 & P49 provide toe clamp mounting.

P33 & P39 offers standard pins on the carriage in addition to the toe clamps.

P53 & P59 offers uniquely pinned and toe clamp mounting to ensure the best orthogonality. This is offered for precise orthogonal mounting of the second axis in a multi-axis system. In this case, the bottom side of the table base is match drilled and reamed to the first axis to provide exact orthogonal location. This convenient option eliminates concerns regarding contamination or damage often associated with machining an assembled unit.

X-Y showing 12:00 and 9:00 positions

Toe Clamp

Used for convenient mounting of 404XE to a base plate, or riser plates.

ORDERING INFORMATION 404XE

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	(12)	13	14	(15)			
	Order	Example:	404	T08	XE	М	S -	VL	D4	H8	L8	C3	M4	E1	B1	R11	P1			
1	Series 404	·····				8	Hom H1 H2 H3	ne Sensor (one sensor) No home sensor N.C. current sinking, flying leads												
(2)	Table I	NI Short Car	riane	VI	Long	ı Car	riane			H4	N	I.C. cu	irrent s	sourcir	ng, flyir	ng leads				
	T01*	25	nage	n/a	a	, oui	nugo			H5	Ν	I.O. cu	irrent s	sourcir	ng, flyir	ng leads	;			
	T02**	50		n/a	a					H6	Ν	I.C. cu	irrent s	sinking	, with	locking	connector			
	T03***	100		33						H7	Ν	1.O. cu	irrent s	sinking	, with	locking	connector			
	T04	150		83						H8	Ν	I.C. cu	irrent s	sourcir	ng, with	ו locking	g connector			
	T05	200		13	3					H9	Ν	1.0. cu	irrent s	sourcir	ng, witl	n locking	g connector			
	T06	250		18	3					H11	N	I.C. cu	irrent s	sinking	, sens	or pack	*			
	T07	300		23	3					H12	N	1.0. cu	irrent s	sinking	, sens	or pack	*			
	T08	350		28	3					H13	N N	I.C. CU	irrent s	sourcir	ng, ser	sor pac	:K^			
	т09	400		33	3					HI4 * Muc	ין t ho ou	I.O. CU	Arrent S		ig, ser	isor pac	K.			
	T10	450		38	3					IVIUS		uereu	vvili i L i	1-1143	5611501	option.				
	T11	500		43	3					Trav	ir الم	nit So	neor	Δεερ	mbly	ltwo e	aneore)			
	112	550		48	3				٩	11		Jo limit	senso	A33C	mory	(100 30	5113013)			
	113 T15	600 700		53	3					L2	N	I.C. cu	irrent s	sinkina	ı. flvinc	leads				
	* \/L_corr	700 iago D3 & D4 driv	was and	03 Limit/Hc	J Mo Sc	neorl	Dack or	tion		L3	N	1.O. CL	irrent s	sinkinc	i, flvinc	leads				
	are not	offered with T01	travel mo	dels.		11501 1	i ach up			L4	Ν	I.C. cu	irrent s	sourcir	ng, flyir	ng leads	6			
	** VL carr	iage, D4 drive op	tions are	not offer	red wit	h T02	travel n	nodels.		L5	Ν	1.O. CL	urrent s	sourcir	ng, flyir	ng leads	3			
	and optio	ns L11-L14 are n	ot availat	i v∟ carr ble: Con	iage, F sult fac	tory if	ist de cr f require	iosen d.		L6	Ν	N.C. current sinking with locking connector*								
	·			,		,				L7	Ν	N.O. current sinking with locking connector*								
3	Table S	Style								L8	Ν	I.C. cı	irrent s	sourcir	ng with	locking	g connector*			
	XE	XE Series								L9	Ν	N.O. current sourcing with locking connecto								
										L11	N.C. current sinking, sensor pack									
4	Mounti	ng								L12	N	1.0. cl	irrent s	sinking	, sens	or pack				
	М	Metric								L13	N	I.C. cu	irrent s	sourcir	ng, ser	isor pac	k			
	<u> </u>									L14	٩ 	I.O. CL	irrent s	SOURCIN	ng, ser	isor pac	X			
(5)	Grade	Standard Cra	do							Sen	SOLS M	ILTI IOCK	ing cor	inector	Include	e o m exi	lension capie.			
	5	Stanuaru Grad	Je																	
6	Carriag	je Style																		
		Short																		
	VL	Long																		
7	Drive S	crew																		
	D1	Free travel																		
	D2	5 mm ballscre	W																	
	D3*	10 mm ballscr	еw																	
	D4*	20 mm ballscr	rew			D 4														
	* D3 & D available	4 drives are not a with T02 travels.	vailable v	vith T01	travel.	D4 dı	rives are	e not												

Free sizing and selection support from Virtual Engineer at virtualengineer.com

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5		6	7	8	9	10	1	(12)	13	14	15	
	Order	Example:	404	T08	XE	М	S	-	VL	D4	H8	L8	C3	M4	E1	B1	R11	P1	
10	Motor (C1 C2 C3 C4 C5	Coupling No coupling (r 0.25" Oldham 0.25" Bellows 0.375" Oldhar 0.375" Bellow			12	Fee E1 E2 E5	edbac	k Op t None Linear (not av L2-L9 Rotary (canno	tion feedba vailable "limit" v shaft ot be us	ack – { e on T(senso encod sed wi	5 micro)1 unit rs) er th bra	on magi s with H ke optic	netic 12-H9 "hor on)	me" and					
	C6 C7 C10 C11 C22 C23	0.43" Oldham 0.43" Bellows 14 mm Oldhau 14 mm Bellow 9 mm Oldham 9 mm Bellows	m (M75 /s (M75	motor motor	optior optior	n) 1)				13	Bra B1 B2	ke O	Option No brake Shaft brake (cannot be used with rotary encoder option)						
	C24 C25 C26 C27 C28 C29	5 mm Oldham 5 mm Bellows 8 mm Oldham 8 mm Bellows 0.19" Oldham 0.19" Bellows	(M37) (M37) (M71) (M71) (M37) (M37)	NEMA 1 NEMA 1 NEMA n NEMA 1 NEMA 1 IEMA 1	7) 7) notor notor 7) 7)	optio optio	n) n)			14	Env R11 R12 R13 R14	vironr	nenta Hard c Hard c No co No co	il Prot cover cover, c ver ver, cle	t ectio cleanro eanroo	n bom pr m prep	o rep		
1	Motor M1 M2 M3 M4 M5	Mount* No motor mou SM 16 In-line NEMA 23 & S NEMA 34 – In SM16 – Parall			P1 P20 P33 P39)* ;*	X axis – for single axis use X axis – for X-Y assembly (VL carriage units only) motor @ 12:00 Y axis, standard dowel pinned & toe clamped to X axis – motor @ 3:00 Y axis, standard dowel pinned & toe clamped to X axis – motor @ 9:00						s only) – ed to ed to						
	M6 M7 M8 M9 M10 M11	SM16 – Parallel mounting, "A" location SM16 – Parallel mounting, "B" location SM16 – Parallel mounting, "C" location NEMA 23 – Parallel mounting, "A" location NEMA 23 – Parallel mounting, "B" location NEMA 23 – Parallel mounting, "C" location SM23 – Parallel mounting, "A" location									P43 P49 P53 P59)* * *	Y axis, toe clamped to X axis motor @ 3:00 Y axis, toe clamped to X axis motor @ 9:00 Y axis, precision dowel pinned & toe clamped X axis motor @ 3:00 Y axis, precision dowel pinned & toe clamped X axis motor @ 9:00)) ded to ded to
	M12 M13 M21 M37 M42 M46 M40	 SM23 – Parallel Mounting, A location SM23 – Parallel mounting, "B" location SM23 – Parallel mounting, "C" location Neometric 70 – In-line mounting NEMA 17 – In-line mounting SM232AQ-NPSN Servo motor – In-line mountin HV232-02-10 Stepper motor – In-line mounting 									*Cor quot	nsult fation	actory ⁻	for mul	lti-axis	pinnin	g option	is and	
	M49 M51 M61 M62 M63 M64 M71	Handcrank/nc HDY55 – In-lin BE23 – In-line BE23 – Paralle BE23 – Paralle BE23 – Paralle	e read o ne mourt mounti el moun el moun el moun	ut ng ting, "A ting, "B ting, "C	" loca " loca " loca	tion tion tion													
	M72 M73 M74 M75	SGM01 – In-III SGM01 – Para SGM01 – Para SGM01 – Para SGM02 – In-Iii	allel moi allel moi allel moi allel moi	unting, unting, unting, unting, nting	"A" loo "B" loo "C" lo	catio catio catio	n n n												

* Refer to "Motor Mounting Dimensions" for maximum allowable motor shaft diameter.

OSPE..SB/ST Screw-Driven Actuators

OSPE..SB Ball Screw Actuators for Precise Positioning OSPE..ST Trapezoidal Screw Actuators for Zero Backdrive

- Medium precise and highly repeatable position control
- High thrust force output
- Easy installation
- Excellent low speed characteristics
- No back-drive with OSPE..ST
- Integrated drive train and glider bearing
- Complete motor, gearhead
 and control packages
- Diverse range of accessories and mountings
- Clean room option on request
- Ambient temperature range -20°C to +80°C
- IP54 rated

EXTERNAL GUIDE BEARING OPTIONS:

PowerSlide

- Designed for harsh environments
- Hardened steel guide rail
- Carriage with steel v-wheels
- Tough roller cover with wiper and grease access point

ProLine

- Designed for high-speed, precise, smooth and quiet operation
- Aluminum rail with ground and calibrated steel trucks
- Carriage supported by needle bearing rolls
- Integrated wipers to keep bearing system clean
- Lifetime lubricated bearing system

OSPE-25SB/ST

OSPE-32SB/ST

OSPE-50SB/ST

	OSPE 25SB	OSPE 32SB	OSPE 50SB	OSPE 25ST	OSPE 32ST	OSPE 50ST
Maximum Travel (mm)	1000	2000	3200	1000	2000	2400
Maximum Payload (N)	500	1200	3000	500	1000	1500
Maximum Acceleration (m/s ²)	10	10	10	2	2	2

* SB = Ball Screw, ST = Trapezoidal Screw

** Does not include external guide rail in values

The field-proven OSPE..SB/ST design is the industry standard for medium precise positioning with a ball screw or intermittent duty positioning without back-drive with a trapezoidal screw. Compact size and maximum configurability make the OSPE..SB/ST easy to integrate into any machine layout simply and neatly. The OSPE..SB design utilizes a ball screw which is ideal for medium precise applications requiring a 50 micron unidirectional repeatability. A ball screw is used in machines requiring reliable positioning with continuous and medium to high thrust force output at 100% duty cycle. The OSPE...ST design utilizes a trapezoidal screw, which is ideal for low-speed and high-thrust applications with a maximum duty cycle of 10%. The trapezoidal screw has no back drive and therefore can hold loads in position without a motor brake, even in vertical orientations.

FEATURES

1 Drive shaft

Designed to pair with a large assortment of motor and gearhead mounting options

- (2) Double row angular contact ball bearing Optimized for high thrust force transmission
- (3) Corrosion resistant steel sealing band Magnetically fastened to the actuator body and provides sealing to IP54
- (4) Carriage

Low profile, high strength aluminum carriage with threaded holes for ease of mounting

(5) Low friction support rings

Polymer glider bushing to provide an economical guidance system with optimum performance

(6) Slotted profile

With dovetail grooves for strength, actuator mounting, and mounting of sensor and other accessories

(7) Fastening

SB actuators with hardened ball screw nut; ST actuators with low friction plastic nut

(8) Lead screw Ball screw or trapezoidal

(9) End housing mounting

Threaded mounting holes allow for a multitude of mounting options

Carriage Options

Standard or Tandem carriage — for higher load capabilities (OSPE..SB only)

Actuator Mounting Options

End cap mounting — allows actuator to be anchored by the end caps Profile mounting — supports long travel actuators or for direct mounting (as shown)

Carriage Bearing Design Configurations

Standard carriage (with internal glider bearing), PowerSlide (externally mounted steel roller guide for higher load capabilities specifically in harsh environments),

and ProLine (externally mounted aluminum roller guide for higher load capabilities and precision positioning)

Carriage Mounting

Standard, clevis (provides compensation between actuator and external guide rails in machine designs), and Inversion mounting (allows outer band to be on the bottom, while keeping payload on top, for better actuator protection in dirty environments)

Market Specific Options

Cleanroom version — Specific scraper system and vacuum suction ports to operate in clean environments (OSPE.. SB only). Certified according to DIN EN ISO 146441-1. Please consult factory for more information.

Multi-axis Systems

A wide range of adapter plates and intermediate drive shafts simplifies engineering and installation. Please consult factory for your individual system design.

Options and Accessories

Information on all OSPE..SB/ST Series options are detailed in Options & Accessories. Simply select all the options needed to solve your application requirements, then order with the actuator using convenient order codes (see Ordering Information). To order an option separately as an upgrade to an existing system or as a replacement part, use the individual option part numbers provided.

SPECIFICATIONS OSPE..SB/ST General Specifications

Actuator Size			OSPI	E25		OSPE32			E50		
Screw Type (SB-Ball; ST	-Trapez	oidal)	SB	ST	SB	SB	ST	SB	SB	SB	ST
Screw Lead	s _{lin}	mm	5	4	5	10	4	5	10	25	6
Screw diameter		mm	12	16	16	16	20	25	25	25	30
Duty cycle*		%	100	10	100	100	10	100	100	100	10
Efficiency	η	%	90	40	90	90	40	90	90	90	40
Linear Speed (Max)	v _{max}	mm/s	250	100	250	500	100	250	500	1,250	150
Radial Speed (Max)		rpm	3,000	1,500	3,000	3,000	1,500	3,000	3,000	3,000	1,500
Acceleration (Max)	m/s ²	2	2	2	4	2	2	4	10	2	
Repeatability (unidirection	onal)	μm	± 50	± 500	± 50	± 50	± 500	± 50	± 50	± 50	± 500
Thrust Force (Max)	F _{Amax}	N Ibs	250 56	600 135	1,100 247	800 180	1,300 292	1,300 292	1,450 326	1,350 303	2,500 562
Torque on Drive Shaft (Max)	M _{Amax}	Nm in-lb	0.4 3.7	1.3 11.1	1.2 10.4	1.7 15.2	2.5 21.9	1.5 13.7	3.1 27.1	6.7 59.0	6.6 58.1
Inertia @ Zero Stroke Per Meter of Stroke Per 1 kg Moved Mass	J ₀ J _{OS} J _m	kgmm² kgmm²/m kgmm²/kg	2 11.0 0.6	6 30.0 0.4	8 32.0 0.6	8 32.0 2.5	22 81.0 0.4	84 225.0 0.6	84 225.0 2.5	84 225.0 15.8	152 400.0 0.9
Ambient Temperature R	-20 to +80 (OSPESB); -20 to +70 (OSPEST)										

IP Rating

IP54

* Due to the friction between the plastic nut and trapezoidal screw, the duty cycle must not exceed 10% to avoid early wear and increased noise emission.

Calculating Load Factors - Combined Normal and Moment Load

The sum of combined loads (static and dynamic) must not exceed "1" at any time as shown in the formula below:

F_z	-	M_{x}	L	My		Mz	~ 1	M = M _x =	F x I M _{x st}
F _{z (max)}	т	M _{x (max)}	т	M _{y (max)}	т	M _{z (max)}	≤ I	$M_y = M_z =$	M _{y st} M _{z st}

OSPE25SB/ST Performance

					Standard	Carriage			ProLine	
Ca	arriage	e (Bearing System)			SB	ST	PS25/25	PS25/35	PS25/44	PL32
Pa	art Nur	nber ¹			—	—	20015	20016	20017	20856
M	ax Ord	ler Stroke ²	OS _{max}	mm	1100	1100	1100	1100	1100	1100
No	ormal	Load ³ (Max)	F _Y /F _Z	N (lbs)	500 (112)	500 (112)	297 (67)	330 (74)	575 (129)	1236 (278)
			M_X		2 (18)	2 (18)	5 (44)	6 (53)	10 (89)	24 (212)
M	oment	Load ³ (Max)	M_{Y}	Nm (in-lb)	12 (106)	24 (212)	21 (186)	23 (204)	85 (752)	55 (487)
			Mz		8 (71)	7 (62)	21 (186)	23 (204)	85 (752)	55 (487)
То	rque -	– SB – 5 mm lead	M ₀	Nm (in lb)	0.2 (1.8)	—	0.3 (2.7)	0.3 (2.7)	0.3 (2.7)	0.3 (2.7)
No	b Load	⁴ ST – 4 mm lead	M ₀	MITI (III-ID)	—	0.3 (2.7)	0.4 (3.5)	0.4 (3.5)	0.4 (3.5)	0.4 (3.5)
		@ 0 Stroke	m ₀		0.6 (1.32)	_	0.9 (1.98)	1.0 (2.20)	1.2 (2.64)	0.8 (1.76)
	SB	Per Meter of Stroke	m _{OS}		2.3 (5.06)	—	3.7 (8.14)	4.1 (9.02)	4.9 (10.78)	4.0 (8.80)
ght		Carriage ^₄	m _C	I (11)	0.2 (0.44)	_	0.9 (1.98)	1.0 (2.20)	1.7 (3.74)	1.0 (2.20)
Vei		@ 0 Stroke	m ₀	kg (Ibs)	—	0.7 (1.54)	1.0 (2.20)	1.1 (2.42)	1.3 (2.86)	0.9 (1.98)
	ST	Per Meter of Stroke	m _{OS}		_	1.6 (3.52)	4.2 (9.24)	4.6 (10.12)	5.4 (11.88)	4.5 (9.90)
		Carriage ⁴	m _C		_	0.2 (0.44)	0.9 (1.98)	1.0 (2.20)	1.7 (3.74)	1.0 (2.20)

OSPE32SB/ST Performance

					Carriage	Power	Slide	ProLine	
Carriage	(Bearing System)			SB	ST	PS32/35	PS32/44	PL32	
Part Num	nber 1			—	-	20286	20287	20857	
Max Ord	er Stroke ²	OS _{max}	mm	2000	2000	2000	2000	2000	
Normal L	.oad ³ (Max)	F_Y/F_Z	N (lbs)	1200 (270)	1000 (225)	458 (103)	1111 (250)	1689 (380)	
		M_X		8 (71)	6 (53)	7 (62)	24 (212)	41 (363)	
Moment	Load ³ (Max)	M_Y	Nm (in-lb)	25 (221)	65 (575)	23 (204)	85 (752)	105 (929)	
		M_Z		16 (142)	12 (106)	23 (204)	85 (752)	105 (929)	
T e	SB – 5 mm lead	M_0		0.3 (2.7)	-	0.4 (3.5)	0.4 (3.5)	0.4 (3.5)	
No Load	₄ SB – 10 mm lead	M_0	Nm (in-lb)	0.4 (3.5)	-	0.5 (4.4)	0.5 (4.4)	0.5 (4.4)	
	ST – 4 mm lead	M_0		—	0.6 (5.3)	0.7 (6.2)	0.7 (6.2)	0.7 (6.2)	
	@ 0 Stroke	m ₀		1.6 (3.52)	-	2.0 (4.40)	2.2 (4.84)	2.1 (4.62)	
SB	Per Meter of Stroke	m _{OS}		4.4 (9.68)	—	6.3 (13.86)	7.0 (15.40)	7.0 (15.40)	
ight	Carriage ^₄	m _C	ka (lbc)	0.4 (0.88)	—	1.2 (2.64)	1.9 (4.18)	1.6 (3.52)	
Wei	@ 0 Stroke	m ₀	ky (ibs)	-	1.6 (3.52)	2.6 (5.72)	2.8 (6.16)	2.1 (4.62)	
ST	Per Meter of Stroke	m _{OS}		_	5.0 (11.00)	6.9 (15.18)	7.6 (16.72)	7.6 (16.72)	
	Carriage ^₄	m _C		_	0.5 (1.10)	1.3 (2.86)	2.0 (4.40)	1.7 (3.74)	

OSPE50SB/ST Performance

		Standard C	Carriage	Power	rSlide	ProLine		
Carriage (Bearing System)		SB	ST	PS50/60	PS50/76	PL50		
Part Number ¹		—	—	20288	20289	20859		
Max Order Stroke ²	OS _{max} mm	2000	2000	2000	2000	2000		
Normal Load ³ (Max)	F _Y / F _Z N (lbs)	3000 (674)	1500 (337)	1449 (326)	2518 (566)	4489 (1009)		
	M _X	16 (142)	13 (115)	43 (381)	88 (779)	160 (1416)		
Moment Load ³ (Max)	M _Y Nm (in-lb)	80 (708)	155 (1372)	121 (1071)	220 (1947)	360 (3186)		
	Mz	32 (283)	26 (230)	121 (1071)	220 (1947)	360 (3186)		
SB – 5 mm lead	M ₀	0.6 (5.3)	-	0.8 (7.1)	0.8 (7.1)	0.8 (7.1)		
Torque – SB – 10 mm lead	M ₀ Nm (in lb)	0.7 (6.2)	-	0.9 (8.0)	0.9 (8.0)	0.9 (8.0)		
No Load ⁴ SB – 25 mm lead	M ₀	0.9 (8.0)	-	1.2 (10.6)	1.2 (10.6)	1.2 (10.6)		
ST – 6 mm lead	M ₀	—	0.7 (6.2)	1.9 (16.8)	1.9 (16.8)	1.9 (16.8)		
@ 0 Stroke	m ₀	4.0 (8.80)	-	5.2 (11.44)	5.9 (12.98)	5.2 (11.44)		
SB Per Meter of Stroke	m _{OS}	9.4 (20.68)	-	13.6 (29.92)	16.0 (35.20)	13.2 (29.04)		
E Carriage ⁴	m _C ka (lbc)	1.2 (2.64)	-	3.5 (7.70)	6.1 (13.42)	3.7 (8.14)		
🖉 @ 0 Stroke	m ₀ kg (iDS)	_	3.8 (8.36)	5.0 (11.00)	5.7 (12.54)	5.0 (11.00)		
ST Per Meter of Stroke	m _{OS}	_	10.6 (23.32)	14.8 (32.56)	17.2 (37.84)	14.4 (31.68)		
Carriage ⁴	m _C	_	1.3 (2.86)	3.6 (7.92)	6.2 (13.64)	3.8 (8.36)		

¹ PowerSlide or ProLine bearings can be ordered individually with assigned part number in the table and specified, five digit order stroke value (mm), following the part number (-nnnn) to designate the appropriate length guide rail. To order PowerSlide or Proline bearing with the actuator, use the appropriate order code in item (1) of Ordering Information.

² Longer strokes available upon request. Contact factory.

³ Load and moment based on 8000 km performance Refer to "Calculating Load Factors" for additional information.
 ⁴ For tandem option (OSPE..SB), double the values listed.

OSPE..SB/ST Life Performance

Speed Performance

DIMENSIONS

Maximum Permissible Unsupported Length — Determining end cap and profile mounting placement

OSPE...SB/ST Series actuators need to be mounted onto a solid machine base or frame structure using appropriately positioned end cap and profile mounts. This ensures that the actuator will not undergo excessive deflection based on the application's load and length requirements.

The greater the load and/or the longer the unsupported length between mounts, the more the actuator is susceptible to deflection. Loading is also dependent on the carriage orientation (F_Z for top oriented carriage or F_Y for a side mounted carriage).

To determine correct end cap and profile mount placement, please follow the steps shown in the example below. Use the deflection graphs on the next page to ensure that the load will not exceed the maximum allowed deflection.

Example:

A horizontal application uses an OSPE32B with a top oriented carriage. The maximum load to the carriage is 80 kg and the order stroke is 1,550 mm (see previous section to calculate order stroke).

Therefore, the overall length of the actuator will be 1,800 mm:

1,550 mm + 2 x Dim "X" (125 mm) = 1,800 mm

- Use the appropriate Fz graph) for a top loaded carriage. (Note: with the standard carriage, top loaded Fz and side loaded Fy values are the same).
- 2) Calculate the Load "F" in Newtons based on the 80 kg application load requirement:

80 kg x 9.81 kg/ms² = 784.8 N

- 3) Draw a line from 785 N on the Y-axis to the OSPE32B curve, then down to the X-axis.
- 4) The value of "k" is approximately 1,600 mm.
- Since the overall length (1,800 mm) is greater than this value "k", the actuator will require an additional third fixture point — one end cap mount and two profile mounts — equally spaced to create a distance "k" of 800 mm in between.
- 6) Maximum deflection of the actuator with this mounting configuration will be less than 1.6 mm:

0.2% of 800 mm = 1.6 mm

To further reduce deflection:

If the application requires less deflection, then simply reduce the distance "k" appropriately. In this example, for instance, the application must not exceed 1 mm (1/2 the maximum deflection calculated). Therefore, "k" must also be 1/2, or 400 mm.

To achieve this reduced maximum deflection, the actuator will require five fixture points - one end cap mount and four profile mounts - equally spaced with a distance "k" of 400 mm in between.

Maximum Permissible Unsupported Length

Determining end cap and profile mounting placement

Use the appropriate deflection graph to ensure that the application load does not exceed the deflection curve. Supporting the actuator within the recommended maximum distance "k" will ensure that the installation will have a maximum deflection equal to 0.2% of distance "k."

To further reduce deflection, simply reduce the distance between end cap and profile mounts as described in the example on the previous page.

Tandem Carriage (SB models only)

Actuator Size	Α	В	D	F	G*	GA	GB	GC	GD	GX	н	J	К
OSPE25SB/ST	38.2	M5 x 10	19 ^{H7}	6 _{h7}	17	2 ^{P9}	12	6.8	2	2	31	22.0	117
OSPE32SB/ST	50.9	M6 x 12	26 ^{H7}	10 _{h7}	31	3 ^{P9}	16	11.2	5	2	38	25.5	152
OSPE50SB/ST	65.0	M6 x 12	40 ^{H7}	15 _{h7}	43	5 ^{P9}	28	17.0	6	3	49	33.0	200
	L	м	N	Ρ	Q	R	S	т	U	v	wc	WD	x
OSPE25SB/ST	L 33	M 65	N 25	P M5 x 8	Q 41	R 52.5	S 27	T M5 x 10	U 40	V 39.5	WC 21.5	WD 10.4	X 100
OSPE25SB/ST OSPE32SB/ST	L 33 36	M 65 90	N 25 27	P M5 x 8 M6 x 10	Q 41 52	R 52.5 66.5	S 27 36	T M5 x 10 M6 x 12	U 40 52	V 39.5 51.7	WC 21.5 28.5	WD 10.4 10.4	X 100 125

* With optional long drive shaft with keyway, dimension "G" is 24 mm for OSPE25SB/ST; 41 mm for OSPE32SB/ST; 58 mm for OSPE50SB/ST (See Ordering Information, order code 2), option "4 –")

Order Stroke Dimensional Requirements

Actuator Size	KM _{min}	KM _{rec}
OSPE25SB/ST	120	190
OSPE32SB/ST	165	230
OSPE50SB/ST	235	320

 KM_{min} is the minimum distance between two carriages possible; KM_{rec} is the recommended distance for optimal performance.

* Order Stroke Safety Distance:

The mechanical end position should not be used as a mechanical end stop, thus an additional *Safety Distance* at both ends of travel must be incorporated into the Order Stroke. The safety distance for servo-driven systems is equivalent to the travel distance per revolution of the drive shaft. AC motor-driven systems with VFD require a larger safety distance than servo systems. For further information and design assistance, please consult factory.

Download 2D & 3D files from www.parker.com/emn

Guide											
Rail Size	HG	KG	LG	MG	NG	PG	QG	RG	RX	WX	Х
PS25/25	20.0	145	80	125	64	M6 x 11	79.5	73.5	53.0	11.0	100
PS 25/35	21.5	156	95	140	80	M6 x 12	89.5	73.0	52.5	12.5	100
PS25/44	26.0	190	116	164	96	M8 x 15	100.0	78.5	58.0	15.0	100
PS32/35	21.5	156	95	140	80	M6 x 12	95.5	84.5	58.5	12.5	125
PS 32/44	26.0	190	116	164	96	M8 x 15	107.0	90.0	64.0	15.0	125
PS50/60	28.5	240	135	216	115	M8 x 17	130.5	123.5	81.0	17.0	175
PS 50/76	39.0	280	185	250	160	M10 x 20	155.5	135.5	93.0	20.0	175

ProLine Dimensions - mm

.

Guide Rail Size	HG	KG	кх	LG	MG	мх	NG	PG	QG	RG	RX	UX	x
PL 25	23	154	144	64	120	60	50	M6 x 12	72.5	74	53	40.5	100
PL 32	25	197	187	84	160	80	64	M6 x 12	91.0	88	62	49.0	125
PL 50	31.6	276	266	110	240	120	90	M6 x 16	117.0	118	75	62.0	175

DIMENSIONS

Screw Driven Tables

OPTIONS & ACCESSORIES

Order Code

R Clevis Mounting Option for Standard Carriage

option bolts directly to the standard carriage to eliminate parallelism deviations and strain to the carriage when the actuator is mounted onto machine guide rails. Clevis mounting provides compensation for misalignment in Z and Y directions and can tilt around the X and Y axis. When external guides are involved in the application, slight parallelism deviations can lead to mechanical strain on the carriage and actuator. This can be avoided by the use of a clevis mount that provides freedom of movement compensation on several axes.

OSPE25 and OSPE32

OSPE50

Dort	Woight*		Dimensions – mm											
Number	(kg)	н	нс	к	L	м	мс	Ν	Р	РС	т	U	v	w
20005FIL	0.091	39	52	40	38	30	16	16	M5	5.5	21	19	3.5	2
20096FIL	0.091	50	68	60	62	46	40	25	M6	6.6	30	28	6.0	2
20097FIL	0.308	61	79	60	62	46	_	25	M6	—	30	28	6.0	2
	Part Number 20005FIL 20096FIL 20097FIL	Part Number Weight* (kg) 20005FIL 0.091 20096FIL 0.308	Part Number Weight* (kg) H 20005FIL 0.091 39 20096FIL 0.091 50 20097FIL 0.308 61	Part NumberWeight* (kg)HHC20005FIL0.091395220096FIL0.091506820097FIL0.3086179	Part Number Weight* (kg) H HC K 20005FIL 0.091 39 52 40 20096FIL 0.091 50 68 60 20097FIL 0.308 61 79 60	Part Number Weight* (kg) H HC K L 20005FIL 0.091 39 52 40 38 20096FIL 0.091 50 68 60 62 20097FIL 0.308 61 79 60 62	Part Number Weight* (kg) H HC K L M 20005FIL 0.091 39 52 40 38 30 20096FIL 0.091 50 68 60 62 46 20097FIL 0.308 61 79 60 62 46	Part Number Weight* (kg) H K L M MC 20005FIL 0.091 39 52 40 38 30 16 20096FIL 0.091 50 68 60 62 46 40 20097FIL 0.308 61 79 60 62 46	Part Number Weight* (kg) H K L M MC N 20005FIL 0.091 39 52 40 38 30 16 16 20096FIL 0.091 50 68 60 62 46 40 25 20097FIL 0.308 61 79 60 62 46 — 25	Part Number Weight* (kg) H K L M MC N P 20005FIL 0.091 39 52 40 38 30 16 16 M5 20096FIL 0.091 50 68 60 62 46 40 25 M6 20097FIL 0.308 61 79 60 62 46 - 25 M6	Part Number Weight* (kg) H K L M MC N P PC 20005FIL 0.091 39 52 40 38 30 16 16 M5 5.5 20096FIL 0.091 50 68 60 62 46 40 25 M6 6.6 20097FIL 0.308 61 79 60 62 46 - 25 M6 -	Part Number Weight* (kg) H K L M MC N P PC T 20005FIL 0.091 39 52 40 38 30 16 16 M5 5.5 21 20096FIL 0.091 50 68 60 62 46 40 25 M6 6.6 30 20097FIL 0.308 61 79 60 62 46 - 25 M6 - 30	Part Number Weight* (kg) H K L M MC N P PC T U 20005FIL 0.091 39 52 40 38 30 16 16 M5 5.5 21 19 20096FIL 0.091 50 68 60 62 46 40 25 M6 6.6 30 28 20097FIL 0.308 61 79 60 62 46 - 25 M6 - 30 28	Part Number Weight* (kg) H K L M MC N P PC T U V 20005FIL 0.091 39 52 40 38 30 16 16 M5 5.5 21 19 3.5 20096FIL 0.091 50 68 60 62 46 40 25 M6 6.6 30 28 6.0 20097FIL 0.308 61 79 60 62 46 - 25 M6 - 30 28 6.0

Order Code

M Inversion Mounting Option for Standard Carriage

For dirty environments or spacerestricted installations, inversion of the actuator is recommended.

The aluminum inversion bracket transfers the driving force to the opposite side of the actuator allowing the load to be attached to the top side of the actuator while the carriage and sealing band remain protected on the bottom side. The size and position of the mounting holes are the same as on the standard carriage. **Note:** Profile mounts and magnetic switches can only be used on the free side of the actuator.

	- .		Dimensions – mm									
Actuator Size	Part Number	Weight* (kg)	к	м	Ν	Р	R	S	т			
OSPE25SB/ST	20037FIL	0.302	117	65	25	M5 x 6	33.5	31	43			
OSPE32SB/ST	20161FIL	0.449	150	90	27	M6 x 6	39.5	38	51			
OSPE50SB/ST	20166FIL	0.947	200	110	27	M6 x 8	52.0	55	65			
OSPE50SB/ST	20166FIL	0.947	200	110	27	M6 x 8	52.0	55	65			

Motor Mounting Kit Options

Motor Mounting Kits include a coupling housing, coupling and flange

A = Bolt circle diameter

B = Screw for bolt circle

C = Square dimension

D = Pilot diameterE = Pilot depth

F = Input drive shaft diameter

G = Input drive shaft length

LCH = Length coupling housing MF = Motor flange

	Order Code	Order Code				Dimens	ions –	mm			
Actuator Size	6 *	∕7*	Α	В	С	D	Е	F	G	LCH	MF
	0	AA **	46.66	M3	56	20.00	1.6	6.35	24.8	38	10
	0	AB	66.67	M4	58	38.10	1.6	6.35	20.5	38	9
	0	AC	66.67	M5	58	38.10	1.6	9.53	20.8	38	9
	0	AD	66.67	M5	60	38.10	1.6	9.53	31.8	38	17
	0	B5 **	46.00	M4	56	30.00	2.5	6.00	25.0	38	10
	0	AM **	46.00	M3	56	30.00	2.5	8.00	25.0	38	10
OSPE25SB/ST	0	B6	63.00	M4	60	40.00	2.5	9.00	20.0	38	9
	0	AH	63.00	M5	60	40.00	2.5	9.00	20.0	38	10
	0	A2	63.00	M5	60	40.00	2.5	11.00	23.0	38	10
	0	B7	70.00	M5	60	50.00	3.0	8.00	25.0	38	15
	0	B8	70.00	M5	60	50.00	3.0	12.00	30.0	38	15
	0	AG	75.00	M5	70	60.00	2.5	11.00	23.0	38	10
	0	B1	90.00	M5	75	60.00	2.5	11.00	23.0	38	10
	0	AB	66.67	M5	60	38.10	1.6	6.35	20.5	54	10
	0	AC	66.67	M5	60	38.10	1.6	9.525	20.8	54	10
	0	AD	66.67	M5	60	38.10	1.6	9.525	31.8	54	17
	0	AE	98.43	M5	85	73.00	3.0	12.70	30.0	54	15
	0	AF	98.43	M6	85	73.00	3.0	12.70	37.0	54	25
	0	B6 **	63.00	M4	74	40.00	2.5	9.00	20.0	54	10
	0	AH **	63.00	M5	74	40.00	2.5	9.00	20.0	54	10
	0	A2 **	63.00	M5	74	40.00	2.5	11.00	23.0	54	10
	0	BJ	66.67	M5	60	38.10	1.6	12.70	20.0	54	10
00050000/07	0	B/	70.00	M5	60	50.00	3.0	8.00	25.0	54	15
OSPE32SB/ST	0	88	70.00	M5	60	50.00	3.0	12.00	30.0	54	15
	0	AN	70.00	CIVI	60 70	50.00	3.0	14.00	30.0	54	10
	0	AG	75.00	CIVI	70	60.00	2.5	14.00	23.0	54	10
	0	D9 DA	75.00	CIVI	70	60.00	2.5	16.00	40.0	54	15
	0	DA R0	75.00	Me	70	60.00	3.0	14.00	40.0	54	20
	0	BU B1	90.00	M5	75	60.00	2.5	11.00	23.0	54	10
	0	B2	90.00	M5	75	60.00	2.5	1/ 00	20.0	54	15
	0	BB	90.00	M6	80	70.00	2.0	1/ 00	30.0	54	15
	0	BB R4	90.00	M6	80	70.00	3.0	16.00	40.0	54	25
	0	B3	95.00	M6	80	50.00	2.5	14.00	30.0	54	15

* When ordering with actuator, use order code 🙆 (gearhead designation) and order code 🥑 to specify motor mounting kit. See Ordering Information. ** Motor mounts with 45° rotated

Blue order codes indicate rapid shipment availability

(continued on next page)

(continued from previous page)

	Order Code	Order Code				Dimens	sions —	mm			
Actuator Size	6 *	∕?*	Α	В	С	D	Е	F	G	LCH	MF
	0	AE	98.43	M5	88	73.0	3.0	12.70	30.0	75	14
	0	AF	98.43	M6	88	73.0	3.0	12.70	37.0	84	15
	0	B9	75.00	M5	85	60.0	2.5	14.00	30.0	75	14
	0	BA **	75.00	M5	86	60.0	3.0	16.00	40.0	84	15
	0	B0	75.00	M6	88	60.0	3.0	14.00	30.0	75	14
	0	B2	90.00	M5	80	60.0	2.5	14.00	30.0	75	14
	0	BB	90.00	M6	80	70.0	3.0	14.00	30.0	75	14
	0	B4	90.00	M6	86	70.0	3.0	16.00	40.0	84	15
OSPE50SB/ST	0	AP	90.00	M6	86	70.0	3.0	19.00	40.0	84	15
	0	B3	95.00	M6	85	50.0	2.5	14.00	30.0	75	14
	0	A1	99.00	M6	88	73.0	3.0	9.525	31.5	75	14
	0	A3	100.00	M6	88	80.0	3.5	14.00	30.0	75	14
	0	AL	100.00	M6	88	80.0	3.0	16.00	40.0	84	15
	0	AJ	100.00	M6	88	80.0	3.0	19.00	40.0	84	15
	0	A 4	115.00	M8	100	95.0	3.5	19.00	40.0	84	15
	0	BD	130.00	M8	115	95.0	3.0	19.00	40.0	84	15
	0	BF	130.00	M8	115	110.0	3.5	19.00	40.0	84	15

* When ordering with actuator, use order code ③(gearhead designation) and order code ⑦ to specify motor mounting kit. See Ordering Information. ** Motor mounts with 45° rotated

Blue order codes indicate rapid shipment availability

Mounted Motor Options

Mounted Motor Options include a coupling housing, coupling, flange and motor

LM = Length motor

IVIF	=	iviotor	tian	ge

	Order Code	Order Code			Dimension	s — mm	
Actuator Size	6 *	7*	Motor description	С	LCH	LM	MF
	0	L0	LV233-01-10	58	38	79	9
	0	L1	HV233-01-10	58	38	79	9
	0	K0	BE233FJ-KPSN	58	38	143	17
OSPE25SB/ST	0	K1	BE233FJ-KPSN with brake (CM233FJ-115027)	58	38	178	17
	0	KA	PM-FAL01AM8N	40	38	95.2	10
	0	KB	PM-FAL01AM8N2 (Brake)	40	38	131.6	10
	0	L0	LV233-01-10	58	54	79	10
	0	L1	HV233-01-10	58	54	79	10
	0	L2	LV343-01-10	86	54	127	25
	0	L3	HV343-01-10	86	54	127	25
	0	K0	BE233FJ-KPSN	58	54	143	18
OSPE32SB/ST	0	K1	BE233FJ-KPSN with brake (CM233FJ-115027)	58	54	178	18
	0	K2	BE344LJ-KPSN	86	54	188	16
	0	K3	BE344LJ-KPSB	86	54	220	16
	0	KC	PM-FBL04AMK	62	54	108.2	15
	0	KD	PM-FBL04AMK2	62	54	148.2	15
	0	L2	LV343-01-10	86	84	127	15
	0	L3	HV343-01-10	86	84	127	15
	0	K2	BE344LJ-KPSN	86	75	188	14
	0	K3	BE344LJ-KPSB	86	75	220	14
	0	KJ	PM-FCL10AMK	80	84	152.7	15
OSPE50SB/ST	0	KK	PM-FCL10AMK2 (Brake)	80	84	193	15
	0	M0	MPP0923D1E-KPSN	89	84	178	15
	0	M1	MPP0923D1E-KPSB	89	84	212	15
	0	M2	MPP1003D1E-KPSN	98	84	175	15
	0	M3	MPP1003D1E-KPSB	98	84	224	15
	0	M4	MPP1003R1E-KPSN	98	84	175	15
	0	M5	MPP1003R1E-KPSB	98	84	224	15

*When ordering with actuator, use order code 🙆 (gearhead designation) and order code 🕢 to specify mounted motor. See Ordering Information.

Gearhead Mounting Kit Options

Gearhead Mounting Kits include a coupling housing, coupling and flange

		iar	PC-1 C ØF,	─ ØD x E ── B ∽ØA < G deep N	deep MF	LCH	•		A = Bc $B = Sc$ $C = Sc$ $D = Pil$ $E = Pilc$ $F = Inp$ $G = Inp$ $LCH = MF = M$	olt circle diar rew for bolt uare dimen ot diameter ot depth out drive sha out drive sha Length cou Motor flange	neter circle sion aft diameter aft length upling housi	ing
Actuator Size	Order Code 6 *	Order Code (7)*	А	в	С	Dimen D	sions – E	- mm F	G	LCH	MF	
OSPE25SB/ST	0	00	44	S4	54	35	3	12	25	38	14 0	

OSPE25SB/ST	0	C0	44	S4	54	35	3	12	25	38	14.0
	0	C0	44	S4	60	35	3	12	25	54	13.0
U3PE323D/31	0	C1	62	S 5	75	52	8	16	36	54	20.0
	0	C1	62	S5	75	52	8	16	36	84	16.3
05PE505B/51	0	C2	80	S6	95	68	10	22	46	84	23.0

*When ordering with actuator, use order code 6 (gearhead designation) and order code 7 to specify gearhead mounting kit See Ordering Information.

Blue order codes indicate rapid shipment availability

Screw Driven Tables

Mounted Gearhead with Motor Mounting Kit Options

A = Bolt circle diameter B = Screw for bolt circle C = Square dimension D = Pilot diameter E = Pilot depth F = Input drive shaft diameter G = Input drive shaft length LCH = Length coupling housing

MAK = Motor adapter

MF = Motor flange

	Order Code	Order Code				Di	mensio	ons — n	nm				
Actuator Size	6 ¹	7 ²	Α	в	С	D	Е	F	G	LCH	LGH	MAK	MF
	A or B	AA	46.66	M3	43	20.00	1.6	6.35	24.8	38	48.5	19.0	14.0
	A or B	AB	66.67	M5	55	38.10	1.6	6.35	20.5	38	48.5	15.7	14.0
OSDE25SB/ST	A or B	B5	46.00	M4	43	30.00	2.5	6.00	25.0	38	48.5	19.0	14.0
037 22330/31	A or B	AM	46.00	M3	43	30.00	2.5	8.00	25.0	38	48.5	19.0	14.0
	A or B	B6	63.00	M4	55	40.00	2.5	9.00	20.0	38	48.5	13.7	14.0
	A or B	AH	63.00	M5	55	40.00	2.5	9.00	20.0	38	48.5	19.0	14.0
	C, D or E	AB	66.67	M5	62	38.10	1.6	6.35	20.5	54	67.0	16.5	20.0
	C, D or E	AC	66.67	M5	62	38.00	1.6	9.525	20.8	54	67.0	16.5	20.0
	C, D or E	AD	66.67	M5	62	38.10	1.6	9.525	31.8	54	67.0	22.5	20.0
	C, D or E	AE	98.43	M5	80	73.03	3.0	12.70	30.0	54	67.0	22.5	20.0
	C, D or E	AF	98.43	M6	85	73.03	3.0	12.70	37.0	54	67.0	30.0	20.0
	C, D or E	B6	63.00	M4	62	40.00	2.5	9.00	20.0	54	67.0	16.5	20.0
OSPE32SB/ST	C, D or E	AH	63.00	M5	62	40.00	2.5	9.00	20.0	54	67.0	16.5	20.0
	C, D or E	B8	70.00	M5	62	50.00	3.0	12.00	30.0	54	67.0	22.5	20.0
	C, D or E	AN	70.00	M5	62	50.00	3.0	14.00	30.0	54	67.0	22.5	20.0
	C, D or E	AG	75.00	M5	62	60.00	2.5	11.00	23.0	54	67.0	16.5	20.0
	C, D or E	B9	75.00	M5	62	60.00	2.5	14.00	30.0	54	67.0	22.5	20.0
	C, D or E	BB	90.00	M6	80	70.00	3.0	14.00	30.0	54	67.0	22.5	20.0
	C, D or E	A3	100.00	M6	89	80.00	3.5	14.00	30.0	54	67.0	22.5	20.0
	C, D or E	AB	66.67	M5	62	38.10	1.6	6.35	20.5	84	67.0	16.5	16.3
	C, D or E	AC	66.67	M5	62	38.00	1.6	9.525	20.8	84	67.0	16.5	16.3
	C, D or E	AD	66.67	M5	62	38.10	1.6	9.525	31.8	84	67.0	22.5	16.3
	C, D or E	AE	98.43	M5	80	73.03	3.0	12.70	30.0	84	67.0	22.5	16.3
	C, D or E	AF	98.43	M6	85	73.03	3.0	12.70	37.0	84	67.0	30.0	16.3
	C, D or E	B6	63.00	M4	62	40.00	2.5	9.00	20.0	84	67.0	16.5	16.3
OSPE50SB/ST	C, D or E	AH	63.00	M5	62	40.00	2.5	9.00	20.0	84	67.0	16.5	16.3
	C, D or E	B8	70.00	M5	62	50.00	3.0	12.00	30.0	84	67.0	22.5	16.3
	C, D or E	AN	70.00	M5	62	50.00	3.0	14.00	30.0	84	67.0	22.5	16.3
	C, D or E	AG	75.00	M5	62	60.00	2.5	11.00	23.0	84	67.0	16.5	16.3
	C, D or E	B9	75.00	M5	62	60.00	2.5	14.00	30.0	84	67.0	22.5	16.3
	C, D or E	BB	90.00	M6	80	70.00	3.0	14.00	30.0	84	67.0	22.5	16.3
	C D or E	A3	100.00	MAG	80	80.00	35	1/ 00	30.0	<u>8</u> /	67.0	22 5	16.3

¹ When ordering with actuator, use order code 🕢 to specify mounted gearhead size and ratio: A PV40TA-005 (ratio 5:1); B PV40TA-010 (ratio10:1); C PV60TA-003 (ratio 3:1); **D** PV60TA-005 (ratio 5:1); **E** PV60TA-010 (ratio 10:1). See ordering information. ² When ordering with actuator, use order code ⑦ to specify motor mounting kit. See Ordering Information.

Blue order codes indicate rapid shipment availability

Mounted Gearhead and Motor Options

Mounted Gearhead and Mounted Motor Options include a coupling housing, coupling, flange, gearhead with coupler, flange and motor

LCH = Length coupling housing LGH = Length gearheadLM = Length motor MAK = Motor adapterMF = Motor flange

	Order Code	Order Code			Di	mension	s — m	m	
Actuator Size	6 ¹	7 ²	Motor description	С	LCH	LGH	LM	MAK	MF
	A or B	KA	PM-FAL01AM8N	40	38	48.5	95.2	19.0	14.0
	A or B	KB	PM-FAL01AM8N2 (Brake)	40	38	48.5	131.6	19.0	14.0
USPE2050/51	A or B	L0	LV233-01-10	58	38	48.5	79	15.7	14.0
	A or B	L1	HV233-01-10	58	38	48.5	79	15.7	14.0
	C, D or E	K0	BE233FJ-KPSN	58	54	67.0	143	22.5	20.0
	C, D or E	K1	BE233FJ-KPSN with brake (CM233FJ-115027)	58	54	67.0	178	22.5	20.0
	C, D or E	K2	BE344LJ-KPSN	86	54	67.0	188	22.5	20.0
	C, D or E	K3	BE344LJ-KPSB	86	54	67.0	220	22.5	20.0
OSPE32SB/ST	C, D or E	KC	PM-FBL04AMK	62	54	67.0	108.2	22.5	20.0
	C, D or E	KD	PM-FBL04AMK2	62	54	67.0	148.2	22.5	20.0
	C, D or E	LO	LV233-01-10	58	54	67.0	79	16.5	20.0
	C, D or E	L1	HV233-01-10	58	54	67.0	79	16.5	20.0
	C, D or E	L2	LV343-01-10	86	54	67.0	127	30.0	20.0
	C, D or E	L3	HV343-01-10	86	54	67.0	127	30.0	20.0
	C, D or E	K0	BE233FJ-KPSN	58	84	67.0	143	22.5	16.3
	C, D or E	K1	BE233FJ-KPSN with brake (CM233FJ-115027)	58	84	67.0	178	22.5	16.3
	C, D or E	K2	BE344LJ-KPSN	86	84	67.0	188	22.5	16.3
	C, D or E	K3	BE344LJ-KPSB	86	84	67.0	220	22.5	16.3
OSPE50SB/ST	C, D or E	KC	PM-FBL04AMK	62	84	67	108.2	22.5	16.3
	C, D or E	KD	PM-FBL04AMK2	62	84	67.0	148.2	22.5	16.3
	C, D or E	LO	LV233-01-10	58	84	67.0	79	16.5	16.3
	C, D or E	L1	HV233-01-10	58	84	67.0	79	16.5	16.3
	C, D or E	L2	LV343-01-10	86	84	67.0	127	30.0	16.3
	C, D or E	L3	HV343-01-10	86	84	67.0	127	30.0	16.3

¹ When ordering with actuator, use order code Sto specify mounted gearhead size and ratio: A PV40TA-005 (ratio 5:1); B PV40TA-010 (ratio10:1); C PV60TA-003 (ratio 3:1); D PV60TA-005 (ratio 5:1); E PV60TA-010 (ratio 10:1). See Ordering Information.
 ² When ordering with actuator, use order code To specify mounted motor on gearhead. See Ordering Information.

End Cap Mounting Options

See "Maximum Permissible Unsupported Length" for end cap and profile mounting placement requirements.

End Cap Mounting Selection Overview

		Standa	ard Car	riage			P	owerSlie	de			P	ProLin	е
Туре	•	25	32	50	25/25	25/35	25/44	32/35	32/44	50/60	50/76	25	32	50
Standard	A1	•	•											
	A2											•	•	
2	A 3				•	•		•						
Reinforced	B1	•	•		•	•	•	•	•			•	•	
	B 4						•		•					
Block	C1			•						•	•			•
6	C2													•
	C3									•				
	C4										•			

Recommended for mounting position with carriage on top
 Recommended for mounting position carriage side only (3 or 9 o'clock position)

Order Code

Type A1, A2 and A3 – Standard End Cap

		Part	Weight*			Di	mension	s — m	m		
Actuator Size	Туре	Number*	(kg)	Α	в	С	СН	D	G	м	Ν
	A1	18156FIL	0.031							18	22
OSPE25SB/ST	A2	18157FIL	0.044	39	22	27	5.8	16	2.5	33	37
00. 22000/01	A3	18158FIL	0.055							45	49
	A1	18161FIL	0.050							20	30
OSPE32SB/ST	A2	18162FIL	0.066	50	26	36	6.6	18	3.0	34	44
	A3	18163FIL	0.159							42	52

Type B1 and B4 – Reinforced End Cap

		Part	Weight*			Di	mension	s — m	m		
Actuator Size	Туре	Number*	(kg)	Α	в	С	СН	D	G	М	Ν
	B1	18159FIL	0.010	20	22	07	E 0	16	2.5	42	22
03722336/31	B4	18160FIL	0.110	39	22	21	5.6	10	2.5	80	60
	B1	18164FIL	0.078	50	00	00	0.0	10	0.0	55	30
U3PE325B/51	B4	18165FIL	0.380	50	20	30	0.0	18	3.0	85	60

*Part number and weight are for individual unit.

Order Code

Type C1, C2, C3 and C4 – Block End Cap

		Part	Weight*			Dime	nsions -	- mm		
Actuator Size	Туре	Number*	(kg)	Α	В	С	СН	D	м	Ν
	C1	18166FIL	0.146						30	48
OGDEE000 /CT	C2	18167FIL	0.210	96	04	40	0.0	10.5	39	57
OSPE50SB/ST	C3	18168FIL	0.300	00	24	40	9.0	12.5	54	72
	C4	18169FIL	0.412						77	95

See "Maximum Permissible Unsupported Length" for end cap and profile mounting placement requirements.

Profile Mounting Options

Profile Mounting Selection Overview

Standard Carriage PowerSlide ProLine Туре 25 32 50 25/25 25/35 25/44 32/35 32/44 50/60 50/76 25 32 50 2 Internal Threads E D1 2 Thru **E1** Holes **E2** л E3 **E**4 3 Thru Holes 5 MAE

Recommended for mounting position with carriage on top
 Recommended for mounting position carriage side only (3 or 9 o'clock position)

Order Code

2, 5 or 8 (1, 2 or 3 pair) Type D1 (with two internal threads)

					D	imensio	ons — m	nm			
	Part	Weight*									
Actuator Size	Number*	(kg)	Α	С	СН	D	DB	Е	EB	Μ	Ν
OSPE25SB/ST	20008FIL	0.061	50	36	M5 x 10	27	28.5	34.5	36	38	22
OSPE32SB/ST	20157FIL	0.072	50	36	M5 x 10	33	35.5	40.5	43	46	30
OSPE50SB/ST	20162FIL	0.167	60	45	M6 x 11	40	45.0	52.0	57	71	48

Screw Driven Tables

Dimensions - mm

	Part	Weight*								5 11						
Туре	Number*	(kg)	Α	в	С	СН	CJ	D	DB	Е	EB	F	FB	G	М	Ν
E1	20009FIL	0.074												8	38	22
E2	20352FIL	0.125	50	26	26	55	10 x	40	11 5	24 5	26	47 5	40	23	53	37
E3	20353FIL	0.120	50	20	30	5.5	5.7	40	41.5	54.5	30	47.5	49	35	65	49
E4	20354FIL	0.020												46	76	60
E1	20158FIL	0.092												10	46	30
E2	20355FIL	0.141	50	27	36	55	10 x	46	18.5	10 5	13	54 5	57	24	60	44
E3	20356FIL	0.140	50	21	50	5.5	5.7	40	40.5	40.5	40	54.5	57	32	68	52
E4	20357FIL	0.197												40	76	60
E1	20163FIL	0.189												10	71	48
E2	20361FIL	0.235	60	24	45	7.0		50	64.0	52 O	57	67.0	70	19	80	57
E3	20362FIL	0.338	00	54	45	7.0	_	59	04.0	52.0	57	07.0	12	31	95	72
E4	20363FIL	0.442												57	118	95
	Sype E1 E2 E3 E4 E1 E2 E3 E4 E3 E4 E3 E4 E3 E4 E3 E4 E3 E4	Part Ype Part E1 20009F1L E2 20352F1L E3 20353F1L E4 20158F1L E1 20158F1L E2 20355F1L E3 20355F1L E4 20357F1L E4 20163F1L E4 20361F1L E4 20361F1L E4 20361F1L E4 20362F1L	Part Weight* Ype Number (kg) E1 20009FL 0.074 E2 20352FL 0.120 E3 20353FL 0.120 E4 20353FL 0.020 E4 20158FL 0.0401 E3 20356FL 0.141 E4 20357FL 0.1401 E4 20357FL 0.1401 E4 20357FL 0.1801 E4 20361FL 0.2336 E4 20361FL 0.3386 E5 20362FL 0.3386 E4 20362FL 0.3386 E5 20362FL 0.3386 E4 20362FL 0.3386	PartWeightVine(kg)20009FL0.07420352FL0.12620353FL0.12020353FL0.02020355FL0.04020355FL0.14120355FL0.14120355FL0.14120357FL0.14020357FL0.14020357FL0.14020357FL0.14020357FL0.14020357FL0.18020361FL0.23620361FL0.23620362FL0.33820363FL0.343	Part (kg)Weight (kg)AB20009FL0.0741120352FL0.1260.1261120353FL0.0200.0201120353FL0.0020.01411120353FL0.1410.1411120353FL0.1410.1411120353FL0.1410.1411120353FL0.1410.1411120353FL0.1410.1431120363FL0.1800.1811120363FL0.1380.2331120363FL0.13810.2331120363FL0.3380.3381120363FL0.3380.4331120363FL0.4380.4381120363FL0.4380.44811	Part (kg)Weight (kg)ABC120009FL0.074220352FL0.126220353FL0.126220353FL0.020220353FL0.024220353FL0.141220353FL0.141220353FL0.141220353FL0.141220353FL0.141220353FL0.141220353FL0.141220363FL0.184220363FL0.238220363FL0.238220363FL0.238220363FL0.338220363FL0.348	Part (kg)Weight (kg)ABCCH100.074	Part (kg)Weight (kg)ABCCHCJ100.00740.07410.074 </th <th>Part (kg) Weight* A B C CH CJ D Fype Number* 0.074 A B C CH CJ D E1 20009FIL 0.074 A B C CH CJ D E2 20352FIL 0.125 A A A A A A A A A A A A A A A B C CH CJ D E1 20352FIL 0.120 A</th> <th>Part Weight* A B C CH CJ D DB $E1$ 20009FIL 0.074 A B C CH CJ D DB $E1$ 20009FIL 0.125 A B A B C CH CJ D DB $E2$ 20352FIL 0.125 A B A B</th> <th>Part Weight* A B C CH CJ D DB E 10 20009FIL 0.074 A B C CH CJ D DB E 20352FIL 0.125 A B A B C CH CJ D DB E 20352FIL 0.125 A B A B A B A B A A A A A B A <</th> <th>Part (kg) Weight* A B C CH CJ D DB E EB 1 20009FIL 0.074 A B C CH CJ D DB E EB 2 20352FIL 0.125 0.125 A A A A A A A A A B C CH CJ D DB E EB 2 20352FIL 0.125 0.126 A <td< th=""><th>Part (kg) Weight* (kg) A B C CH CJ D DB E EB F 1 20009FIL 0.074 </th><th>Part (kg) Weight* (kg) A B C CH CJ D DB E EB F FB 1 20009FIL 0.074 32352FIL 0.125 34.5</th><th>Part (ypeWeight* (kg)ABCCHCJDDBEEBFFBG1020009FIL0.0740.07414.520352FIL0.12510.25<t< th=""><th>PartWeight*KBCCHCJDDBEEBFFBGM1020009FIL0.07410250.0741025101250.102510125</th></t<></th></td<></th>	Part (kg) Weight* A B C CH CJ D Fype Number* 0.074 A B C CH CJ D E1 20009FIL 0.074 A B C CH CJ D E2 20352FIL 0.125 A A A A A A A A A A A A A A A B C CH CJ D E1 20352FIL 0.120 A	Part Weight* A B C CH CJ D DB $E1$ 20009FIL 0.074 A B C CH CJ D DB $E1$ 20009FIL 0.125 A B A B C CH CJ D DB $E2$ 20352FIL 0.125 A B	Part Weight* A B C CH CJ D DB E 10 20009FIL 0.074 A B C CH CJ D DB E 20352FIL 0.125 A B A B C CH CJ D DB E 20352FIL 0.125 A B A B A B A B A A A A A B A <	Part (kg) Weight* A B C CH CJ D DB E EB 1 20009FIL 0.074 A B C CH CJ D DB E EB 2 20352FIL 0.125 0.125 A A A A A A A A A B C CH CJ D DB E EB 2 20352FIL 0.125 0.126 A <td< th=""><th>Part (kg) Weight* (kg) A B C CH CJ D DB E EB F 1 20009FIL 0.074 </th><th>Part (kg) Weight* (kg) A B C CH CJ D DB E EB F FB 1 20009FIL 0.074 32352FIL 0.125 34.5</th><th>Part (ypeWeight* (kg)ABCCHCJDDBEEBFFBG1020009FIL0.0740.07414.520352FIL0.12510.25<t< th=""><th>PartWeight*KBCCHCJDDBEEBFFBGM1020009FIL0.07410250.0741025101250.102510125</th></t<></th></td<>	Part (kg) Weight* (kg) A B C CH CJ D DB E EB F 1 20009FIL 0.074	Part (kg) Weight* (kg) A B C CH CJ D DB E EB F FB 1 20009FIL 0.074 32352FIL 0.125 34.5	Part (ypeWeight* (kg)ABCCHCJDDBEEBFFBG1020009FIL0.0740.07414.520352FIL0.12510.25 <t< th=""><th>PartWeight*KBCCHCJDDBEEBFFBGM1020009FIL0.07410250.0741025101250.102510125</th></t<>	PartWeight*KBCCHCJDDBEEBFFBGM1020009FIL0.07410250.0741025101250.102510125

*Part number and weight are for individual unit.

3, 6 or 9 (1, 2 or 3 pair)

Type MAE (with three thru holes)

Pa	rt	Woight*					Din	nensi	ons –	mm						
Actuator Size Num	ber*	(kg)	Α	в	С	СН	CJ	D	DB	Е	EB	F	FB	G	М	Ν
OSPE25SB/ST 1227	8FIL	0.271	92	26	40	5.5	10 x 5.7	40	41.5	34.5	36	47.5	49	8	38	22
OSPE32SB/ST 1227	9FIL	0.334	92	27	40	5.5	10 x 5.7	46	48.5	40.5	43	54.5	57	10	46	30
OSPE50SB/ST 1228	0FIL	0.668	112	34	45	7.0	—	59	64.0	52.0	57	67.0	72	10	71	48

*Part number and weight are for individual unit.

Order Code

ORDERING INFORMATION

OSPE..SB/ST

Select an order code from each of the numbered fields to create a complete OSPE..SB or ST model order number. Include hyphens and non-selective characters as shown in example below.

	(1)	2	(3)	(4)	(5)	6	(7)	(8)	୭	(10)	U	(12)	(13)	(14)
Order Number Example:	OSPE	25 –	1	0	0	0	0 –	00000 -	Ρ	0	0	0	0	0

Series

OSPE Origa System Plus Electromechanical

(2) Actuator Bore Size

- **25** 41 mm W x 53 mm H
- **32** 52 mm W x 67 mm H
- 50 87 mm W x 93 mm H

③ Drive Train

- 1 SB Ball screw actuator with internal glider bearing
- 2 ST Trapezoidal screw actuator with internal glider bearing

(4) Carriage

- 0 Standard
- 1 Tandem (two carriages for higher load capabilities (OSPE..SB models only)

5 Screw Lead

OSPESB		Bore Size	25	32	50
3	5 mm		•	•	•
4	10 mm			•	•
5	25 mm				•
OSPEST		Bore Size	25	32	50
4	4 mm		•	•	
6	6 mm				•

6 Mounted Gearhead Options

- 0 No gearhead
- A PV40TA-005 (gear ratio 5:1)*
- **B** PV40TA-010 (gear ratio 10:1)*
- **C** PV60TA-003 (gear ratio 3:1)*
- **D** PV60TA-005 (gear ratio 5:1)*
- E PV60TA-010 (gear ratio 10:1)*

* Requires selection from "Mounted Gearhead with Motor Mounting Kit" or "Mounted Gearhead and Motor" (see Options & Accessories) for item below.

⑦ Drive Shaft and Gearhead/Motor Mounting Options

- 0 Plain drive shaft
- **3** Drive shaft with keyway
- Long drive shaft with keyway Motor Mounting Kits* (see Options & Accessories for available option dimensions and delivery) Mounted Motors* (see Options & Accessories for available option dimensions and delivery) Gearhead Mounting Kits* (see Options & Accessories for available option dimensions and delivery) Mounted Gearhead with Motor Mounting Kits* (see Options & Accessories for available option dimensions and delivery) Mounted Gearhead and Motor (see Options & Accessories for available option dimensions and delivery)

* All gearhead and motor mounting options are equipped with a plain drive shaft (no keyway options)

Order Stroke*

00000 5-digit input (in mm)

* See Specifications to calculate required order stroke.

- Maximum catalog stroke: OSPE25SB/ST = 01100 mm;
- OSPE32SB/ST = 02000 mm;
- OSPE50SB/ST = 02000 mm
- Longer strokes available upon request. Consult factory.

④ Hardware and Dovetail Grove Covers

P Standard hardware with Parker gold cover strip

Blue order codes indicate rapid shipment availability Free sizing and selection support from Virtual Engineer at virtualengineer.com

10 Carriage Options

- 0 No external guide rail
- 6 ProLine PL25, PL32, PL50*
- E PowerSlide PS25/25*
- F PowerSlide PS25/35 or PS32/35*
- G PowerSlide PS25/44 or PS32/44*
- H PowerSlide PS50/60*
- PowerSlide PS50/76*
- M Inversion Mounting**
- R Clevis Mounting **

* Requires standard carriage (select order code "0" from ④. See Dimensions for additional information.

** Requires standard carriage (select order code "0" from ④. See Options & Accessories for Clevis Mounting and Inversion Mounting.

1) External Guide Rail Orientation

End Cap Mounting (see Options & Accessories)

- No end cap mounting
- 1 piece A1* (standard end cap) or C1** (block end cap)
- 2 1 piece A2* (standard end cap) or C2** (block end cap)
- 3 1 piece A3* (standard end cap) or C3** (block end cap)
- 4 1 piece B1* (reinforced end cap) or C4** (block end cap)
- 5 1 piece B4* (reinforced end cap)

* For size 25 and 32

*8 For size 50

13 Profile Mounting (see Options & Accessories)

- 0 No profile mounting
- 2 1 pair D1 (with 2 internal threads)
- 5 2 pair D1 (with 2 internal threads)
- 8 3 pair D1 (with 2 internal threads)
- 1 1 pair E1 (with 2 thru holes)
- 4 2 pair E1 (with 2 thru holes)
- 7 3 pair E1 (with 2 thru holes)
- 3 1 pair MAE (with 3 thru holes)
- 6 2 pair MAE (with 3 thru holes)
- 9 3 pair MAE (with 3 thru holes)
- K 1 pair E2 (with 2 thru holes)
- N 2 pair E2 (with 2 thru holes)
- R 3 pair E2 (with 2 thru holes)
- L 1 pair E3 (with 2 thru holes)
- P 2 pair E3 (with 2 thru holes)
- S 3 pair E3 (with 2 thru holes)
- M 1 pair E4 (with 2 thru holes)
- Q 2 pair E4 (with 2 thru holes)
- T 3 pair E4 (with 2 thru holes)

(14) Magnetic Sensor Mounting*

- No sensor mounting
- A 1 pc. N.O., NPN, with M8 connector
- B 2 pc. N.C., NPN, with M8 connector
- c 1 pc. N.O., NPN, with M8 connector
- 2 pc. N.C., NPN, with M8 connector
- D 1 pc. N.O., PNP, with M8 connector
 E 2 pc. N.C., PNP, with M8 connector
- 2 pc. N.C., PNP, with M8 connector
 1 pc. N.O., PNP, with M8 connector
- F 2 pc. N.C., PNP, with M8 connector

* Extension cable with M8 plug and 5 m cable flying lead cable for Sensor with M8 connector can be ordered separately; use part number 003-2918-01

Blue order codes indicate rapid shipment availability

The LCR Series

Miniature Screw Driven Designs with Maximum Versatility

- Miniature footprint 30 x 40 mm cross-section
- Internal square rail or glider bearing design
- 100% duty cycle
- IP30 stainless steel strip seal
- Low noise 2 and 10 mm leadscrew
- Travel lengths to 1000 mm
- Attractive black anodize finish

Features

- Extruded aluminum body incorporates dovetail mounting, T-slots and belt return
- Toe clamp mounting for easy installation ٠
- Dowel pin holes in the LCR30 carriage for repeatable mounting ٠
- Multiple motor mount options accommodate NEMA 11,17 and 23 • steppers and NEMA 16 servo motors
- Flush-mounted NPN, PNP, N.O. or N.C. fully adjustable limit ٠ sensors maximize flexibility and minimize footprint impact
- Screw-driven version has an optional parallel motor mount for space constrained applications

LCR30
600
500
20

*Do not exceed allowable axial and moment loading.

For OEMs looking to automate light payloads, the new LCR (Light Capacity Rodless) linear positioner family provides the smallest form factor with unmatched, easy-touse flexibility.

With any "build-it-yourself" positioner, all the parts required to build a linear motion axis from scratch must be ordered, tracked, received, inventoried, assembled and tested. In contrast, the LCR Series is a completely pre-engineered, pre-tested, ready-to-use positioner solution,

which allows OEMs to significantly reduce their time to market with minimized design, procurement, manufacturing, assembly and qualification time or effort.

Based on the proven life science track record of Parker's MX80 and LP28 Series, the LCR was developed specifically to provide a high-quality, easy-to-use, offthe-shelf linear actuator.

LCR solutions are ideal for Maldi-plate and micro-titer tray automation. Rated for 100%

duty cycle, the LCR offers smooth, quiet motion ideal for keeping instrument noise to a minimum. With selectable travel lengths up to 1000 mm and payloads up to 100 N (25 lbs), the ability to automate laboratory instruments has never been easier.

Bottom Line Impact

The LCR's proven pre-engineered design will significantly reduce your instrument time to market and improve your ROI.

Tailored to Meet Every Requirement

The LCR is an easy-to-configure off-the-shelf solution with a virtually unlimited array of standard configurations available.

If your application demands a special design, Parker takes the next step and customizes the product to meet your required specification. Common modifications include:

- Clean room components
- Special tool plates
- Mounts for 3rd party motors
- Single or parallel acting electric grippers
- Maximum height or length modifications for space constraints
- And much more

Whether you need blue anodize or a design with a custom carriage for larger than standard payloads, or anything else, Parker excels at application solutions and will modify the LCR to fit your specific needs.

Please call us at 800-245-6903 to discuss your requirements.

Ideal for High-Volume, Light-Capacity, Electrically-Controlled Motion

Life science applications:

- Mass spectroscopy
- Course microscopy
- Analytical instruments
- Laboratory automation
- Micro titer automation
- MALDI plate automation
- Liquid handling
- Syringe pumps

General-purpose applications:

- Point-of-purchase kiosks
- Adjustable guide widths for conveyor lines
- Storage and retrieval
- Part shuttling
- Light payload automation conversion from rodless pneumatics to electric
- General automation for any ≤25 lb payload with basic repeatability requirements

All LCR series actuators are compliant to RoHS and CE directives.

FEATURES

- Motor mounting options The most motor mounting options standard with more options easily available
- (2) **Encoder options** for position verification and position maintenance
- (3) Carriage mounting surface Machined aluminum carriage mounting surface with locating holes
- (4) Stainless steel sealing strip Best in class bearing and drive train protection
- (5) Minimal instrument/machine size including flush mount limit sensors
- (6) **Profile size** provides high rigidity for minimal deflection along with "T" and dovetail slots
 - Flexible drive train options with multiple screw leads for high thrust or reinforced belt drive for highest speeds

Parallel motor mounts

Stepper drive

Rugged internal square rail - Recirculating bearing or quiet glider bearing for lighter payload needs

Quick and easy mounting options with toe clamps or standard multi-axis connection kits

Metric and Imperial graduated scales integral to the LCR body frame are among the many custom modifications available.

The P2™ Drive

An OEM-Friendly Design... The P2 Completes the LCR as an Easy-to-Use Motion Solution

Pairing the LCR with the P2[™] drive, instrument builders eliminate another costly design component and complete their motion package with a single-vendor, easy-to-use solution.

The P2 drive is only 1" x 1" x 3" in size, but packs 2 A of current at 24 VDC to provide superior power density for simple step and direction motion.

The Parker P2 Stepper Drive is a complete step and direction indexer for hybrid step motors. The P2 drive operates stepper motors in full, half, quarter, and sixteenth step modes with an output drive capacity up to 24 VDC and 2.0 amps.

- On board eyelets allow OEMs to measure output current and to set all drives equally
- Two potentiometers allow for easy adjustment of standby and run current
- No programming
- No code to learn
- Robust, high quality product with 100% pre-ship testing

P2 saves a lot more than space...

The P2 Series offers added value to customers who traditionally specify board level drives or design their own drives in house.

(1) Free-up engineering, procurement, quality, and assembly resources in house. The P2 Series reduces the instrument/ machine design time by utilizing an off-the-shelf solution.

The result: faster time to market for new products, allowing customers to focus on core competency. (2) The P2 also reduces procurement complexity by reducing the need to chase multiple vendors versus a do-it-yourself drive design.

The result: better return on investment.

③ The P2 Series provides the customer added flexibility to mount the enclosed, protected drive directly onto a motion axis such as the Parker LCR Series, or DIN rail mount in a convenient location.

The result: a well protected, robust drive with quick and easy installation for an easy out-of-box user experience. **Key Design Features**

- Supply voltage 12 to 24 VDC
- 2.0 amps max motor output current
- Adjustable run current and standby current
- Single or differential ended inputs
- Enable, step and direction inputs voltages up to ±14 VDC (low/high input): <0.8 V Low, >2 V High
- 1.0 µs minimum step pulse width
- 1.0 µs minimum step pulse low time
- 0 to 40°C operating temperature with natural convection
- 5 to 95% relative humidity, non-condensing
- Optional DIN rail mount
- Resolutions of 200, 400, 800 and 3200 steps/rev (with 1.8° step motor)
- Small package (80 mm x 25 mm x 25 mm)
- RoHS compliant

SPECIFICATIONS

Addressing applications which involve positioning of smaller payloads within a very small space envelope, the LCR30 is the ideal solution for OEM instrument manufacturers. The LCR30 offers a reduced overall cost of ownership and a complete solution including amplifier/drive, motor, actuator, bearings, seals, and limit sensors.

LCR Screw-Driven Performance by Profile Size

elope, the LCR30 is the ideal solution for OEM rument manufacturers. The LCR30 offers a uced overall cost of ownership and a complete ition including amplifier/drive, motor, actuator, rings, seals, and limit sensors.					
Specification	Units	LC	R30		
Grade		S (Square Rail)	B (Bushing)		
Bidirectional Repeatability	mm	± 0.1	± 0.2		
Duty Cycle	%	100	100		
Max. Acceleration*	m/s²	20	20		
Normal Load	Ν	90	45		
Moment Load Roll Yaw Pitch	Nm	2.6 6.5 8.2	0.3 0.8 1.5		
Max. Axial Load	Ν	70	70		
Screw Efficiency 2.0 mm Lead 10.0 mm Lead	%	50 70	50 70		
Breakaway Torque	mNm	30 (2 mm lead) 45 (10 mm lead)	40 (2 mm lead) 90 (10 mm lead)		
Screw Diameter	mm	6.4	6.4		
Coefficient of Friction		0.02	0.10		
Carriage Weight	Ν	0.5	0.5		
Base Moment of Inertia Ixx Iyy	mm⁴	39,778 46,273	36,162 42,066		

*Do not exceed allowable axial and moment loading.

Model	LCR30
Width x Height (mm)	30 x 40
Repeatability (±mm)	0.1
Max. Speed ² (mm/s)	150
Max. Travel Length (mm)	600
Screw Lead Options (mm/rev)	2, 10

¹ Specifications for square rail design, bushing version reduces normal load to 50% value.

² Specifications for fast screw lead, the fine screw lead will reduce maximum speed.

Performance by Travel Length

LCR30 Screw-Driven Performance by Travel Length

		Max. Screw	Max. Linear	Speed (mm/s)	Table V	Neight **	Input Inertia	10 ⁻⁷ kg-m ² ***
		Speed*			M11	M17		
٦	Travel	(RPS)	2.0 mm	10.0 mm	(kg)	(kg)	2.0 mm	10.0 mm
	25	15	30	150	0.70	0.80	4.11	5.26
	50	15	30	150	0.74	0.84	4.42	5.57
	75	15	30	150	0.78	0.88	4.8	5.88
	100	15	30	150	0.83	0.93	5.1	6.19
	125	15	30	150	0.87	0.97	5.36	6.50
	150	15	30	150	0.91	1.01	5.67	6.82
	175	15	30	150	0.95	1.05	5.99	7.13
	200	15	30	150	0.99	1.09	6.3	7.44
	225	15	30	150	1.03	1.13	6.61	7.75
	250	15	30	150	1.07	1.17	6.92	8.06
	275	15	30	150	1.12	1.21	7.23	8.37
	300	15	30	150	1.16	1.26	7.54	8.68
	325	15	30	150	1.20	1.30	7.85	8.99
	350	15	30	150	1.24	1.34	8.16	9.31
	375	14	28	140	1.28	1.38	8.47	9.62
	400	12	24	120	1.32	1.42	8.79	9.93
	425	11	22	110	1.36	1.46	9.11	10.24
	450	10	20	100	1.40	1.50	9.41	10.56
	475	9	18	90	1.45	1.54	9.72	10.86
	500	9	18	90	1.49	1.59	10.03	11.17
	525	8	16	80	1.53	1.63	10.33	11.49
	550	7	14	70	1.57	1.67	10.65	11.80
	575	7	14	70	1.61	1.71	10.97	12.11
	600	6	12	60	1.65	1.75	11.28	12.42

* Maximum Screw Speed of 15 rps is based upon stepper motor resonance zones, for higher speeds please consult product maintenance manual.
** For parallel motor configurations: table weight increases by 0.081 kg for NEMA 11, 0.101 kg for NEMA 17, 0.090 kg for SM 16.
*** Input inertia increases by 2.05 10⁻⁷ kg-m² with parallel motor mounts.

LCR30 Linear Speed-Force Performance

DIMENSIONS

LCR Series Leadscrew-Driven

Motor Option	Encoder Option	М	L	Description
N11	E0	30.6	0	NEMA 11 Motor Mount
M11	E0	30.6	62.5	NEMA 11 Stepper Motor
M11	E2	30.6	62.5	NEMA 11 Stepper Motor with Encoder
N17	E0	31.2	0	NEMA 17 Motor Mount
M17	EO	31.2	51.0	NEMA 17 Stepper Motor
M17	E2	31.2	51.0	NEMA 17 Stepper Motor with Encoder

Idler Unit - Square Rail Models only

Parallel Motor Mounts

Tight on machine space?

Select a parallel motor mount to shorten the overall length of the LCR 30 per a given stroke. In using this motor mount option the motor is positioned along side the positioner in location's A, B, or C as denoted below.

LCR30 with NEMA 11 Motor

N11 Option: Mount only M11 Option: Mounted NEMA 11 stepper

Free sizing and selection support from Virtual Engineer at virtualengineer.com

LCR30 with NEMA 17 Motor

N17 Option: Mount only

M17 Option: Mounted NEMA 17 stepper

LCR30 with SM16 Motor

N16 Option: Mount only M16 Option: Mounted SM16 servo motor

OPTIONS & ACCESSORIES

X-Y and X-Z Brackets

X-Y Bracket for LCR30 Screw-Driven Units #002-3272-01

(includes four toe clamps with fasteners)

X-Y Bracket for LCR30 Belt-Driven Units #002-3274-01

(includes two toe clamps with fasteners)

Dimensions – mm

X-Z Bracket for LCR30 (All Units) #002-3273-01

(includes four toe clamps with fasteners)

Toe Clamps

Toe clamp kits include socket head fasteners to mount clamp.

Part Number	Quantity
002-3233-01	1
002-3233-04	4
002-3233-100	100

Encoder

Wiring Connection

Wire

White

Green

Yellow

Brown

Blue

Red

Pink

Gray

Pin

1

2

3

4

5

6

7

8

When using stepper motors, positional feedback is readily available with the optional rotary encoder. The robust magnetic encoder withstands vibration and provides easy in-position confirmation.

Function

Ground

A+

A–

+5 VDC

B+

B–

Not used

Not used

Encoder

Part Number Counts/rev Bore 003-4590-01 400 4 mm 003-4590-02 400 5 mm 003-4590-03 500 4 mm 003-4590-04 500 5 mm 003-4590-05 400 6.35 mm 003-4590-06 500 6.35 mm

Encoder Cable (6-pin differential)

006-2398-1.0	1m high flex with flying leads
006-2398-3.0	3m high flex with flying leads

End-of-Travel Limit Sensors

Limit sensors offer home and end of travel protection in a flush mount design that minimizes the overall width of the LCR series. The limit sensors are available standard as NPN or PNP with normally open or normally closed designs.

Specifications

Operating Voltage: 10-30 VDC Repeatability: $\leq \pm 0.1$ mm EMC: EN 60 947-5-2 Short circuit protections: Yes Reverse Polarity Protection: Yes Enclosure Rating: IP 67 Operating Temperature Range: -25° to 75° C (-13° to 167° F)

Wiring Connection

Pin	Wire	Function
1	Brown	+ VDC
4	Black	NO
3	Blue	– VDC

Part Number	Logic	Cabling
P8S-P8SAMQFAZ	PNP N.C.	3 meter flying leads
P8S-P8SAMQCHZ	PNP N.C.	0.3 meter with M8
P8S-P8SAMMFAZ	NPN N.C.	3 meter flying leads
P8S-P8SAMMCHZ	NPN N.C.	0.3 meter with M8
P8S-P8SAMPFAZ	PNP N.O.	3 meter flying leads
P8S-P8SAMPCHZ	PNP N.O.	0.3 meter with M8
P8S-P8SAMNFAZ	NPN N.O.	3 meter flying leads
P8S-P8SAMNCHZ	NPN N.O.	0.3 meter with M8
003-2918-01	All cabling	5 meter extension cable for M8 connections

Screw Driven Tables

ORDERING INFORMATION LCR Series

Fill in an order code from each of the numbered fields to create a complete part number.

(8)

	1	2	3	4	5	6	7	8	9	10	1
Order Example:	LCR	22	LN10	0075	S	S	Α	N08	E0	L1	A1

1	Series	
	LCR	Series

2 Size (width in mm) 30

30 mm wide profile

Drive Train (3)

Idler unit; no drive
mechanism
2 mm leadscrew with in-
line motor mount
10 mm leadscrew with in-
line motor mount (available
with LCR30 size only)
Single axis belt drive
0

Travel Length (mm) **(4**)

25 mm increments of travel xxxx LCR30 Screw-Driven: 25 to 600 mm LCR30 Belt-Driven: 25 to 1000 mm

Bearing Type (5)

- S Square rail bearing
- в Glider bushing bearing

Environmental Protection (6)

S Strip seal protection (standard)

(7)

Motor	Mount Position
I	Inline
Α	Parallel mount, Position "A"
В	Parallel mount, Position "B"
С	Parallel mount, Position "C"
R	Belt drive, motor right
L	Belt drive, motor left
_	No motor
options.	ailable with size BLIU drive train
Motor	
N00	No motor
N11	NEMA 11 motor mount ²⁾
N16	SM16 motor mount ³⁾
N17	NEMA 17 motor mount ³⁾
N23	NEMA 23 motor mount ³⁾
M11	NEMA 11 stepper motor ²
M16	SM162AE-N10N servo motor
M17	NEMA 17 stepper motor ³
M23	NEMA 23 stepper motor ⁴
²⁾ Not av ⁴⁾ Only av	ailable on BLT0 belt drive versio vailable on BLT0 belt drive versio

Motor Encoder Option (9)

E0 No encoder E2 500 line encoder*

*Only available with M11, M17, and M23 motor options

(10) Home & End-of-Travel

\sim		
	L0	No home or limit sensors
	L1	3 NPN sensors
		(1 N.O.; 2 N.C.)
	L2	1 NPN sensor (N.O.)
	L3	3 PNP sensors
		(1 N.O.; 2 N.C.)
	L4	1 PNP sensor (N.O.)
	L5	3 NPN sensors
		(2 N.O.; 1 N.C.)
	L6	1 NPN sensor (N.C.)
	L7	3 PNP sensors
		(2 N.O.; 1 N.C.)
	L8	1 PNP sensor (N.C.)
(11)	Steppe	er Drive/Amplifier
-	A0	No P2 Drive
	A1	P2 Stepper Drive/Amplifier
	A2	P2 Stepper Drive/Amplifier with 1 meter cable set*
		(inying iouus)

- A3 P2 Stepper Drive/Amplifier with 1 meter cable set* to ACR
- A4 P2 Stepper Drive/Amplifier with 1 meter cable set* to 6K

*For longer cable needs please order the A1 option and order cables separately

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

Free sizing and selection support

from Virtual Engineer at virtualengineer.com

P2[™] Ordering Information

Ordering Information

Or (1	rde D	r Ex 2	ampl 3	e: ④	5	6	7				
Ρ	2	D	2	SD	E 0	FL ⁺	K0)				
1	Se P:	eries 2	Serie	es							
2	ln D	tellig	jence Step	per dr	ive						
3	Р 2	ower	Level 2 an	nps ma	ax						
4	C SI	Communication SD Step and direction input									
5	Fe E(eedb 0	ack No €	encode	er						
6	C FI FI A 6 6	able L0 L1 C1 C3 K1 K3	Set No c See	chart a	et at left						
7	M K K	lount 0 1	ing Ki Star mou DIN	t Idard p Inting k Rail M	olate kit inclu ountin	uded g					

P2 Options and Accessories

Part Number	Order Code	Description
006-2342-1.0	—	Power Cable – 1 m , High Flex
006-2342-3.0	—	Power Cable – 3 m , High Flex
006-2343-1.0	—	6K Control Cable – 1 m, High Flex
006-2343-3.0	-	6K Control Cable – 3 m, High Flex
006-2344-1.0	—	ACR Control Cable – 1 m, High Flex
006-2344-3.0	—	ACR Control Cable – 3 m, High Flex
006-2345-1.0	-	Control Cable – Flying Leads – 1 m, High Flex
006-2345-3.0	-	Control Cable – Flying Leads – 3 m, High Flex
006-2357-1.0	—	Motor Power Extension – 1 m
006-2357-3.0	-	Motor Power Extension – 3 m
002-3296-1.0	FL1	1 m Flying Lead Cable Set (contains power and communications cable from above list)
002-3296-3.0	FL3	3 m Flying Lead Cable Set (power and communications cable from above list)
002-3297-1.0	AC1	1 m Cable Set to ACR (power and communications cable from above list)
002-3297-3.0	AC3	3 m Cable Set to ACR (power and communications cable from above list)
002-3298-1.0	6K1	1 m Cable Set to 6K (power and communications cable from above list)
002-3298-3.0	6K3	3 m Cable Set to 6K (power and communications cable from above list)
002-3294-01	К0	DIN Rail Mounting Kit (DIN clip and screw)
002-3295-01	K1	Mounting kit to attach P2 [™] to LCR

Belt Driven Positioners

Belt-driven actuators are ideal for high speed, industrial automation applications. These positioners are used in either single or multi-axis configurations such as gantry robots, and are ideal for applications such as palletizing, storage and retrieval, machine loading, parts handling, material handling and automated assembly. Parker offers a wide array of belt driven positioners with thousands of configurable options that are able to scale to solve virtually any automation application. Parker can construct these positioners into complete motion systems, integrating motors, drives, controls, HMI, cable management, machine frames and guarding. Contact your Parker application engineering expert to help construct a complete system to fit your needs.

Parker Belt Driven Industrial Systems

Product Comparisons: Parker high-speed belt driven actuators are segmented into specific series that are distinguished by guidance technology as well as frame size and corresponding loading properties. All products are able to be pre-configured with Parker motor and gearheads or common industry mounting options.

HMR High Moment Rodless Series Industrial Belt Driven Positioners

The user-friendly and versatile HMR has enormous moment and payload capacity bundled in a low-profile, yet sleek package. The HMRB is ideal for long travel lengths and high speed dynamic positioning. **Page 159.**

OSPE..B Series Belt-Driven Positioners

Ideal for precise point-topoint applications, the OSPE..B offers high-speed operation, easy installation, and low maintenance. **Page 207.**

OSPE..BHD Series Belt-Driven Positioners

The OSPE..BHD offers a compact design ideal for high-speed, long travel, heavy duty applications requiring robustness, dynamic precision, and extraordinary performance. **Page 190.**

OSPE..BV Series Belt-Driven Positioners

Robust and compact, the OSPE..BV is a vertical fixed belt-driven actuator with integrated ball bearing guide designed to lift loads in a vertical orientation. Page 229.

Continued next page...

Belt Driven Positioners

Continued from previous page...

LCR Series Light-Capacity Belt-Driven Positioners

The LCR Series is a completely pre-engineered, pre-tested, ready-to-use positioner solution for unmatched, easy-to- use flexibility. **Page 235.**

HLE-RB Belt-Driven Linear Modules

The HLE line is a proven performer offering long life and trouble-free operation, ideal as single axis products or as components for high speed multi-axis gantries. Roller Bearing system. Page 261.

HZR Vertical-Axis Belt Driven Positioners

The HZR is a rugged vertical axis unit unique to the high speed automation industry designed for mechanical demands placed on the vertical axis of a multi-axis gantry robot. **Page 287.**

Additional Capabilities: Gantry Systems Page 293.

Parker's gantry systems provide cost-effective, easy to integrate solutions that satisfy the vast majority of automation requirements. In addition to these standard gantry systems, Parker offers products with additional capabilities to fulfill the needs of special applications. Our engineering skill and manufacturing expertise have integrated these products into custom-tailored gantry solutions which have successfully addressed the most unique and exacting requirements of machine builders and integrators around the world.

HPLA Belt-Driven Linear Modules

Strong and rugged, the HPLA is a "next generation" linear module. The series offers high speed, high acceleration, and long travel, combined with stiff, rigid construction characteristics. **Page 247.**

HLE-SR Belt-Driven Linear Modules

The HLE line is a proven performer offering long life and trouble-free operation, ideal as single axis products or as components for high speed multi-axis gantries. Square Rail bearing system. **Page 276.**

HPLA/HLE/HZR Options & Accessories

Page 303.

The HMRB Series

HMRB Belt-Driven Actuators for High Speed, High Payload Positioning Applications

	HMRB08	HMRB11	HMRB15	HMRB18	HMRB24
Maximum Travel (mm)	3000	4000	5800	5800	5800
Maximum Payload (N)	1800	4450	8800	16200	26600
Maximum Acceleration (m/sec ²)	10	10	10	10	10

The HMRB is the belt driven version in the HMR family. The steel reinforced timing belt used on this positioner features a round tooth profile for greater energy

efficiency and smoother overall motion, as compared to traditional belt profiles. The HMRB is ideal for long travel lengths and high speed dynamic positioning. The compact design allows integration of the HMRB in any machine layout, providing superior dynamic performance with minimal space utilization.

FEATURES

(1)**Drive shaft**

Designed to pair with a large assortment of motor and gearhead options

Steel reinforced timing belt (2) High thrust force transmission and long life

Carriage assembly (3)

Low profile, high strength aluminum construction with threaded and pinning mounting options

Lubrication ports (4)

Easy access maintenance (1x per side) allows for single point lubrication for all bearing trucks and the ball nut at any location along travel

Corrosion resistant steel sealing band (5) Magnetically fastened to the actuator body and provides IP54 sealing

Slotted profile (6)

$(\mathbf{7})$ Recirculating profile rail bearing Two rails and four bearing trucks total for maximized payload capacity

Profile Options

Basic profile - for applications where actuator is fully supported, this option provides a lower profile option.

Reinforced profile - for long unsupported spans (i.e. gantry style applications).

Carriage Options

Standard carriage or tandem carriage for higher load capabilities

Cover Options

IP20 rated without protective cover, or IP54 rated protective cover with seal strip cover assembliesideal for harsh environments

Motor Mounting Options

The HMRB belt driven positioner is designed to optimize flexibility in machine design. As such the drive and motor mounting can be positioned at any one of four different positions around the axis of motion. This option is configurable through the part number.

Multi-axis Systems

Dovetail grooves for actuator & sensor mounting A wide range of adapter plates and intermediate drive shafts simplifies engineering and installation.

> *Please consult factory for your individual system design.

Other Options & Accessories

HMRB actuators can be outfitted with a variety of different options.

In addition to the standard configurable options highlighted in Options & Accessories, a list of commonly used non-standard options are highlighted below. Please contact us for assistance in choosing any of these or any other unique configurations.

- Dual axis with link shaft
- **Purge ports**
- Parallel motor mount
- Longer than cataloged stroke
- ...and many more

SPECIFICATIONS

Parker Hannifin's High Moment Rodless (HMR) Series electric linear actuator is one of the most user friendly and versatile actuator lines on the market today. Guided by two square rail bearings, the HMR has enormous moment and payload capacity bundled in a low-profile, yet sleek package. With five different frame sizes, two different drive train options, multiple mounting, carriage and sensor options, and an IP54 protective cover option—along with a multitude of other customizable features—the HMR was truly designed with flexibility in mind.

Common Specifications

Actuator Size				HMF	B08			HMF	RB11		
Belt drive orientation			090°,	/270°	000°/	/180°	090°,	/270°	000°/	180°	
Travel Distance per Revolution	s _{lin}	mm		6	6		90				
Pulley Diameter		mm		21.	01			28.	.65		
Linear Speed (Max)	v _{max}	m/s	2								
Acceleration (Max)	a _{max}	m/s²	30								
Repeatability (unidirectional)		μm				±	50				
Order Stroke (Max) ⁽¹⁾		mm		30	00			40	00		
Thrust Force (Max)	F _{Amax}	N Ibs		295 66					30 12		
	F _{A (v}	<1 m/s) N		29	95			63	30		
	F _{A (v}	<2 m/s) N		29	95			55	50		
Infust force (\vdash_A) -	F _{A (v}	<3 m/s) N		-				-	-		
	F _{A (v}	<4 m/s) N		-				-	-		
	F _{A (v}	<5 m/s) N		-							
	F _{A (O})S<1 m) N		25	50			63	30		
	F _{A (C})S<2 m) N		14	10			55	50		
Thrust force (F _A)-	F _{A (C}) S<3 m) N		10	00			38	35		
corresponding to order	F _{A (C}	S<4 m) N		-				29	95		
Sticke (03)	F _{A (C}	S<5m) N		-				-	-		
	F _{A (C}	S<6 m) N		-				-	-		
Torque on Drive Shaft (Max)	M _{Amax}	Nm		3.	1			9.	.0		
		III-ID Nue		- 21	.4			1	0		
Torque ⁽²⁾ – No Load	M ₀	in-lb		8.	9			10	.2).6		
Inertia											
@ Zero Stroke	J ₀	kgmm ²		1-	4			5	2		
Per Meter of Stroke	J _{OS}	kgmm²/m		1	0			4	1		
Per 1 kg Moved Mass	J _m	kgmm²/kg	g 110 205								
Unit Weight (by Order Code Option)			в	с	R	S	в	С	R	S	
@ Zero Stroke	m ₀	kg	2.4	2.7	3.1	3.4	4.4	4.8	6.1	6.5	
Per Meter of Stroke	m _{OS}	kg/m	3.0	4.0	4.0	5.0	5.4	6.4	7.6	8.6	
Carriage (by Order Code Option) ⁽³⁾	m _C	kg	0) .9	1 0.	l .7	(1) .7	1 1.	3	
Ambient Temperature Range		°C				-20 te	o +80				
IP Bating ⁽⁴⁾						IP	54				

Note- For force and moment load specifications, see HMRB Loading Conditions

⁽¹⁾ Longer lengths available - please consult factory

⁽²⁾ For tandem and bi-parting options, double the listed values

⁽³⁾ For tandem and bi-parting carriage weight add mass from column '0' and '1'

 $^{\mbox{\tiny (4)}}$ For unit with protective covers - IP20 without covers

Common Specifications

Actuator Size				нм	RB15			нм	RB18			HMF	RB24	
Belt drive orientation			090°/	′270°	000°,	/180°	090°/	270°	000°/	′180°	090°/	270°	000°,	/180°
Travel Distance per Revolution	s _{lin} r	mm	10	00	1:	25	13	0	15	50	16	0	22	24
Pulley Diameter	r	mm	31.	.83	39	.79	41.	38	47.	74	50.	93	71	.30
Linear Speed (Max)	v _{max} r	m/s		5										
Acceleration (Max)	a _{max} n	n/s²		50										
Repeatability (unidirectional) ı	μm						=	± 50					
Order Stroke (Max) (1)	r	mm	5800											
Thrust Force (Max)	F	Ν	10	50	6	30	13	00	10	00	400	00	37	50
mirust Force (wax)	۲A _{max}	lbs	23	36	14	42	29	2	22	25	89	9	84	43
	F_A (v<1 m/s)	Ν	10	50	6	30	13	00	10	00	400	00	37	50
Thrust force (F.)-	F_A (v<2 m/s)	Ν	99	90	6	30	13	00	10	00	400	00	33	80
corresponding to velocity (v) F _A (v<3 m/s)	Ν	93	30	6	30	13	00	10	00	36	50	31	40
	΄ F_A (v<4 m/s)	Ν	89	90	6	30	13	00	10	00	337	70	29	50
	F_A (v<5 m/s)	Ν	84	10	6	30	13	00	10	00	320	00	28	00
	F_A (OS<1 m)	Ν	10	50	6	30	13	00	10	00	400	00	37	50
Thrust force (F _A)- corresponding to order	F _A (OS<2 m)	Ν	82	20	49	90	10	00	77	'5	400	00	33	60
	F _A (OS<3 m)	N	57	70	34	40	71	0	55	50	337	70	24	40
stroke (OS)	F _A (OS<4 m)	N	44	15	20	65	55	0	43	30	286	60	18	80
	F _A (OS<5 m)	Ν	36	65	2	15	45	0	35	50	23	50	15	40
	F _A (OS<6 m)	N	30)5	18	85	38	0	29	95	200	00	13	00
Torque on Drive Shaft (Max)	M _{Amax} .	Nm	17	'.0 	13	3.0	27	.0	24	.0	101	0.0	13	4.0
		n-ID	150	J.5 -	0	5.1	239	9.0	212	2.4	894	۰.U ج	۲ I I	36.0
Torque ⁽²⁾ – No Load	M _o ir	n-lb		י 1(.2 0.6			1	2.0 7.7			5 48	.5 3.7	
Inertia @ Zero Stroke Per Meter of Stroke	J ₀ kg J _{OS} kgn	gmm² nm²/m	10)2 7	14 79	45	29 13	97 84	39 22)4 22	117 68	78 9	27 90	758 00
Per 1 kg Moved Mass	J _m kgm	nm²/kg	ig 253 396 428 570 649						12	71				
Unit Weight (by Order Code Option)			в	с	R	S	в	С	R	S	В	с	R	S
@ Zero Stroke	m ₀	kg	6.7	7.5	9.4	10.3	11.6	12.8	15.6	16.7	21.5	23.1	28.0	29.6
Per Meter of Stroke	m _{OS} k	g/m	8.2	9.9	11.5	13.3	12.8	15.1	16.5	18.7	21.6	24.4	26.7	29.5
Carriage (by Order Code Option) ⁽³⁾	m _C	kg	(2.) .7	1	1 .9	C 4.	6	1 3.	7	0 9.	0	7	1 .2
Ambient Temperature Range	e	°C						-20	to +80					
IP Rating ⁽⁴⁾								I	P 54					

Note- For force and moment load specifications, see HMRB Loading Conditions

⁽¹⁾ Longer lengths available - please consult factory

⁽²⁾ For tandem and bi-parting options, double the listed values

⁽³⁾ For tandem and bi-parting carriage weight add mass from column '0' and '1'

⁽⁴⁾ For unit with protective covers - IP20 without covers

Loading Specifications (Max) Life and loading characteristics shown for both belt and screw driven units.

Rated Life			HMR08	HMR11
2540 km	F _{Y /} F _Z	N (lb)	1,800 (405)	4,450 (1,001)
2540 km Tandem	F _{Y/} F _Z	N (lb)	2,700 (608)	6,675 (1,508)
8000 km	F _{Y/} F _Z	N (lb)	1,250 (281)	3,000 (675)
8000 km Tandem	\mathbf{F}_{Y} / \mathbf{F}_{Z}	N (lb)	1,875 (422)	4,500 (1,013)
	M _X	Nm (in-lb)	45 (398)	155 (1,372)
2540 km	M _Y	Nm (in-lb)	80 (708)	200 (1,770)
	MZ	Nm (in-lb)	80 (708)	200 (1,770)
	M _X	Nm (in-lb)	68 (602)	235 (2,080)
2540 km Tandem	M _Y	Nm (in-lb)	120 (1,062)	300 (2,655)
	MZ	Nm (in-lb)	120 (1,062)	300 (2,655)
	M _X	Nm (in-lb)	30 (266)	105 (929)
8000 km	M _Y	Nm (in-lb)	55 (487)	135 (1,195)
	MZ	Nm (in-lb)	55 (487)	135 (1,195)
	M _X	Nm (in-lb)	45 (398)	160 (1,416)
8000 km Tandem	M _Y	Nm (in-lb)	80 (708)	205 (1,814)
	M ₇	Nm (in-lb)	80 (708)	205 (1.814)

Rated Life			HMR15	HMR18	HMR24
2540 km	$\mathbf{F}_{Y/}\mathbf{F}_{Z}$	N (lb)	8,800 (1,980)	16,200 (3,645)	26,600 (5,985)
2540 km Tandem	$\mathbf{F}_{Y/}\mathbf{F}_{Z}$	N (lb)	13,200 (2,970)	24,300 (5,468)	39,900 (8,978)
8000 km	$\mathbf{F}_{Y/}\mathbf{F}_{Z}$	N (lb)	6,000 (1,350)	11,000 (2,475)	18,200 (4,095)
8000 km Tandem	$\mathbf{F}_{Y/}\mathbf{F}_{Z}$	N (lb)	9,000 (2,025)	16,500 (3,713)	27,300 (6,143)
	M _X	Nm (in-lb)	430 (3,806)	940 (8,320)	2,150 (19,029)
2540 km	M _Y	Nm (in-lb)	560 (4,956)	1,230 (10,886)	2,430 (21,507)
	MZ	Nm (in-lb)	560 (4,956)	1,230 (10,886)	2,430 (21,507)
	M _X	Nm (in-lb)	645 (5,708)	1,410 (12,480)	3,225 (28,544)
2540 km Tandem	M _Y	Nm (in-lb)	840 (7,435)	1,845 (16,330)	3,645 (32,261)
	MZ	Nm (in-lb)	840 (7,435)	1,845 (16,330)	3,645 (32,261)
	M _X	Nm (in-lb)	290 (2,567)	640 (5,664)	1,460 (12,922)
8000 km	M _Y	Nm (in-lb)	380 (3,363)	840 (7,435)	1,660 (14,692)
	M _Z	Nm (in-lb)	380 (3,363)	840 (7,434)	1,660 (14,692)
	M _X	Nm (in-lb)	435 (3,850)	960 (8,497)	2,190 (19,383)
8000 km Tandem	M _Y	Nm (in-lb)	570 (5,045)	1,260 (11,152)	2,490 (22,038)
	Mz	Nm (in-lb)	570 (5,045)	1,260 (11,152)	2,490 (22,038)

Weight, Mass, and Inertia

Weight and mass HMRB

Product size	HMRB08			HMRB11			HMRB15						
		Weight of actuator											
Version actuator (see order co	В	С	R	S	В	С	R	S	В	С	R	S	
Weight. 0 - order stroke	m _o [kg]	2.4	2.7	3.1	3.4	4.4	4.8	6.1	6.5	6.7	7.5	9.4	10.3
Weight per 1 m order stroke	m _{mt} [kg/m]	3.0	4.0	4.0	5.0	5.4	6.4	7.6	8.6	8.2	9.9	11.5	13.3
						Mov	ing ma	ass ca	arrier				
Version of carriage (see order code)			0		I	C)	-	1	()	1	1
Weight carriage*	m _c [kg]	0	.9	0.	7	1.	.7	1	.3	2	.7	1.	.9

Weight and mass HMRB

Product size		HMRB18					HMRB24				
			Weight of actuator								
Version actuator (see order cod	В	С	R	S	В	С	R	S			
Weight. 0 - order stroke	m _o	[kg]	11.6	12.8	15.6	16.7	21.5	23.1	28.0	29.6	
Weight per 1 m order stroke	m _{mt}	[kg/m]	12.8	15.1	16.5	18.7	21.6	24.4	26.7	29.5	
					Movi	ng ma	ss ca	rrier			
Version of carriage (see order c		0		1		0		1			
Weight carriage*	m _c	[kg]	4.	.6	3.	7	9.	0	7.	2	

*For tandem and bi-parting carriage weight add mass from column '0' and '1'

Total mass HMRB: $m_{tot} = m_0 + m_C + order stroke * m_{mt}$

Inertia HMRB

Product size	HMF	RB08	HMF	RB11	HMRB15			
Motor mounting position (see	090°/270°	000°/180°	090°/270°	000°/180°	090°/270°	000°/180°		
Inertia								
Inertia 0 - order stroke	J_0	[kgmm ²]	14	14	52	52	102	145
Inertia per 1 m order stroke	J_{mt}	[kgmm²/m]	10	10	41	41	79	79
Inertia per 1 kg moving mass	J_{kg}	[kgmm²/kg]	110	110	205	205	253	396

Inertia HMRB

Product size			HMR	HMF	HMRB24		
Motor mounting position (see o	rder c	ode)	090°/270°	000°/180°	090°/270°	000°/180°	
Inertia							
Inertia 0 - order stroke	J_0	[kgmm ²]	297	394	1,178	2,758	
Inertia per 1 m order stroke	J_{mt}	[kgmm ² /m]	134	222	689	900	
Inertia per 1 kg moving mass	J_{kg}	[kgmm²/kg]	428	570	649	1,271	

Inertia total HMRB: $J_{tot} = J_0$ + order stroke * J_{mt} + m_C * J_{kg} + m * J_{kg}

HMR Loading Conditions

Loading conditions, including external forces and moment loading, are application dependent. The center of gravity for the mass/payload attached to the carriage must be determined in order to properly size the ideal actuator for your application. Please note that when selecting the proper HMR actuator for your system the sum of all loading should not exceed "1" as per the formula below.

Loads, forces, and bending moments

Calculating Load Factors - Combined Normal and Moment Load

The sum of combined loads (static and dynamic) must not exceed "1" at any time as shown in the formula below:

Internal lever arm I,

Dimensions - Internal lever arm I_{zi}

Product size		l _{zi}
HMRx085	[mm]	33.0
HMRx110	[mm]	39.5
HMRx150	[mm]	50.0
HMRx180	[mm]	57.5
HMRx240	[mm]	68.0

Maximum Permissible Unsupported Length — Determining actuator mounting placement

HMR Series actuators need to be mounted onto a solid machine base or frame structure using appropriately positioned actuator mounts. This ensures that the actuator will not undergo excessive deflection based on the application's load and length requirements.

The greater the load and/or the longer the unsupported length between mounts, the more the actuator is susceptible to deflection.

Deflection is also dependent on the carriage orientation (F_Z for standard mounted actuator or F_Y for a side mounted actuator).

Example F_z HMR 11:

For a 3160 N load, the distance "d" between supporting elements is 700 mm. For mounting accessories see "Actuator Mounting" in Options & Accessories.

F

Maximum Permissible Unsupported Length – Determining actuator mounting placement

Use the appropriate deflection graph to ensure that the application load does not exceed the deflection curve. Supporting the actuator within the recommended maximum distance "k" will ensure that the installation will have a maximum deflection equal to 0.01% of distance "k."

To further reduce deflection, simply reduce the distance between actuator mounts as described in the examples below.

Example F_v HMR 11:

For a 3160 N load, the distance "d" between supporting elements is 900 mm. For mounting accessories see "Actuator Mounting" in Options & Accessories.

DIMENSIONS

Dimensions - (mm)

HMR actuators can be configured with either "Basic" or "Reinforced" profiles based on applications demands. Basic profiles are suitable for applications where the actuator is secured to a machine base and constantly supported. Reinforced profiles can be utilized in applications with unsupported spans. See Maximum Permissible Unsupported Length for mounting support instructions.

Dimensions carrier

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

Dimensions – (mm)

Dimension table - HMRB

Size		ØΑ	В	Ø D ^{H7}	Е	Ø F ^{н7}	G	GV	GH	HB	HR	HW	Κ	LB	LC
HMRB08	[mm]	42.0	M4	34.0	2.5	10.0	13.5	2.5	3.0	26.5	37.5	25.0	85.0	60.0	52.5
HMRB11	[mm]	51.0	M6	39.0	1.2	12.0	20.0	0.0	5.0	30.0	50.0	31.0	110.0	69.5	60.5
HMRB15	[mm]	72.0	M8	54.0	2.1	15.0	19.3	7.0	5.5	36.5	60.5	45.0	150.0	90.0	74.0
HMRB18	[mm]	80.0	M8	64.0	4.0	18.0	21.8	1.5	8.0	45.0	68.0	50.0	180.0	111.5	93.5
HMRB24	[mm]	95.0	M10	80.0	2.5	24.0	24.0	4.0	11.0	52.5	80.5	60.0	240.0	125.0	104.5

Dimension table - HMRB

Product size	LR	LS	М	MA	MB	MC	Ν	NA	NB	NC	Р	PS	PT	PU	Q
HMRB08 [mm]	71.0	63.5	50.0	5.2	4.5	1.5	4.5	3.4	3.0	2.5	23.8	12.0	9.0	12.0	16.0
HMRB11 [mm]	89.5	80.5	70.0	5.2	4.5	1.8	4.5	3.4	3.0	2.5	30.8	12.0	9.0	17.0	20.0
HMRB15 [mm]	114.0	98.0	96.0	6.2	6.8	3.0	6.5	5.2	4.6	3.5	48.0	12.0	9.0	21.0	20.0
HMRB18 [mm]	134.5	116.5	116.0	8.0	7.8	4.5	8.5	5.2	4.5	3.5	58.0	12.0	9.0	28.0	20.0
HMRB24 [mm]	153.0	132.5	161.0	10.0	10.2	5.3	8.5	5.2	4.5	3.5	78.0	12.0	9.0	28.6	20.0

Dimension table - carriage standard HMRB

Product size	e	JB	JD	CL	RS	Т	TAS	ta	TBS	tb	TCS	tc	TDS	td	TES
HMRB08	[mm]	33.5	30.0	195.0	128.0	74.0	97.0 M	4x12	70.0 I	M4x12	40.0	M4x12	-	-	-
HMRB11	[mm]	37.5	34.0	225.0	150.0	96.0	122.0 M	5x12	97.0 I	M5x12	65.0	M5x12	25.0	M5x12	-
HMRB15	[mm]	37.5	34.0	266.0	191.0	120.0	170.0 M	5x12	122.0 I	M5x12	110.0	M5x12	70.0	M5x12	-
HMRB18	[mm]	40.0	34.0	311.0	231.0	150.0	202.0 M	6x12	170.0 I	M5x10	122.0	M5x10	110.0	M5x12	90.0
HMRB24	[mm]	40.0	34.0	371.0	291.0	192.0	262.0 M	8x16	202.0	M6x12	170.0	M5x10	140.0	M8x16	122.0

Dimension table - carriage standard HMRB

Product siz	е	te	TFS	tf	tg	ØTKH7	TL	U	U1
HMRB08	[mm]	-	-	-	-	7.0	1.5	83.0	5.5
HMRB11	[mm]	-	-	-	-	7.0	1.5	105.0	7.0
HMRB15	[mm]	-	-	-	M5x12	7.0	1.5	135.0	15.0
HMRB18	[mm]	M6x12	-	-	M6x12	9.0	1.5	165.0	15.0
HMRB24	[mm]	M5x10	110.0	M5x12	M8x16	12.0	1.5	210.0	24.0

DIMENSIONS

Dimensions – mm

Stroke depending dimensions

- ES = Effective Stroke
- SS = Safety Stroke
- CD = Carriage distance
- CL = Carriage length Standard
- S = Stroke
- OS = Order Stroke
- OAL = Over All Length

Option Carrier Tandem

Option Carrier Standard

Order stroke OS = Effective stroke ES + 2 x Safety stroke SS Over all length OAL = Order stroke OS + Carrier length CL + 2 x End cap length X

Order stroke OS = Effective stroke ES + 2 x Safety stroke SS + Carrier distance CD (not shown) Over all length OAL = Order stroke OS + 2 x Carrier length CL + 2 x End cap length X

Option Carrier Bi-part for opposite movements

Order stroke $OS = 2 \times Stroke S = 2 \times Effective stroke ES + 4 \times Safety stroke SS + Carrier distance CD (not shown)$ $Over all length OAL = Order stroke OS + 2 \times Carrier length CL + 2 \times End cap length X$

Dimensions - Carriage and end cap HMRB

Product s	size	CL	Q	Х
HMRB08	[mm]	195.0	16.0	74.0
HMRB11	[mm]	225.0	20.0	85.0
HMRB15	[mm]	266.0	20.0	110.0
HMRB18	[mm]	311.0	20.0	120.0
HMRB24	[mm]	371.0	20.0	140.0

OPTIONS & ACCESSORIES

Gearhead Mounting Kit Options

Gearhead Mounting Kits include a coupling housing, coupling, and flange.

(see page 257 for LCH dimensions)

Actuator	0 Order				Dimen	isions			
Size	Code ¹	Α	В	С	D	Е	F	G	MF
HMRB08	C0	44	M4x0.7	60	35	6	12	25	20
	A7	70	M5x0.8	60	50	15	16	40	35
	C0	44	M4x0.7	60	35	6	12	25	20
	C1	62	M5x0.8	80	52	8	16	40	35
	BX	70	M5x0.8	60	50	10	16	25	20
	A7	70	M5x0.8	85	50	15	16	40	30
	A 8	100	M6x1	90	80	20	22	52	42
	C1	62	M5x0.8	84	52	12	16	36	30
HINDIS	C2	80	M6x1	92	68	5	22	46	36
	BX	70	M5x0.8	85	50	5	16	25	20
	BY	100	M6x1	92	80	15	20	40	30
	A 8	100	M6x1	100	80	30	22	52	40
	C2	80	M6x1	92	68	6	22	46	30
	BY	100	M6x1	92	80	15	20	40	30
	BZ	130	M8x1.25	115	110	25	24	50	40
	A9	130	M8x1.25	115	110	25	32	68	40
HMRB24	C3	108	M8x1.25	125	90	17	32	70	40
	BZ	130	M8x1.25	115	110	5	24	50	20

¹ When ordering with actuator, use order code (1) to specify appropriately sized gearhead mounting kit, and order code (3) to specify drive shaft orientation. See Ordering Information.

Mounted Gearhead with Motor Mounting Kit Options

Mounted Gearhead with Motor Mounting Kits include a coupling housing, coupling, flange, and gearhead with coupler and flange.

 $\begin{array}{l} \mathsf{A} = \mathsf{Bolt} \ \mathsf{circle} \ \mathsf{diameter} \\ \mathsf{B} = \mathsf{Screw} \ \mathsf{for} \ \mathsf{bolt} \ \mathsf{circle} \\ \mathsf{C} = \mathsf{Square} \ \mathsf{dimension} \\ \mathsf{D} = \mathsf{Pilot} \ \mathsf{diameter} \\ \mathsf{E} = \mathsf{Pilot} \ \mathsf{depth} \ \mathsf{of} \ \mathsf{the} \ \mathsf{flange} \\ \mathsf{F} = \mathsf{Input} \ \mathsf{drive} \ \mathsf{shaft} \ \mathsf{diameter} \\ \mathsf{G} = \mathsf{Input} \ \mathsf{drive} \ \mathsf{shaft} \ \mathsf{length} \\ \mathsf{LCH} = \mathsf{Length} \ \mathsf{coupling} \ \mathsf{housing} \\ \mathsf{LGH} = \mathsf{Length} \ \mathsf{gearhead} \\ \mathsf{MAK} = \mathsf{Motor} \ \mathsf{adapter} \\ \mathsf{MF} = \mathsf{Motor} \ \mathsf{flange} \end{array}$

(see page 257 for LCH dimensions)

Actuator	Order	Order	•		0	•	-	-	0			
Size	Code	Code ²	A	В	C	D	E	F	G	LGH	MAK	MF
	Jx	AB	66.68	M4x0.7	55	38.10	3.5	6.35	20.8	48.5	15.7	20
HMRB08	Jx	AC	66.68	M5x0.8	57	38.11	6	9.53	20.8	48.5	26	20
	Jx	AD	66.68	M5x0.8	57	38.11	6	9.53	31.8	48.5	26	20
	Jx	B6	63	M5x0.8	55	40.05	8	9	23	48.5	19	20
	Fx	A3	100	M6x1	82	80	5	14	30	59.8	18	35
	Fx	AB	66.68	M4x0.7	62	38.10	4	6.35	20.8	59.8	16.5	35
	Fx	AC	66.68	M5x0.8	62	38.15	4	9.53	20.8	59.8	16.5	35
	Fx	AD	66.68	M5x0.8	62	38.15	4	9.53	31.8	59.8	16.5	35
	Fx	AE	98.43	M5x0.8	86.8	73.03	7	12.70	37.1	59.8	22.5	35
	Fx	AF	98.43	M5x0.8	86.8	73.03	7	12.70	31.8	59.8	22.5	35
	Fx	AH	63	M5x0.8	62	40	4	9	23	59.8	16.5	35
	Fx	AN	70	M5x0.8	62	50	4	14	30	59.8	16.5	35
	Fx	B 6	63	M4x0.7	62	40	4	9	23	59.8	16.5	35
	Jx	AB	66.68	M4x0.7	55	38.10	3.5	6.35	20.8	48.5	15.7	20
HMRB11	Jx	AC	66.68	M5x0.8	57	38.11	6	9.53	20.8	48.5	26	20
	Jx	AD	66.68	M5x0.8	57	38.11	6	9.53	31.8	48.5	26	20
	Jx	B 6	63	M5x0.8	55	40	8	9	23	48.5	19	20
	Kx	AB	66.68	M4x0.7	62	38.10	4	6.35	20.8	67	16.5	35
	Кх	AC	66.68	M4x0.7	62	38.10	4	9.53	20.8	67	16.5	35
	Kx	AD	66.68	M5x0.8	62	38.10	8.5	9.53	31.8	67	22.5	35
	Кх	AE	98.43	M6x1	85	73.05	10	12.70	37.1	67	30	35
	Kx	AF	98.43	M5x0.8	80	73.05	10	12.70	31.8	67	22.5	35
	Кх	AH	63	M5x0.8	62	40	4	9	23	67	16.5	35
	Kx	AN	70	M5x0.8	62	50	11	14	30	67	22.5	35
	Кх	B 6	63	M4x0.7	62	40	4	9	23	67	16.5	35

¹ When ordering with actuator, use order code () (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: **F** = PS60 **G** = PS90 **H** = PS115 **J** = PV040TA **K** = PV60TA **L** = PV090TA **M** = PV115TA

Gearhead ratio and mounting orientation: (Replace "x" to specify)

1 = ratio 3:1 * **2** = ratio 5:1 **3** = ratio 10:1

 \bigcirc

ົ

* 3:1 ratio not available on "J" PV040TA gearhead

² Use order code ()(see Ordering Information) to specify appropriately sized motor mounting kit.

(continued on next page)

Mounted Gearhead with Motor Mounting Kit Options

(continued from previous page)

Actuator	(9) Order	0 Order										
Size	Code ¹	Code ²	Α	В	С	D	Е	F	G	LGH	MAK	MF
	Fx	A3	100	M6x1	82	80	5	14	30	59.8	18	30
	Fx	AB	66.68	M4x0.7	62	38.10	4	6.35	20.8	59.8	16.5	30
	Fx	AC	66.68	M5x0.8	62	38.15	4	9.53	20.8	59.8	16.5	30
	Fx	AD	66.68	M5x0.8	62	38.15	4	9.53	31.8	59.8	16.5	30
	Fx	AE	98.43	M5x0.8	86.8	73.03	7	12.70	37.1	59.8	22.5	30
	Fx	AF	98.43	M5x0.8	86.8	73.03	7	12.70	31.8	59.8	22.5	30
	Fx	AH	63	M5x0.8	62	40	4	9	23	59.8	16.5	30
	Fx	AN	70	M5x0.8	62	50	4	14	30	59.8	16.5	30
	Fx	B 6	63	M4x0.7	62	40	4	9	23	59.8	16.5	30
	Gx	A2	63	M5x0.8	90	40	3	11	23	69.5	20	42
	Gx	A3	100	M6x1	90	80	10	14	30	69.5	20	42
	Gx	A4	115	M8x1.25	100	95	10	19	40	69.5	28.5	42
	Gx	AB	66.68	M5x0.8	90	38.15	3	6.35	20.8	69.5	20	42
	Gx	AC	66.68	M5x0.8	90	38.15	3	9.53	20.8	69.5	20	42
	Gx	AD	66.68	M5x0.8	90	38.15	3	9.53	31.8	69.5	20	42
	Gx	AE	98.43	M5x0.8	90	73.03	10	12.70	37.1	69.5	20	42
	Gx	AF	98.43	M5x0.8	90	73.07	10	12.70	31.8	69.5	20	42
	Gx	AH	63	M5x0.8	90	40	2.5	9	23	69.5	20	42
	Gx	AL	100	M6x1	90	80	10	16	40	69.5	20	42
	Gx	AN	70	M5x0.8	90	50	10	14	30	69.5	20	42
	Gx	AP	90	M6x1	90	70	10	19	40	69.5	20	42
HMRB15	Gx	B1	90	M5x0.8	90	60	10	11	23	69.5	20	42
	Gx	B3	95	M6x1	90	50	10	14	30	69.5	20	42
	Gx	B6	63	M4x0.7	90	40	3	9	23	69.5	20	42
	Kx	AB	66.68	M4x0.7	62	38.1	4	6.35	20.8	67	16.5	30
	Kx	AC	66.68	M4x0.7	62	38.1	4	9.53	20.8	67	16.5	30
	Kx	AD	66.68	M5x0.8	62	38.1	8.5	9.53	31.8	67	22.5	30
	Kx	AE	98.43	M6x1	85	73.05	10	12.70	37.1	67	30	30
	KX	AF	98.43	M5x0.8	80	73.05	1	12.70	31.8	67	22.5	30
	KX Ku		03		62	40	4	9	23	67	10.5	30
	KX Ky	AN	70		62	50	4	14	30	67	22.5	30
		D0	62		02	40	2	9	20	07	10.5	30
		A2	100	M6v1	90	40 80	10	1/	20	85 5	20	36
		A3	115	May1 25	100	05	10	14	40	85.5	20	36
		۸Ŧ	66 68	M/1×0 7	90 0	38 15	3	6 35	20.8	85.5	20.5	36
		AC	66 68	M5x0.8	90	52	10	9.53	20.8	85.5	20	36
			66 68	M5x0.8	an	52	10	9.53	31.8	85.5	20	36
		AF	98.43	M5x0.8	90	73.03	10	12 70	37.1	85.5	28.5	36
		AF	98 43	M5x0.8	90	73	10	12 70	31.8	85.5	20	36
	Lx	AH	63	M5x0.8	90	40	10	9	23	85.5	20	36
	Lx	AL	100	M6x1	90	80	10	16	40	85.5	28.5	36
	Lx	AN	70	M5x0.8	90	50	10	14	30	85.5	20	36
	Lx	AP	90	M6x1	90	70	10	19	40	85.5	28.5	36

(continued from previous page)

	9	0										
Actuator	Order	Order	٨	в	~	D	-	-	<u>^</u>			
Size	Code	Code -	A	B		D 10	E	F	G	LGH	MAK	
	GX	A2	100	MOvd	90	40	3	11	23	69.5	20	40
	GX	A3	100		90	80	10	14	30	69.5	20	40
	GX	A4	115	M5-0.0	100	95	10	19	40	69.5	28.5	40
	GX	AB	66.68	M5x0.8	90	38.15	3	6.35	20.8	69.5	20	40
	GX	AC	66.68	M5x0.8	90	38.15	3	9.53	20.8	69.5	20	40
	GX	AD	66.68	M5XU.8	90	38.15	3	9.53	31.8	69.5	20	40
	Gx	AE	98.43	M5x0.8	90	73	10	12.70	37.1	69.5	20	40
	Gx	AF	98.43	M5x0.8	90	73	10	12.70	31.8	69.5	20	40
	Gx	AH	63	M5x0.8	90	40	3	9	23	69.5	20	40
	Gx	AL	100	M6x1	90	80	10	16	40	69.5	20	40
	Gx	AN	70	M5x0.8	90	50	10	14	30	69.5	20	40
	Gx	AP	90	M6x1	90	70	10	19	40	69.5	20	40
	Gx	B1	90	M5x0.8	90	60.01	10	11	23	69.5	20	40
HMRB18	Gx	B3	95	M6x1	90	50	10	14	30	69.5	20	40
	Gx	B6	63	M4x0.7	90	40	3	9	23	69.5	20	40
	Lx	A2	63	M5x0.8	90	40	3	11	23	85.5	20	30
	Lx	A3	100	M6x1	90	80	10	14	30	85.5	20	30
	Lx	A4	115	M8x1.25	100	95	10	19	40	85.5	28.5	30
	Lx	AB	66.68	M4x0.7	90	38.15	3	6.35	20.8	85.5	20	30
	Lx	AC	66.68	M5x0.8	90	52	10	9.53	20	85.5	20	30
	Lx	AD	66.68	M5x0.8	90	52	10	9.53	31	85.5	20	30
	Lx	AE	98.43	M5x0.8	90	73.03	10	12.70	37.1	85.5	28.5	30
	Lx	AF	98.43	M5x0.8	90	73	10	12.70	31.8	85.5	20	30
	Lx	AH	63	M5x0.8	90	40	10	9	23	85.5		30
	Lx	AL	100	M6x1	90	80	10	16	40	85.5	28.5	30
	Lx	AN	70	M5x0.8	90	50	10	14	30	85.5	20	30
	Lx	AP	90	M6x1	90	70	10	19	40	85.5	28.5	30
	Hx	A 4	115	M8x1.25	115	95	10	19	50	90.2	24	40
	Hx	AF	98.4	M5x0.8	115	73.03	10	12.70	31.8	90.2	24	40
	Hx	AK	130	M8x1.25	115	110	10	24	40	90.2	24	40
	Hx	AL	100	M6x1	115	80	10	16	40	90.2	24	40
	Hx	AQ	165	M10x1.5	140	130	10	28	60	90.2	35	40
HMRB24	Hx	AP	90	M6x1	115	70	10	19	40	90.2	24	40
	Mx	A 4	115	M8x1.25	115	95.05	10	19	50	110	24	40
	Mx	AF	98.4	M5x0.8	115	73	10	12.70	31.8	110	24	40
	Mx	AK	130	M8x1.25	115	110	10	24	40	110	35	40
	Mx	AL	100	M6x1	115	80	10	16	40	110	24	40
	Mx	AP	90	M6x1	115	70	10	19	40	110	35	40

¹ When ordering with actuator, use order code ③ (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: F = PS60 G = PS90 H = PS115 J = PV040TA K = PV60TA L = PV090TA M = PV115TA Gearhead ratio and mounting orientation: (Replace "x" to specify) 1 = ratio 3:1 2 = ratio 5:1 3 = ratio 10:1 3:1 ratio not available on "J" PV040TA gearhead
² Use order code ④ (see Ordering Information) to specify appropriately sized motor mounting kit.

Motor Mounting Kit Options

Motor Mounting Kits include a coupling housing, coupling, and flange.

B7

B8

70

70

M5x0.8

M5x0.8

A = Bolt circle diameter

- B = Screw for bolt circle
- C = Square dimension
- D = Pilot diameter E = Pilot depth
- F = Input drive shaft diameter G = Input drive shaft length

LCH = Length coupling housing MF = Motor flange

Actuator	0 Ordor				Dimen	sions			
Size	Code ¹	Α	В	С	D	Е	F	G	MF
	A2	63	M5x0.8	60	40	10	11	23	20
	AB	66.68	M4x0.7	60	38.10	10	6.35	20.8	20
	AC	66.68	M5x0.8	60	38.10	10	9.53	20.8	20
	AD	66.68	M5x0.8	60	38.10	15	9.53	31.8	27
	AE	98.43	M6x1	85	73.03	15	12.70	37.1	33
	AF	98.43	M5x0.8	85	73.03	15	12.70	31.8	27
	AG	75	M5x0.8	70	60	10	11	23	20
	AH	63	M5x0.8	60	40	10	9	23	20
TININDUO	AN	70	M5x0.8	60	50	15	14	30	25
	B 0	75	M6x1	70	60	15	14	30	25
	B1	90	M5x0.8	75	60	10	11	23	20
	B2	90	M5x0.8	75	60	15	14	30	25
	B 3	95	M6x1	80	50	15	14	30	25
	B6	63	M4x0.7	60	40	10	9	23	20
	B7	70	M5x0.8	60	50	15	8	30	25
	B 8	70	M5x0.8	60	50	15	12	30	25
	A2	63	M5x0.8	60	40	5	11	23	15
	AB	66.68	M4x0.7	60	38.10	10	6.35	20.8	15
	AC	66.68	M5x0.8	60	38.10	10	9.53	20.8	15
	AD	66.68	M5x0.8	60	38.10	15	9.53	31.8	25
	AE	98.43	M6x1	85	73.03	20	12.70	37.1	33
	AF	98.43	M5x0.8	85	73.03	15	12.70	31.8	27
	AG	75	M5x0.8	70	60	10	11	23	20
IMRB11	AH	63	M5x0.8	60	40	5	9	23	15
	AL	100	M6x1	92	80	15	16	40	36
	AN	70	M5x0.8	60	50	15	14	30	25
	B0	75	M6x1	70	60	15	14	30	25
	B1	90	M5x0.8	80	60	10	11	23	20
	B2	90	M5x0.8	80	60	15	14	30	25
	B3	95	M6x1	80	50	15	14	30	25

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

50

50

15

15

8

12

30

30

25

25

60

60

	A2	63	M5x0.8	84	40	3	11	23	20
	A3	100	M6x1	92	80	5	14	30	20
	A4	115	M8x1.25	100	95	15	19	40	30
	AE	98.43	M6x1	85	73.03	15	12.70	37.1	25
	AF	98.43	M5x0.8	85	73.03	10	12.70	31.8	20
HMRD 15	AL	100	M6x1	92	80	15	16	40	30
	AN	70	M5x0.8	85	50	5	14	30	20
	AP	90	M6x1	84	70	15	19	40	30
	B 0	100	M6x1	85	60	5	14	30	20
	B2	90	M5x0.8	85	60	5	14	30	20
	A3	100	M6x1	92	80	5	14	30	20
	A 4	115	M8x1.25	100	95	15	19	40	30
	AF	98.43	M5x0.8	90	73.03	10	12.70	31.8	20
	AK	130	M8x1.25	115	110	25	24	50	40
	AL	100	M6x1	92	80	15	16	40	30
	AP	90	M6x1	90	70	15	19	40	30
	B 0	75	M6x1	90	60	10	14	30	20
	B2	90	M6x1	90	60	10	14	30	20
	A4	115	M8x1.25	110	95	5	19	40	20
	AK	130	M8x1.25	115	110	5	24	50	20

(continued from previous page)

¹ When ordering with actuator, use order code () to specify appropriately sized motor mounting kit. See Ordering Information.

Coupling Housing LCH Dimensions (For all Gearhead and Motor Mounting Options)

Actuator Size	Order Code	LCH (mm)	DD	BD	AP/AD	CP/CD
	BD, DD	13				
HMRBU8	AP, CP, AD, CD	28				
HMRB11	BD, DD	15				† —
	AP, CP, AD, CD	37				
HMRB15	BD, DD	30				
	AP, CP, AD, CD	54				
	BD, DD	42				
HIVIND 10	AP, CP, AD, CD	70				
HMRB24	BD, DD	60				
	AP, CP, AD, CD	85				

Driven

Mounted Gearhead and Motor Options

Mounted Gearhead and Motor options include a coupling housing, flange, gearhead with coupler, flange and motor

Actuator	9 Order	0 Order						
Size	Code ¹	Code ²	Mounted Motor	С	LGH	LM	MAK	MF
HMRB08	Jx	К0	BE233FJ-KPSN	60	48.5	143.2	26	20
	Jx	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	48.5	178	26	20
	Fx	К0	BE233FJ-KPSN	60	59.8	143.2	16.5	35
	Fx	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	59.8	178	16.5	35
	Fx	K2	BE344LJ-KPSN	60	59.8	188	22.5	35
	Fx	К3	BE344LJ-KPSB	60	59.8	231	22.5	35
	Fx	K 4	PM-FBL04AMK	60	59.8	108.2	16.5	35
	Fx	K5	PM-FBL04AMK2 (w/ Brake)	60	59.8	148.2	16.5	35
	Jx	К0	BE233FJ-KPSN	60	48.5	143.2	26	20
HMRB11	Jx	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	60	48.5	178	26	20
	Кх	К0	BE233FJ-KPSN	80	67	143.2	22.5	35
	Кх	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	80	67	178	22.5	35
	Kx	K2	BE344LJ-KPSN	80	67	188	22.5	35
	Kx	К3	BE344LJ-KPSB	80	67	231	22.5	35
	Kx	K4	PM-FBL04AMK	80	67	108.2	22.5	35
	Kx	K5	PM-FBL04AMK2 (w/ Brake)	80	67	148.2	22.5	35

¹ When ordering with actuator, use order code () (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: $\mathbf{F} = PS60$ $\mathbf{G} = PS90$ $\mathbf{H} = PS115$ $\mathbf{J} = PV040TA$ $\mathbf{K} = PV60TA$ $\mathbf{L} = PV090TA$ $\mathbf{M} = PV115TA$ Gearhead ratio and mounting orientation: (Replace "x" to specify)

1 = ratio 3:1 **2** = ratio 5:1 **3** = ratio 10:1

3:1 ratio not available on "J" PV040TA gearhead

² Use order code () (see Ordering Information) to specify appropriately sized motor mounting kit.

(continued next page)

/			•
100ntinuod	trom	nroviolie	nanal
ICONTINUED	IIOIII	DIEVIUUS	Dauer
1			

Actuator	9 Order	0 Order						
Size	Code ¹	Code ²	Mounted Motor	С	LGH	LM	MAK	MF
	Fx	K0	BE233FJ-KPSN	85	59.8	143.2	16.5	30
	Fx	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	85	59.8	178	16.5	30
	Fx	K2	BE344LJ-KPSN	85	59.8	188	22.5	30
	Fx	К3	BE344LJ-KPSB	85	59.8	231	22.5	30
	Fx	K4	PM-FBL04AMK	85	59.8	108.2	16.5	30
	Fx	K5	PM-FBL04AMK2 (w/ Brake)	85	59.8	148.2	16.5	30
	Gx	K2	BE344LJ-KPSN	90	69.5	188	20	42
	Gx	К3	BE344LJ-KPSB	90	69.5	231	20	42
	Gx	K6	PM-FCL10AMK	90	69.5	152.7	20	42
	Gx	K7	PM-FCL10AMK2 (w/ Brake)	90	69.5	193	20	42
	Gx	M0	MPP0923D1E-KPSN	90	69.5	178	20	42
	Gx	M1	MPP0923D1E-KPSB	90	69.5	212.5	20	42
	Gx	M2	MPP1003D1E-KPSN	90	69.5	174.5	28.5	42
HMRB15	Gx	M3	MPP1003D1E-KPSB	90	69.5	223	28.5	42
	Gx	M4	MPP1003R1E-KPSN	90	69.5	174.5	28.5	42
	Gx	M5	MPP1003R1E-KPSB	90	69.5	223	28.5	42
	Кх	K0	BE233FJ-KPSN	84	67	143.2	22.5	30
	Кх	K1	BE233FJ-KPSN with Brake (CM233FJ-115027)	84	67	178	22.5	30
	Кх	K2	BE344LJ-KPSN	84	67	188	22.5	30
	Кх	К3	BE344LJ-KPSB	84	67	231	22.5	30
	Кх	K 4	PM-FBL04AMK	84	67	108.2	22.5	30
	Кх	K5	PM-FBL04AMK2 (w/ Brake)	84	67	148.2	22.5	30
	Lx	K2	BE344LJ-KPSN	92	85.5	188	20	36
	Lx	K3	BE344LJ-KPSB	92	85.5	231	20	36
	Lx	K6	PM-FCL10AMK	92	85.5	152.7	28.5	36
	Lx	K7	PM-FCL10AMK2 (w/ Brake)	92	85.5	193	28.5	36
	Lx	M0	MPP0923D1E-KPSN	92	85.5	178	28.5	36
	Lx	M1	MPP0923D1E-KPSB	92	85.5	212.5	28.5	36
	Lx	M2	MPP1003D1E-KPSN	92	85.5	174.5	28.5	36
	Lx	M3	MPP1003D1E-KPSB	92	85.5	223	28.5	36
	Lx	M4	MPP1003R1E-KPSN	92	85.5	174.5	28.5	36
	Lx	M5	MPP1003R1E-KPSB	92	85.5	223	28.5	36

¹ When ordering with actuator, use order code O (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: $\mathbf{F} = PS60$ $\mathbf{G} = PS90$ $\mathbf{H} = PS115$ $\mathbf{J} = PV040TA$ $\mathbf{K} = PV60TA$ $\mathbf{L} = PV090TA$ $\mathbf{M} = PV115TA$ Gearhead ratio and mounting orientation: (Replace "x" to specify)

1 = ratio 3:1 * **2** = ratio 5:1 **3** = ratio 10:1

3:1 ratio not available on "J" PV040TA gearhead ² Use order code () (see Ordering Information) to specify appropriately sized motor mounting kit.

(continued next page)

Mounted Gearhead and Motor Options

 \bigcirc

(continued from previous page)

ງ

Actuator Size			Mounted Motor	c	IGH	ТМ	МЛК	ME
Size	Coue	KO		100	60.5	100	20	40
	Gx	K2		100	60.5	100	20	40
	Gx	KG		100	60.5	150.7	20	40
	GX	KO KZ		100	69.5	102.7	20	40
	GX	N/		100	69.5	193	20	40
	GX	IVIU		100	69.5	010.5	20	40
	GX	M1		100	69.5	212.5	20	40
	GX	M2		100	69.5	174.5	28.5	40
	GX	IVI 3		100	69.5	223	28.5	40
	GX	M4	MPP1003RTE-KPSN	100	69.5	174.5	28.5	40
HMRB18	GX	M5		100	69.5	223	28.5	40
	LX	K2	BE344LJ-KPSN	92	85.5	188	20	30
	Lx	K3	BE344LJ-KPSB	92	85.5	231	20	30
	LX	K6		92	85.5	152.7	28.5	30
	Lx	K/	PM-FCL10AMK2 (w/ Brake)	92	85.5	193	28.5	30
	Lx	MO	MPP0923D1E-KPSN	92	85.5	1/8	28.5	30
	Lx	M1	MPP0923D1E-KPSB	92	85.5	212.5	28.5	30
	Lx	M2	MPP1003D1E-KPSN	92	85.5	1/4.5	28.5	30
	Lx	M3	MPP1003D1E-KPSB	92	85.5	223	28.5	30
	Lx	M4	MPP1003R1E-KPSN	92	85.5	174.5	28.5	30
	Lx	M5	MPP1003R1E-KPSB	92	85.5	223	28.5	30
	Hx	M6	MPP1154B1E-KPSN	115	90.2	203.2	24	40
	Hx	M7	MPP1154B1E-KPSB	115	90.2	251.7	24	40
	Hx	M8	MPP1154P1E-KPSN	115	90.2	203.2	24	40
	Hx	M9	MPP1154P1E-KPSB	115	90.2	251.7	24	40
	Hx	MA	MPP1424C1E-KPSN	115	90.2	223.7	35	40
HMRB24	Hx	MB	MPP1424C1E-KPSB	115	90.2	275.3	35	40
	Hx	MC	MPP1424R1E-KPSN	115	90.2	223.7	35	40
	Hx	MD	MPP1424R1E-KPSB	115	90.2	275.3	35	40
	Mx	M6	MPP1154B1E-KPSN	125	110	203.2	35	40
	Mx	M7	MPP1154B1E-KPSB	125	110	251.7	35	40
	Mx	M8	MPP1154P1E-KPSN	125	110	203.2	35	40
	Mx	M9	MPP1154P1E-KPSB	125	110	251.7	35	40

¹ When ordering with actuator, use order code (9) (see Ordering Information) to specify mounted gearhead size, ratio and orientation: Gearhead size example: $\mathbf{F} = PS60$ $\mathbf{G} = PS90$ $\mathbf{H} = PS115$ $\mathbf{J} = PV040TA$ $\mathbf{K} = PV60TA$ $\mathbf{L} = PV090TA$ $\mathbf{M} = PV115TA$ Gearhead ratio and mounting orientation: (Replace "x" to specify) **1** = ratio 3:1 **2** = ratio 5:1 **3** = ratio 10:1 ³:1 ratio not available on "J" PV040TA gearhead ² Use order code **()** (see Ordering Information) to specify appropriately sized motor mounting kit.

Limit & Home Sensors

The HMR uses Parker's Global Sensor line, which can be mounted in the longitudinal t-slots running along the actuator body. These sensors mount flush to the extrusion body, minimizing the overall width of the actuator.

Parker's Global Sensors feature short circuit protection, power up pulse protection, and reverse polarity protection.

The sensor cable can be concealed under the yellow T-slot covers which are provided with each unit.

For internally configured sensors, the cables are routed internally and exit and the end cap of the unit through industrially hardened M8 connectors.

In the event internal sensors are configured, they cannot be re-positioned in the field. The pre-set location is configured in the part number model code. Please consult factory for further assistance.

Permanent magnets integrated into the carriage assembly actuate the sensors as the carriage traverses it linear travel.

All actuators pre-configured with a sensor pack, come preconfigured with a 5 meter extension cable, with flying leads.

Magnetic LED Cylinder Sensors

Model Number	Function	Logic	Cable
P8SAGPFAX		PNP	2
P8SAGNFAX	NO	NPN	3 m
P8SAGPCHX	N.O.	PNP	0.3 m cable with
P8SAGNCHX		NPN	M8 connector*
P8SAGQFAX		PNP	2 m
P8SAGMFAX	NC	NPN	5111
P8SAGQCHX	IN.U.	PNP	0.3 m cable with
P8SAGMCHX		NPN	M8 connector*

* 003-2918-01 is a 5 m extension cable to flying leads for these cables
Limit & Home Sensor Dimensions

P8S-... cable with flying leads

P8S-... cable with M8 rotable

Installation for Magnetic T-Slot Sensors

Protective Cover Options

Two Versions Available: Covers can be field retro-fitted if initially configured without covers.

Consult maintenance manual or factory support for assistance in specifying replacement covers and installation procedures.

Coupling Housing

Belt Driven Tables

Dimension table - Coupling housing long HMRS / HMRB [mm]

Product size	ØA	ØВ	Ø D _{m6}	Е	ØO	L	М	Ν	Order no.
HMRx08 ⁽¹⁾	42	4.5	34	2	30	28	49	37	56568FIL
HMRx11 ⁽¹⁾	51	6.6	39	1	35	37	60	42	56566FIL
HMRx15 ⁽¹⁾	72	9.0	54	2	50	54	84	58	50353FIL
HMRx18 ⁽¹⁾	80	9.0	64	2	60	70	90	68	50655FIL
HMRx24 ⁽¹⁾	95	11.0	80	2	77	85	107	85	56415FIL

⁽¹⁾Suitable for all types of HMRS

 $^{\mbox{\tiny (1)}}\mbox{Suitable for HMRB}$ with motor orientation 000° top

(HMRBxxxAP; HMRBxxxAD)

⁽¹⁾Suitable for HMRB with motor orientation 180° bottom and profile version Basic (HMRBxxBCP; HMRBxxBCD; HMRBxxCCP; HMRBxxCCD)

Product size	ØΑ	ØВ	Ø D _{m6}	Е	ØO	L	М	Ν	Order no.
HMRB08 ⁽¹⁾	42	4.5	34	2	30	13	49	37	56567FIL
HMRB08 ⁽²⁾	42	4.5	34	2	30	17	49	37	56569FIL
HMRB11 (1) (2)	51	6.6	39	1	35	15	60	42	56565FIL
HMRB15 ⁽¹⁾⁽²⁾	72	9.0	54	2	50	30	84	58	56412FIL
HMRB18 ⁽¹⁾⁽²⁾	80	9.0	64	2	60	42	90	68	56413FIL
HMRB24 (1) (2)	95	11.0	80	2	77	60	107	85	56414FIL

Dimension table - Coupling housing short HMRB [mm]

⁽¹⁾Suitable for HMRB with motor orientation 090° front and 270° rear (HMRBxxxBD; HMRBxxxDD)

⁽²⁾Suitable for HMRB with motor orientation 180° bottom re-inforced profile (HMRBxxRCP; HMRBxxRCD; HMRBxxSCP; HMRBxxSCD)

Coupling

Ball screw

Dimension table - motor coupling HMRS [mm]

Product size	F ₁	F_2	F	Κ	L	L ₁	L_2	ØO	Order no.
HMRS08	6	9	5 - 12	25	34	11	12	27.5	56562FIL
HMRS11	10	9	6 - 16	30	35	11	13	32.5	13210FIL
HMRS15	12	9	8 - 24	40	66	25	16	58.0	56400FIL
HMRS18	15	14	10 - 28	55	78	30	18	68.0	56402FIL
HMRS24	20	14	14 - 38	65	90	35	20	73.0	56510FIL

Belt

Dimension table - motor coupling HMRB [mm]

Product size	F ₁	F_2	F	Κ	L	L ₁	L_2	ØO	Order no.
HMRB08	10	9	5 - 12	25	34	11	12	27.5	56563FIL
HMRB11	12	9	6 - 16	30	35	11	13	32.5	56560FIL
HMRB15	15	10	8 - 24	40	66	25	16	58.0	16239FIL
HMRB18	18	14	10 - 28	55	78	30	18	68.0	56411FIL
HMRB24	24	15	14 - 38	65	90	35	20	73.0	16260FIL

Shock Absorbing Bumper

HMR actuators come factory installed with impact protection bumpers. These carriage mounted bumpers can compensate the energy released by unintentional impact and afford some protection against mechanical damage.

Two bumpers (four total) are fitted to each side of the carriage.

Shock absorbers for impact protection

Product size		HMRx08	HMRx11	HMRx15	HMRx18	HMRx24
Shock absorber		TA12-5	TA12-5	TA12-5	TA17-7	TA17-7
Energy absorption	[Nm/stroke]	3.0	3.0	3.0	8.5	8.5

Distance-force and energy-distance characteristic curve (dynamic) – frame sizes HMRx08, HMRx11, HMRx15

Travel [mm]

Dowel Sleeves

Dowel sleeves can be used to provide pinning functionality between the carriage mounting surface and the payload. These sleeves have a tightly toleranced outer diameter to accurately locate between the bore in the carriage and the end effector, but have a hollow center granting access to the threaded hole in the carriage underneath the pin bore. This means that these dowel pin bore can additionally function as a threaded connection to the carriage. See Dimensions for carriage mounting detail.

Part Number	Description	HMR Frame Size
56455FIL	7mm Dowel Sleeve- 4 Pack	HMRx08, HMRx11, HMRx15
56456FIL	7mm Dowel Sleeve- 10 Pack	HMRx08, HMRx11, HMRx15
56457FIL	9mm Dowel Sleeve- 4 Pack	HMRx18
56458FIL	9mm Dowel Sleeve- 10 Pack	HMRx18
56459FIL	12mm Dowel Sleeve- 4 Pack	HMR24

Actuator Mounting

Dimension table - Product width HMR [mm]

	Toe-clamp n	nounting (mm)	T-nut mounting (mm)
Product size	MP	КР	М
HMRx08	97	115	50
HMRx11	122	140	70
HMRx15	170	190	96
HMRx18	202	226	116
HMRx24	262	286	161

Holding force per mounting set [N]

		Toe-c	lamp		T-nut						
Product size	In longitudinal direction of the actuator*	Screw 2x	Tightening torque [Nm]	Max. load per screw	In longitudi- nal direction of the actu- ator*	Screw 1x	Tightening torque [Nm]	Max. load per screw			
HMRx08	800	M4	3	900	1,000	M5	6	1,200			
HMRx11	800	M4	3	900	1,000	M5	6	1,200			
HMRx15	1,820	M5	6	1,200	1,600	M6	10	1,700			
HMRx18	2,610	M6	10	1,700	2,700	M8	20	3,400			
HMRx24	2,610	M6	10	1,700	3,200	M10	40	5,500			

*A friction factor of 0.15 between profile and mounting surface was taken as a basis for the calculation of the forces that can be transmitted in longitudinal direction, Screw property class 8.8.

Actuator Mounting

z

Dimension table - T-nut mounting HMR [mm]

Product size	Α	В	С	ØD	М	Ν	Order no. *
HMRx08	8.0	4.0	11.5	M5	5.0	0.5	56351FIL
HMRx11	8.0	4.0	11.5	M5	5.0	0.5	56351FIL
HMRx15	10.5	6.4	22.5	M6	6.4	0.6	56352FIL
HMRx18	13.5	6.7	22.5	M8	8.5	1.0	56353FIL
HMRx24	16.5	8.9	28.5	M10	10.5	1.0	56354FIL

* Packing unit 10 pc

Dimension table - Toe-clamp mounting HMR [mm]

Product size	Е	F	G	н	К	L	ØR	ØS	т	U	Order no. *
HMRx08	18.0	40.0	7.5	20.0	15.0	9.0	0.0	4.5	0.0	2.8	56363FIL
HMRx11	18.0	40.0	7.5	20.0	15.0	9.0	0.0	4.5	0.0	2.8	56363FIL
HMRx15	25.0	60.0	10.0	30.0	20.0	10.0	10.0	5.5	4.0	3.9	56355FIL
HMRx18	28.0	80.0	12.0	40.0	23.0	12.0	11.0	6.6	4.7	5.9	56356FIL
HMRx24	28.0	80.0	12.0	40.0	23.0	12.0	11.0	6.6	4.7	5.9	56356FIL

* Packing unit 1 pair (2 toe-clamps) and associated hardware

ORDERING INFORMATION

PNP, 3 Wire, N.O., M8 Plug, 0.3 m Cable,

NPN, 3 Wire, N.O., M8 Plug, 0.3 m Cable,

External Mounting (P8S-GPCHX)

External Mounting (P8S-GNCHX)

*If internal switches are selected they cannot be manually re-

*P/N 003-2918-01, 5 M extension cable included

positioned in the field. **Indicates longer lead time option

С

Μ

Select an order code from each of the numbered fields to create a complete HMR belt-driven model order number. Include hyphens and non-selective characters as shown in example below.

					1	2	3	4		5	6	\bigcirc	8		۹	0
Or	der Nur	nber Example:	HMR	в	15	В	BD	0	-	1000	– A	В	1	0	0 F1	A7
~	-	0:									0			\		
IJ	Frame	Size (Profile Wid	tn)						\odot	Limit	Senso	or^ (tw	o sen	sors)		
	8	110								0			senso	or		
	11	1 IU mm								B		IP, 3 W	/ire, N	.C., Ir	nternal IN	lounting
	15	150 mm								L^^	INF	'N, 3 V	Vire, N	1.C., I	nternal I	viounting
	18	180 mm								D	PN Ex	IP, 3 W ternal I	/ire, N Mount	.C., N ting (F	/18 Plug, P8S-GQ	0.3 m C CHX)
	24	240 11111								N	NF	РN, З V	Vire, N	I.C., I	VI8 Plug	, 0.3 m (
2	Actuat	or Design (see Di	mensions	s for	further	[,] detai	I)			IN .	Ex	ternal l	Mount	ting (F	P8S-GM	CHX)
-	В	Basic Profile with No Outer Cover	h Ball Bea	aring	Guide,					*P/N 00 *If inte positio	03-2918- ernal sw oned in	01, 5 M r itches the fiel	extensi are se d.	on cab lected	le included I they ca	nnot be n
	С	Basic Profile with	h Ball Bea	aring	Guide,				8	Limit	/Home	Sens	or Po	sitior	זי	
	-	Reinforced Profil	le with Ba	ll Be	arina G	auide.			-	0	No	Home	e Sens	sor		
	R**	No Outer Cover			0	,				1	10	mm				
	S** Reinforced Profile with Ball Bearing Guide,									2	20	mm				
		IP54 WITH OUTER	Cover							3	30	mm				
3)	Motor	Mounting Positio	n and Dri	ive S	haft D	esign				4	40	mm				
-	(see Op	otions & Accessori	ies for fur	ther	detail)					5	50 60	mm				
	BD	90° Front with Double Plain Shaft								7	70	mm				
	DD	270° Back with	Double Pl	ain S	Shaft					8	80	mm				
	AP**	0° Up with Singl	e Plain Sh	naft						9	90	mm				
	CP**	180° Down with	Single Pla	ain S	haft					A 100 mm						
	AD**	0° Up with Doub	ole Plain S	shaft						В	11	0 mm				
	CD**	180° Down with	Double F	Plain S	Shaft					С	12	0 mm				
2	Corrigo	· · · · ·								D	13	0 mm				
9	Carriag									E E	14 15					
	0	Standard								G	16	0 mm				
	1	landem								н	17	0 mm				
	2	Bi-parting (Not av	vailable with	ז ו ₪ B	D and [DD opti	ons)			J	18	0 mm				
হ	Order S	Stroke								Κ	19	0 mm				
9	Under C	4 digit input in m	ım (see m	ax s	troke h	v fram	1e			L	20	0 mm				
size in Specifications)							10			*If limit	and hor	ne sens sitioned	ors sele	ected,	this is the	distance
NOT be u can	DTE: If travel is less than 75mm either Home or Limit Sensors ca used, not both. If travel is less than 20mm, only a Home Sensor n be used.									50mm is posi	from lim	it sensc is dista	nce from	ve end m the o	l. If only here	ome sense
6	6) Home Sensor* (one sensor)								۹	Mour	nted G	earhea	ad			
<u> </u>	0	No home senso	r						-	see Op	tions & A	ccessori	es for fra	ame siz	e availabili	ty and dime
	A**	PNP, 3 Wire. N.(D., Interna	al Mo	untina				0	Gear	head a	nd Mo	otor N	lount	ting Kits	5
	K**	NPN, 3 Wire N	O., Intern	al Mo	ounting	1			-	Gearh	ead M	ounting	ı Kit		0	

(see Options & Accessories for availability and dimensions)

Motor Mounting Kit (Including Flange and Coupling For Direct Drive Motor or Flange on Mounted Gearhead (see Options & Accessories for availability and dimensions)

Mounted Gearhead and Motor

(see Options & Accessories for availability and dimensions)

OSPE..BHD Belt-Driven Actuators

High-Speed, Long Travel, Heavy Duty Applications

- High dynamic for precision positioning
- High thrust capacity
- High payload capacity
- High speed operation
- Easy installation
- Ideal in multi axis applications

Features

- Integrated ball bearing guide or roller guide ٠
- Clamp drive shaft design for compact and backlash ٠ free gearhead and motor mounting
- ٠ Tandem carriage with second carriage for higher load capabilities
- Long available strokes ٠
- Complete motor and drive packages •
- Bi-parting carriages and special options on request ٠
- Ambient temperature range -30°C to +80°C
- IP 54 Rating

OSPE25BHD

	OSPE20BHD	OSPE25BHD	OSPE32BHD	OSPE50BHD
Maximum Travel (mm)	5,760	5,700	5,600	5,500
Maximum Payload F _z (N)	1,600	3,000	10,000	15,000
Maximum Acceleration (m/sec ²)	50	50	50	50

The OSPE..BHD is the highest capacity belt-driven actuator in the OSPE family. The integrated ball bearing guide or optional roller guide are proven in thousands of industrial machines requiring

robustness, dynamic precision and extraordinary performance with an aesthetically pleasing design.

The compact design allows integration of the OSPE..BHD in any machine layout, providing very little space, without sacrificing payload or thrust capacity.

(1) Carriage

Low profile, high strength aluminum carriage with threaded holes for ease of mounting

- (2) Belt tensioning station Easy access for belt tension without removing the payload
- (3) Corrosion resistant steel sealing band Magnetically fastened to the actuator body and provides sealing to IP54
- (4) Lubrication access port Easy access maintenance allows for single point lubrication of bearing trucks at any point along travel
- (5) Slotted profile With dovetail grooves for strength, actuator mounting, and mounting of sensor and other accessories
- 6 Integrated ball bearing truck

For high performance, high payload and moment load demands. (Optional roller wheels available.)

- Steel reinforced timing belt High thrust force transmission and long life
- (8) Clamp shaft Optimal, zero-backlash coupling for gearhead and motor
- End housing mounting
 Threaded mounting holes allow for a multitude of mounting options

Integrated Bearing Design

Ball bearing - with a high-precision, hardened-steel rail and

calibrated bearing trucks for high load capabilities Roller bearing - with an aluminum grounded and calibrated steel track and needle bearing wheels for high-speed operation up to 10 m/s.

Drive Shaft Options

Clamp shaft (for zero-backlash coupling), plain shaft (for dual axis linking), clamp and plain shaft (for master unit to connect link shaft on plain shaft), and hollow shaft (for compact gearhead mounting)

Carriage Options Standard carriage,

tandem carriage – for higher load capabilities,

or bi-parting carriage – for opposing synchronized movements

Actuator Mounting Options

End cap mounting — allows the actuator to be anchored by the end caps Profile mounts — support long travel actuators or for direct mounting

A wide range of adapter plates and intermediate drive shafts simplifies engineering and installation. Please consult factory for your individual system design.

Options and Accessories

Information on all OSPE..BHD Series options is detailed in Options & Accessories. Simply select all the options needed to solve your application requirements, then order with the actuator using convenient order codes (see Ordering Information). To order an option separately as an upgrade to an existing system or as a replacement part, use the individual option part numbers provided.

SPECIFICATIONS

Parker Origa System Plus (OSPE) Series electric motor-driven actuator systems

are field-proven worldwide. OSPE Actuator systems are completely modular to accommodate a broad range of application installation and performance requirements. Compact size, maximum configurability and the flexibility to select the right drive train technology for high speed and/ or precise positioning applications makes the OSPE easy to integrate into any machine layout simply and neatly.

Actuator Size		OSPE20BHD	ID OSPE25BHD		OSPE32BHD		OSPE50BHD		
Integrated Guide Rail ⁽¹⁾			В	В	R	В	R	В	R
Travel Distance per Revolution	S _{lin}	mm	125	180	180	240	240	350	350
Pulley Diameter		mm	39.79	57.30	57.30	76.39	76.39	111.41	111.41
Linear Speed (Max)	v _{max}	m/s	3	5	10	5	10	5	10
Acceleration (Max)	a _{max}	m/s²	50	50	40	50	40	50	40
Repeatability (unidirection	nal)	μm	± 50	± 50	± 50	± 50	± 50	± 50	± 50
Order Stroke (Max) ⁽²⁾		mm	5,760	5,700	5,700	5,600	5,600	5,500	5,500
Thrust Force (Max)	F _{Amax}	N Ibs	550 124	1,070 241	1,070 241	1,870 420	1,870 420	3,120 701	3,120 701
Torque on Drive Shaft (Max)	M _{Amax}	Nm in-lb	12 102	32 282	32 282	74 652	74 652	177 1,567	177 1,567
Torque ⁽³⁾ — RMS No Load	M ₀	Nm in-lb	0.9 8	1.4 12	1.4 12	2.5 22	2.5 22	4.2 37	4.2 37
Torque ⁽³⁾ — Peak No Load	M ₀	Nm in-lb	1.1 10	1.9 17	1.9 17	3.2 28	3.2 28	6.0 53	6.0 53
Load ⁽⁴⁾ (Max)	F _Y Fz	N Ibs N	1,600 360 1,600	2,000 450 3,000	986 222 986	5,000 1,124 10,000	1,348 303 1,348	12,000 2,698 15,000	3,704 833 3,704
	2	lbs	360	674 50	222	2,248	303	3,372	833
	M _X	in-lb	186	443	97	1,062	168	1,593	770
Bending Moment Load ⁽⁴⁾ (Max)	M_Y	Nm in-lb	150 1,328	500 4,425	64 566	1,000 8,851	115 1,018	1,800 15,931	365 3,231
	M _Z	Nm in-lb	150 1,328	500 4,425	64 566	1,400 12,391	115 1,018	2,500 22,127	365 3,231
Inertia @ Zero Stroke Per Meter of Stroke Per 1 kg Moved Mass	J ₀ J _{OS} J _m	kgmm² kgmm²/m kgmm²/kg	280 41 413	1,229 227 821	984 227 821	3,945 496 1,459	3,498 496 1,459	25,678 1,738 3,103	19,690 1,738 3,103
Weight @ Zero Stroke Per Meter of Stroke Carriage	m ₀ m _{OS} m _C	kg kg/m kg	2.0 4.0 0.8	2.8 4.5 1.5	2.8 4.3 1.0	6.2 7.8 2.6	5.8 6.7 1.9	18.2 17.0 7.8	17.9 15.2 4.7
Ambient Temperature Rar	°C	-30 to +80							

⁽¹⁾ B = Ball Bearing Guide Rail; R = Roller Guide

⁽²⁾ Longer, extended order strokes on request OSPE20BHD = 6000 mm; OSPE25BHD = 9400 mm; OSPE32BHD = 9200 mm

⁽³⁾ For tandem and bi-parting options double the values listed.

⁽⁴⁾ Load and bending moment based on 8000 km performance

Available Thrust Force by Speed and Stroke

Maximum Permissible Unsupported Length — Determining end cap and profile mounting placement

OSPE..BHD Series actuators need to be mounted onto a solid machine base or frame structure using appropriately positioned end cap and profile mounts. This ensures that the actuator will not undergo excessive deflection based on the application's load and length requirements.

The greater the load and/or the longer the unsupported length between mounts, the more the actuator is susceptible to deflection. Deflection is also dependent on the carriage orientation (F_z for top oriented carriage or F_y for a side mounted carriage).

To determine correct end cap and profile mount placement, please follow the steps shown in the example below.

Use the deflection graphs on the next page to insure that the load will not exceed the maximum allowed deflection.

Example:

A horizontal application uses an OSPE32BHD with a top oriented ball bearing carriage. The maximum load on the carriage is 30 kg and the order stroke is 2,400 mm (see previous section to calculate order stroke).

Therefore, the overall length of the actuator will be approximately 3,000 mm:

2,400 mm + 2 x Dim "X " (262 mm) = 2,924 mm

- 1) Use the Fz graph for a top loaded ball bearing carriage (shown at right)
- Calculate the Load "F" in Newtons based on the 30 kg application load requirement:

30 kg x 9.81 kg/ms² = 294.3 N

- Draw a line from 294.3 N on the Y-axis to the OSPE32BHD curve, then down to the X-axis.
- 4) The value of "k" is approximately 750 mm.
- 5) Since the overall length (3000 mm) is greater than this value "k", the actuator will require additional fixture points – two end cap mounts and three sets of profile mounts – equally spaced to create a distance "k" of 750 mm in between.
- Maximum deflection of the actuator with this mounting configuration will be less than 0.075 mm:

0.01% of 750 mm = 0.075 mm

If the application requires less deflection, then simply reduce the distance "k" appropriately. In this example, for instance, the application must not exceed 0.05 mm. Therefore, "k" must also be 500 mm.

To achieve this reduced maximum deflection, the actuator will require seven fixture points — two end cap mounts and five pairs of profile mounts — equally spaced with a distance "k" of 500 mm in between.

Maximum Permissible Unsupported Length

Determining end cap and profile mounting placement

Use the appropriate deflection graph to ensure that the application load does not exceed the deflection curve. Supporting the actuator within the recommended maximum distance "k" will ensure that the installation will have a maximum deflection equal to 0.01% of distance "k."

To further reduce deflection, simply reduce the distance between end cap and profile mounts as described in the example on the previous page.

Tandem Carriage

Bi-Parting Carriage

Actuator Size	Α	В	DC	F	FD	FP	G	GP	GS	GT
OSPE20BHD	65.7	M6x8	42.5	12 H7	27	12 _{h7}	18.0	25	13.8	4
OSPE25BHD	82.0	M8x8	49.0	16 ^{H7}	34	16 _{h7}	21.7	30	18.3	5
OSPE32BHD	106.0	M10x12	62.0	22 H7	53	22 _{h7}	30.0	30	24.8	6
OSPE50BHD	144.0	M12x19	79.5	32 ^{H7}	75	32 _{h7}	41.0	35	35.3	10

* For OSPE50BHD with roller guide: Dimension K = 263

Actuator Size	н	J		К	L	М	Ν	Р	Q	QH	
OSPE20BHD	27.6	76.5		155	67	30	51	M5x8	73	38	
OSPE25BHD	31.0	88.0		178	85	40	64	M6x8	93	42	
OSPE32BHD	38.0	112.0		218	100	40	64	M6x10	116	56	
OSPE50BHD	49.0	147.0		288*	124	60	90	M6x10	175	87	
Actuator Size	R	S	SA	SH	т	U	v	wc	WD	х	
OSPE20BHD	49.0	60	18	27	M5x8.5	73	36.0	21.1	10.4	185	
OSPE25BHD	52.5	79	25	27	M5x10	92	39.5	21.5	10.4	218	
OSPE32BHD	66.5	100	28	36	M6x12	116	51.7	28.5	10.4	262	
OSPE50BHD	92.5	158	18	70	M6x12	164	77.0	43.0	10.4	347	

Order Stroke Dimensional Requirements

Actuator Size	КМ _{min}	KMrec
OSPE20BHD	180	220
OSPE25BHD	210	250
OSPE32BHD	250	300
OSPE50BHD	354	400

KM_{min} is the minimum distance between two carriages possible.

KM_{rec} is the recommended distance between two carriages for optimal performance.

Order Stroke Safety Distance:

The mechanical end position should not be used as a mechanical end stop, thus an additional *Safety Distance* at both ends of travel must be incorporated into the Order Stroke. The safety distance for servo-driven systems is equivalent to the travel distance per one revolution of the drive shaft. AC motor-driven systems with VFDs require a larger safety distance than servo systems. For further information and design assistance, please consult factory.

OPTIONS & ACCESSORIES

OSPE..BHD Belt-Driven Actuators Gearhead Mounting Kit Options

Gearhead Mounting Kits include a coupling housing and flange

A = Bolt circle diameterB = Screw for bolt circleC = Square dimensionD = Pilot diameterE = Pilot depthF = Input drive shaft diameter

G = Input drive shaft length LCH = Length coupling housing MF = Mounting flange

MF C ØF x G deep C ØA ØD x E deep

OSPE..BHD with Gearhead Mounting Kit

		Order	Dimensions – mm								
Actuator Size	Order Code 6 ¹	Code ^{(9)²}	Α	в	С	D	Е	F	G	LCH	MF
OSPE20BHD	02, 03, 04 or 05	C0	44	M4	60	35	4.0	12	25	19	9.0
	0A, 0B	C1	62	M5	75	52	6.0	16	36	79	18.5
OSPE25BHD	02, 03, 04 or 05	C1	62	M5	76	52	6.0	16	36	22	13.0
OSPE32BHD	02, 03, 04 or 05	C2	80	M6	98	68	6.0	22	46	30	14.0
OSPE50BHD	02, 03, 04 or 05	C3	108	M8	130	90	6.5	32	70	41	18.0

LCH

¹ When ordering with actuator, use order code (6) to specify drive shaft orientation and order code (9) to specify appropriately sized gearhead mounting kit. See Ordering Information.

Blue order codes indicate rapid shipment availability

Mounted Gearhead and Motor Options

Mounted Gearhead and Motor options include a coupling housing, flange, gearhead with coupler, flange and motor

C

C = Square dimensionLCH = Length coupling housing LGH = Length gearhead LM = Length motor MAK = Motor adapter kit MF = Mounting flange

Mounted Gearhead and Mounted Motor

	Order Code	Order Code			D	imensior	ns — mr	n	
Actuator Size	6 ¹	9 ²	Mounted Motor	С	LCH	LGH	LM	MAK	MF
	Kx	K0	BE233FJ-KPSN	58	79	67.0	143	22.5	18.5
	Kx	K1	BE233FJ-KPSN w/ brake (CM233FJ-115027)	58	79	67.0	178	22.5	16.5
OSPE20BHD	Kx	K2	BE344LJ-KPSN	86	79	67.0	188	22.5	18.5
	Kx	K3	BE344LJ-KPSB	86	79	67.0	220	22.5	16.5
	Kx	KC	PM-FBL04AMK	62	79	67	108.2	22.5	18.5
	Kx	KD	MP-FBL04AMK2 (Brake)	62	79	67	148.2	22.5	18.5
	Kx	K0	BE233FJ-KPSN	58	22	67.0	143	22.5	13.0
	Kx	K1	BE233FJ-KPSN w/ brake (CM233FJ-115027)	58	22	67.0	178	22.5	13.0
OSPE25BHD	Kx	K2	BE344LJ-KPSN	86	22	67.0	188	22.5	13.0
	Kx	K3	BE344LJ-KPSB	86	22	67.0	220	22.5	13.0
	Kx		PM-FBL04AMK	62	22	67	108.2	22.5	13
	Kx		MP-FBL04AMK2 (Brake)	62	22	67	148.2	22.5	13
	Lx	K2	BE344LJ-KPSN	86	30	85.5	188	20.0	14.0
	Lx	K3	BE344LJ-KPSB	86	30	85.5	220	20.0	14.0
	Lx	M0	MPP0923D1E-KPSN	89	30	85.5	178	28.5	14.0
	Lx	M1	MPP0923D1E-KPSB	89	30	85.5	213	28.5	14.0
OSPE32BHD	Lx	M2	MPP1003D1E-KPSN	98	30	85.5	175	28.5	14.0
	Lx	M3	MPP1003D1E-KPSB	98	30	85.5	223	28.5	14.0
	Lx	M4	MPP1003R1E-KPSN	98	30	85.5	175	28.5	14.0
	Lx	M5	MPP1003R1E-KPSB	98	30	85.5	223	28.5	14.0
	Lx	KJ	PM-FCL10AMK	80	30	85	152.7	28.5	14
	Lx	KK	PM-FCL10AMK2 (Brake)	80	30	85	193	28.5	14
	Mx	K2	BE344LJ-KPSN	86	41	110.0	188	24.0	18.0
	Mx	K3	BE344LJ-KPSB	86	41	110.0	220	24.0	18.0
	Mx	MO	MPP0923D1E-KPSN	89	41	110.0	178	24.0	18.0
	Mx	M1	MPP0923D1E-KPSB	89	41	110.0	213	24.0	18.0
	Mx	M2	MPP1003D1E-KPSN	98	41	110.0	175	24.0	18.0
	Mx	M3	MPP1003D1E-KPSB	98	41	110.0	223	24.0	18.0
OSPE50BHD	Mx	M4	MPP1003R1E-KPSN	98	41	110.0	175	24.0	18.0
	Mx	M5	MPP1003R1E-KPSB	98	41	110.0	223	24.0	18.0
	Mx	M6	MPP1154B1E-KPSN	113	41	110.0	203	35.0	18.0
	Mx	M7	MPP1154B1E-KPSB	113	41	110.0	252	35.0	18.0
	Mx	M8	MPP1154P1E-KPSN	113	41	110.0	203	35.0	18.0
	Mx	M9	MPP1154P1E-KPSB	113	41	110.0	252	35.0	18.0
	Mx	KJ	PM-FCL10AMK	80	41	110	152.7	35	18
	Mx	KK	PM-FCL10AMK2 (Brake)	80	41	110	193	35	18

When ordering with actuator, use order code () (see Ordering Information), to specify mounted gearhead size, ratio and orientation: Gearhead size: K = PV60TA L = PV90TA M = PV115TA
 Gearhead ratio and mounting orientation: (Replace *x* to specify)
 With mounting position opposite carriage: 1 = ratio 3:1 2 = ratio 5:1 3 = ratio 10:1
 With mounting position same side as carriage: 4 = ratio 3:1 5 = ratio 5:1 6 = ratio 10:1
 ² Use order code () see Ordering Information) to specify choice of mounted motor.

Blue order codes indicate rapid shipment availability

Mounted Gearhead with Motor Mounting Kit Options

Mounted Gearhead with Motor Mounting Kits include a coupling housing, flange and gearhead with coupler and flange

Mounted Gearhead with Motor Mounting Kit

	Order Code	Order	er Dimensions – mm												
Actuator Size	6 ¹	9 ²	Α	в	С	D	Е	F	G	LCH	LGH	MAK	MF		
	Jx	AA	46.66	M3	43	20.00	1.6	6.35	24.8	19	48.5	19.0	9.0		
	Jx	AB	66.67	M4	55	38.10	1.6	6.35	20.5	19	48.5	15.7	9.0		
	Jx	B5	46.00	M4	43	30.00	2.5	6.00	25.0	19	48.5	19.0	9.0		
	Jx	AM	46.00	M4	43	30.00	2.5	8.00	25.0	19	48.5	19.0	9.0		
	Jx	B6	63.00	M4	55	40.00	2.5	9.00	20.0	19	48.5	13.7	9.0		
	Jx	AH	63.00	M5	55	40.00	2.5	9.00	20.0	19	48.5	19.0	9.0		
	Kx	AB	66.67	M5	62	38.10	1.6	6.35	20.5	79	67.0	16.5	18.5		
	Kx	AC	66.67	M5	62	38.00	1.6	9.53	20.8	79	67.0	16.5	18.5		
	Kx	AF	98.43	M6	85	73.00	3.0	12.70	37.0	79	67.0	30.0	18.5		
OSPE20BHD	Kx	AD	66.67	M5	62	38.10	1.6	9.525	31.8	79	67.0	22.5	18.5		
	Kx	AE	98.43	M5	80	73.03	3.0	12.70	30.0	79	67.0	22.5	18.5		
	Kx	B6	63.00	M4	62	40.00	2.5	9.00	20.0	79	67.0	16.5	18.5		
	Kx	AH	63.00	M5	62	40.00	2.5	9.00	20.0	79	67.0	16.5	18.5		
	Kx	B8	70.00	M5	62	50.00	3.0	12.00	30.0	79	67.0	22.5	18.5		
	Kx	AN	70.00	M5	62	50.00	3.0	14.00	30.0	79	67.0	22.5	18.5		
	Kx	AG	75.00	M5	62	60.00	2.5	11.00	23.0	79	67.0	16.5	18.5		
	Kx	B9	75.00	M5	62	60.00	2.5	14.00	30.0	79	67.0	22.5	18.5		
	Kx	BB	90.00	M6	80	70.00	3.0	14.00	30.0	79	67.0	22.5	18.5		
	Kx	A3	100.00	M6	89	80.00	3.5	14.00	30.0	79	67.0	22.5	18.5		

¹ When ordering with actuator, use order code (is (see Ordering Information), to specify mounted gearhead size, ratio and orientation: Gearhead size: J = PV040TA K = PV60TA

Gearhead ratio and mounting orientation: (Replace "x" to specify)

With mounting position opposite carriage:1 = ratio 3:1With mounting position same side as carriage:4 = ratio 3:1

2 = ratio 5:1 **3** = ratio 10:1

5 = ratio 5:1 **6** = ratio 10:1

3:1 ratio not available on size OSPE20BHD (with "J" PV040TA gearhead)

² Use order code (2) (see Ordering Information), to specify appropriately sized motor mounting kit. See ordering information.

Blue order codes indicate rapid shipment availability

(continued on next page)

(continued from previous page)

Mounted Gearhead with Motor Mounting Kit

	Order	Order	rder Dimensions – mm											
Actuator Size	6 ¹	9 ²	Α	в	С	D	Е	F	G	LCH	LGH	MAK	MF	
	Kx	AB	66.67	M5	62	38.10	1.6	6.35	20.5	22	67.0	16.5	13	
	Kx	AC	66.67	M5	62	38.00	1.6	9.53	20.8	22	67.0	16.5	13	
	Kx	AF	98.43	M6	85	73.00	3.0	12.70	37.0	22	67.0	30.0	13	
	Kx	AD	66.67	M5	62	38.10	1.6	9.525	31.8	22	67.0	22.5	13	
	Кх	AE	98.43	M5	80	73.03	3.0	12.70	30.0	22	67.0	22.5	13	
	Kx	B6	63.00	M4	62	40.00	2.5	9.00	20.0	22	67.0	16.5	13	
OSPE25BHD	Kx	AH	63.00	M5	62	40.00	2.5	9.00	20.0	22	67.0	16.5	13	
	Kx	B8	70.00	M5	62	50.00	3.0	12.00	30.0	22	67.0	22.5	13	
	Kx	AN	70.00	M5	62	50.00	3.0	14.00	30.0	22	67.0	22.5	13	
	Kx	AG	75.00	M5	62	60.00	2.5	11.00	23.0	22	67.0	16.5	13	
	Kx	B9	75.00	M5	62	60.00	2.5	14.00	30.0	22	67.0	22.5	13	
	Kx	BB	90.00	M6	80	70.00	3.0	14.00	30.0	22	67.0	22.5	13	
	Kx	A3	100.00	M6	89	80.00	3.5	14.00	30.0	22	67.0	22.5	13	
	Lx	AE	98.43	M5	90	73.03	3.0	12.70	30.0	30	85.5	20.0	14	
	Lx	B6	63.00	M4	90	40.00	2.5	9.00	20.0	30	85.5	20.0	14	
	Lx	AH	63.00	M5	90	40.00	2.5	9.00	20.0	30	85.5	20.0	14	
	Lx	AN	70.00	M5	90	50.00	3.0	14.00	30.0	30	85.5	20.0	14	
	Lx	AG	75.00	M5	90	60.00	2.5	11.00	23.0	30	85.5	20.0	14	
	Lx	B9	75.00	M5	90	60.00	2.5	14.00	30.0	30	85.5	20.0	14	
	Lx	B0	75.00	M6	90	60.00	3.0	14.00	30.0	30	85.5	20.0	14	
OSPE32BHD	Lx	BB	90.00	M6	90	70.00	3.0	14.00	30.0	30	85.5	20.0	14	
	Lx	B4	90.00	M6	90	70.00	3.0	16.00	40.0	30	85.5	28.5	14	
	Lx	AP	90.00	M6	90	70.00	3.0	19.00	40.0	30	85.5	28.5	14	
	Lx	B3	95.00	M6	90	50.00	2.5	14.00	30.0	30	85.5	20.0	14	
	Lx	A3	100.00	M6	90	80.00	3.5	14.00	30.0	30	85.5	20.0	14	
	Lx	AL	100.00	M6	90	80.00	3.0	16.00	40.0	30	85.5	28.5	14	
	Lx	AJ	100.00	M6	90	80.00	3.0	19.00	40.0	30	85.5	30.0	14	
	Lx	A 4	115.00	M8	100	95.00	3.5	19.00	40.0	30	85.5	28.5	14	
	Mx	AE	98.43	M5	115	73.03	3.0	12.70	30.0	41	110.0	24.0	18	
	Mx	AG	75.00	M5	115	60.00	2.5	11.00	23.0	41	110.0	24.0	18	
	Mx	B4	90.00	M6	115	70.00	3.0	16.00	40.0	41	110.0	35.0	18	
	Mx	AP	90.00	M6	115	70.00	3.0	19.00	40.0	41	110.0	35.0	18	
OSPE50BHD	Mx	A3	100.00	M6	115	80.00	3.5	14.00	30.0	41	110.0	24.0	18	
	Mx	AL	100.00	M6	115	80.00	3.0	16.00	40.0	41	110.0	24.0	18	
	Mx	AJ	100.00	M6	115	80.00	3.0	19.00	40.0	41	110.0	24.0	18	
	Mx	A4	115.00	M8	115	95.00	3.5	19.00	40.0	41	110.0	24.0	18	
	Mx	BD	130.00	M8	115	95.00	3.0	19.00	40.0	41	110.0	24.0	18	
	Mx	AK	130.00	M8	115	110.00	3.5	24.00	50.0	41	110.0	35.0	18	

¹ When ordering with actuator, use order code ⁽⁶⁾ (see Ordering Information), to specify mounted gearhead size, ratio and orientation: Gearhead size: $\mathbf{L} = PV90TA$ $\mathbf{M} = PV115TA$ Gearhead ratio and mounting orientation: (Replace "x" to specify)

With mounting position opposite carriage: **1** = ratio 3:1 **2** = ratio 5:1 **3** = ratio 10 With mounting position same side as carriage: **4** = ratio 3:1 **5** = ratio 5:1 **6** = ratio 10 ² Use order code **9** to specify choice of appropriately sized mounted motor. See Ordering Information. 3 = ratio 10:1

6 = ratio 10:1

Blue order codes indicate rapid shipment availability

End Cap Mounting Options

Order Code

A (1 pair)

Type CN End Cap for OSPE20BHD, OSPE25BHD and OSPE32BHD

Type CN End Cap for OSPE50BHD

See "Maximum Permissible Unsupported Length" for end cap and profile mounting placement requirements.

Type CN Top Mounting Block

Actuator	Part	Dimensions – mm Weight*								
Size	Number*	(kg)	Α	В	С	CA	ØСН	D	М	Ν
OSPE20BHD	16213FIL	0.165	74	20	40	—	6.6	10.0	20	22
OSPE25BHD	12266FIL	0.311	91	25	52	_	6.6	16.0	25	22
OSPE32BHD	12267FIL	0.500	114	25	64	—	9.0	18.0	25	30
OSPE50BHD	12268FIL	0.847	174	30	128	48	9.0	12.5	30	48

*When ordering with actuator, use order code 🐽 See Ordering Information. To order as replacement parts (per pair), use part numbers listed). Weights listed are for a single piece.

Order Code

B (1 pair)

Type CO End Cap for OSPE50BHD

Type CO Side Mounting Block

	Dimensions – mm									
Actuator Size	Part Number*	Weight* (kg)	Α	В	с	ØСН	CJ	D	м	Ν
OSPE20BHD	16241FIL	0.166	40	22	18	6.6	11 x 39	15.0	42	45
OSPE25BHD	16245FIL	0.221	40	25	14	6.6	11 x 30	10.0	44	48
OSPE32BHD	16246FIL	0.450	56	28	19	9.0	15 x 42	12.0	60	62
OSPE50BHD	16247FIL	1.159	87	32	45	9.0	15 x 50	16.0	90	92

*When ordering with actuator, use order code 🔞. See ordering information, Ordering Information. To order as replacement parts (per pair), use part numbers listed). Weights listed are for a single piece.

See "Maximum Permissible

Profile Mounting Options

Type D1 (with internal threads)

			Dimensions – mm										
Actuator Size	Part Number*	Weight* (kg)	Α	С	СН	D	DB	Е	EB	м	Ν	R	
OSPE20BHD	20008FIL	0.061	50	36	M5 x 10	20.5	28.1	28.0	35.6	38	22	23	
OSPE25BHD	20008FIL	0.061	50	36	M5 x 10	27.0	28.5	34.5	36.0	38	22	26	
OSPE32BHD	20157FIL	0.177	50	36	M5 x 10	33.0	35.5	40.5	43.0	46	30	32	
OSPE50BHD	15534FIL	0.167	60	45	M6 x 11	40.0	45.0	52.0	57.0	71	48	44	

*When ordering with actuator, use order code (1). See ordering information, Ordering Information. To order replacement parts (per individual unit), use part numbers listed. Part numbers and weights are for a single piece.

Order Code

COUE

Type E1 (with 2 thru holes)

Actuator	Part	Weight*						Dime	nsion	s —	mm						
Size	Number*	(kg)	Α	в	С	ØСН	CJ	D	DB	Е	EB	F	FB	G	м	Ν	R
OSPE20BHD	20009FIL	0.074	50	26	36	5.5	10 x 5.7	33.5	41.1	28.0	35.6	41.0	48.6	8	38	22	23
OSPE25BHD	20009FIL	0.074	50	26	36	5.5	10 x 5.7	40.0	41.5	34.5	36.0	47.5	49.0	8	38	22	26
OSPE32BHD	20158FIL	0.092	50	27	36	5.5	10 x 5.7	46.0	48.5	40.5	43.0	54.5	57.0	10	46	30	32
OSPE50BHD	15536FIL	0.189	60	34	45	7.0	_	59.0	64.0	52.0	57.0	67.0	72.0	10	71	48	44

*When ordering with actuator, use order code (1). See ordering information, Ordering Information. To order replacement parts (per individual unit), use part numbers listed. Part numbers and weights are for a single piece.

Type MAE (with 3 thru holes)

	Dimensions – mm																
Actuator Size	Part Number*	Weight* (kg)	Α	в	С	ØСН	CJ	D	DB	Е	EB	F	FB	G	м	Ν	R
OSPE20BHD	12278FIL	0.271	92	26	40	5.5	10 x 5.7	33.5	41.1	28.0	35.6	41.0	48.6	8	38	22	23
OSPE25BHD	12278FIL	0.271	92	26	40	5.5	10 x 5.7	40.0	41.5	34.5	36.0	47.5	49.0	8	38	22	26
OSPE32BHD	12279FIL	0.334	92	27	40	5.5	10 x 5.7	46.0	48.5	40.5	43.0	54.5	57.0	10	46	30	32
OSPE50BHD	12280FIL	0.668	112	34	45	7.0	—	59.0	64.0	52.0	57.0	67.0	72.0	10	71	48	44

*When ordering with actuator, use order code (1). See ordering information, Ordering Information. To order replacement parts (per individual unit), use part numbers listed. Part numbers and weights are for a single piece.

ORDERING INFORMATION OSPE

Select an order code from each of the numbered fields to create a complete OSPE..BHD model order number. Include hyphens and non-selective characters as shown in example below.

-)	,	1	2	3	4	5	6)	7	8 9 10 11 12					
0	rder N	lumber Example:	OSPE	25 -	6	0	0	02	! -	00000 -	- P 00 0 0 0					
1	Serie OSPI	e s E Origa System Plus	Electron	nechan	ical		6	Driv Coi	ve nfig	Shaft and guration ar	Gearh nd Orio	ead/N entatio	lotor O on	ptions		
2	Actu	ator Bore Size						02		Clamp	Clarr	ip shaf	t¹ (oppo	site carr	iage sid	
	20	73 mm W x 49 mn	пH							Olamp						
	25	93 mm W x 53 mn	пH					04		Clamp	Clarr	ip shaf	t ¹ (same	side as	carriage	
	32	116 mm W x 67 m	nm H													
0	50	175 mm W x 93 m	nm H					03		Plain	Clarr side)	np shat with p	ft1 (oppo olain sha	osite ca aft to co	rriage nnect	
3	Drive	e Train Belt actuator with in	ntoaratod	roller au	uida					Clamp	this r idler	naster actuat	actuate	or in pai a link :	rallel wit shaft	
4	5 6 Carri	Available upon requ Belt actuator with in	uest — co	ball bea	actory) aring g	uide		05		Clamp Clamp Plain	Clarr carria conr para link s	np shat age) w lect thi llel with shaft	ft ¹ (sam ith plain is maste n idler a	e side a shaft to er actua ctuator	is o itor in using a	
	0 S	Standard														
	1 T 2 E n	andem (two carriages Bi-Parting (two driven o novements)	s for highe carriages	er load with o	capat pposir	oilities) ng		06		Hollow	Hollc (opp	ow sha osite c	ft with k arriage	keyway side)		
5	Oper (See b operat	ating Direction and blue inset box (next page ting direction)	Magnet) for parall	el actua	i on* ators			07		Hollow	Hollo (sam	ow sha e side	ft with k as carr	keyway iage)		
	0 (Standar away fro	rd (Carı om driv	riage r /e end	noves)		0A		U Plain	Plain side) in pa usino	shaft ² to cor rallel w a link	(oppos nnect th vith a m : shaft	ite carri is idler aster ad	age actuato ctuator	
	1 (Standai toward	rd (Carı drive e n (Carria	riage r nd) age m	noves oves		0B		Plain	Plain to co para	shaft ² onnect llel with	(same this idle a mas	side as er actua ter actu	carriage tor in lator	
	1 (away fro Tanderr toward	om driv n (Carria drive e	/e end age m :nd)) oves		Jx Kx Lx	P P P	V040TA V060TA V090TA	Mour (repla	nted Ge ice "x" v tation)	earhead with app	Options ropriate	³ ratio and	
	2 (Bi-Parti move to actuato	ng (Cai oward r r)	rriages mid-	8		¹ See Optic ² On moto ³ Po	ר e Oj ons ly av or o	vilons & Acces vailable with ord ption" (item (9)	sories fo der code	r availab 900 "No	le Gearhe gearhead	ead Mour d mountin	iting Kit g kit or	
	3 (Bi-Parti move a actuato	ng (Cai way frc r)	rriages om mic	3 J-		See or "N dime	Op Op Nou ensi	tions & Access Inted Gearhea	ories for d with N	"Mount Iotor M	ed Gearh ounting h	Nead and Kit" for de	Motor" etails and	
	* Sens	ors must be mounted in th	groove	I	E	Blu	e order co	des in	dicate	rapid	shipme	ent				

 * Sensors must be mounted in the side or bottom dovetail groove on the same side of the actuator with mounted magnet (\bullet)

⑦ Order Stroke* (see Dimensions)

00000 5-digit input (in mm) * Maximum standard stroke: OSPE20BHD = 05760 mm OSPE25HD = 05700 mm OSPE32BHD = 05600 mm OSPE50BHD = 05500 mm Longer strokes available upon request. Consult factory.

8 Hardware and Cover Strip

P Standard hardware with Parker gold cover strip

9 Gearhead/Motor Mounting Options

00 No gearhead or motor mounting option Gearhead Mounting Kits (see Options & Accessories for available option dimensions and delivery) Mounted Gearhead and Motor (see Options & Accessories for available option dimensions and delivery)

Mounted Gearhead with Motor Mounting Kit (see Options & Accessories for available option dimensions and delivery)

Blue order codes indicate rapid shipment availability

Ind Cap Mounting (see Options & Accessories)

- 0 No end cap mounting
- A 1 pair CN (for top carriage mounting)
- B 1 pair CO (for side carriage mounting)

1 Profile Mounting (see Options & Accessories)

- 0 No profile mounting
- 2 1 pair D1 (with 2 internal threads)
- 5 2 pair D1 (with 2 internal threads)
- 8 3 pair D1 (with 2 internal threads)
- **B** 4 pair D1 (with 2 internal threads)
- 1 1 pair E1 (with 2 thru holes)
- 4 2 pair E1 (with 2 thru holes)
- 7 3 pair E1 (with 2 thru holes)
- A 4 pair E1 (with 2 thru holes)
- 3 1 pair MAE (with 3 thru holes)
- 6 2 pair MAE (with 3 thru holes)
- 9 3 pair MAE (with 3 thru holes)
- C 4 pair MAE (with 3 thru holes)

12 Magnetic Sensor Mounting*

- 0 No sensor mounting
- A 1 pc. N.O., NPN, with M8 connector
- B 2 pc. N.C., NPN, with M8 connector
- c 1 pc. N.O., NPN, with M8 connector
- 2 pc. N.C., NPN, with M8 connector
- D 1 pc. N.O., PNP, with M8 connector
- E 2 pc. N.C., PNP, with M8 connector
- F 1 pc. N.O., PNP, with M8 connector 2 pc. N.C., PNP, with M8 connector

* Extension cable with M8 plug and 5 m cable flying lead cable for Sensor with M8 connector can be ordered separately; use part number 003-2918-01

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

OSPE..B Belt-Driven Actuators

Actuators for Point-to-Point Applications

- Precise path and position control
- High-speed operation
- Easy installation
- Low maintenance
- Ideal for precise pointto-point applications

Features

- Integrated drive and guidance system
- Tandem carriage with second carriage for increased load capabilities
- Long available strokes
- Complete motor, gearhead and control packages
- Diverse range of accessories and mountings
- Bi-parting carriages and special options available
- Ambient temperature range -30°C to +80°C
- IP 54 rated

PowerSlide

- Designed for harsh environments
- Speed up to 3 m/s
- Hardened steel guide rail
- Carriage with steel v-wheels
- Tough roller cover with wiper and grease access point

ProLine

- Designed for high-speed, precise, smooth and quiet operation
- Aluminum rail with ground and calibrated steel trucks
- Carriage supported by needle bearing rolls
- Integrated wipers to keep bearing system clean
- Lifetime lubricated bearing system

OSPE25BHD

OSPE32BHD

OSPE50BHD

	OSPE25BHD	OSPE32BHD	OSPE50BHD
Maximum Travel (mm)	3,000	5,000	5,000
Maximum Payload F _z (N)	160	300	850
Maximum Acceleration (m/sec ²)	10	10	10

The field-proven OSPE..B design is the industry standard for the widest array of pointto-point linear traverse applications. Compact size and maximum configurability make the OSPE..B easy to integrate into any machine layout simply and neatly.

To meet rigorous environmental and maximum performance criteria, the OSPE..B Series is optionally available with the PowerSlide and ProLine external bearing which can be installed in any position (top, side or bottom of the actuator) and retrofitted to existing actuators.

FEATURES

1 Drive shaft

Designed to pair with a large assortment of motor and gearhead mounting options

- 2 Double row angular contact ball bearing Optimized for high thrust force transmission
- (3) Corrosion resistant steel sealing band Magnetically fastened to the actuator body and provides sealing to IP54

(4) Carriage

Low profile, high strength aluminum carriage with threaded holes for ease of mounting

(5) Low friction support rings

Polymer glider bushing to provide an economical guidance system with optimum performance

(6) Slotted profile

With dovetail grooves for strength, actuator mounting, and mounting of sensor and other accessories

- (7) Steel reinforced toothed belt Moderate force transmission and long life
- (8) End housing mounting Threaded mounting holes allow for a multitude of mounting options

Carriage Bearing Design Configurations

Standard carriage — with internal glider bearing PowerSlide — externally mounted steel roller guide for higher load capabilities specifically in harsh environments ProLine — externally mounted aluminum roller guide for higher load capabilities in high speed applications

Optional Carriage Orientation

(for standard carriage only) Tandem carriage (for higher load capabilities), bi-parting carriage (for opposing synchronized movements), clevis mounting (provides

compensation between actuator and guide rails in machine designs), Inversion mounting (allows outer band to be on the bottom, while keeping payload on top, for better actuator protection in dirty environments)

Actuator Mounting Options

End cap mounting — allows the actuator to be anchored by the end caps Profile mounting — supports long

travel actuators or for direct mounting

Multi-axis Systems

A wide range of adapter plates and intermediate drive shafts simplifies engineering and installation. Please consult factory for your individual system design.

Drive Shaft Options

Plain drive shaft left, plain drive shaft right, or double plain drive shaft to connect master unit with idler unit

Options and Accessories

Information on all OSPE..B Series options are detailed in Options &

Accessories. Simply select all the options needed to solve your application requirements, then order with the actuator using convenient order codes

(see Ordering Information). To order an option separately as an upgrade to an existing system or as a replacement part, use the individual option part numbers provided.

SPECIFICATIONS

OSPE..B

Actuator Size			OSPE25B	OSPE32B	OSPE50B
Travel Distance per Rev	s _{lin}	mm	60	60	100
Pulley Diameter		mm	19.10	19.10	31.83
Linear Speed (Max)	v _{max}	m/s	2	3	5 ¹
Acceleration (Max)	a _{max}	m/s ²	10	10	10
Repeatability (unidirectional)		μm	± 50	± 50	± 50
Thrust Force (Max)	E.	Ν	50	150	425
Thrust Force (Max)	FAmax	lbs	11	34	96
Torque on Drive Shaft (Max)	М.	Nm	0.9	1.9	7.4
Torque on Drive Shart (Max)	Amax	in-lb	8	17	65
Inertia					
@ Zero Stroke	J ₀	kgmm ²	25	43	312
	J _{OS}	kgmm²/m	6.6	10.0	45.0
Per Meter of Stroke					
Per 1 kg Moved Mass	J _m	kgmm²/kg	91	91	253
Ambient Temperature Dance		°C		20 to + 20	
Ampient Temperature Range	,			-30 to +80	
IP Rating)				IP 54	

¹ Maximum linear speed for OSPE50B with PowerSlide bearing is 3 m/s

Available Thrust Force

Calculating Load Factors - Combined Normal and Moment Load

The sum of combined loads (static and dynamic) must not exceed "1" at any time as shown in the formula below:

$$\frac{F_{z}}{F_{z (max)}} + \frac{M_{x}}{M_{x (max)}} + \frac{M_{y}}{M_{y (max)}} + \frac{M_{z}}{M_{z (max)}} \leq 1$$

OSPE25B Performance

		Standard		ProLine		
Carriage (Bearing System)		Carriage	PS25/25	PS25/35	PS25/44	PL25
Part Number ¹		—	20304	20305	20306	20874
Max Order Stroke ²	OS _{max} n	nm 3000	3000	3000	3000	3000
Normal Load ³ (Max)	F _Y /F _Z N	(lbs) 160 (36)	197 (44)	219 (49)	387 (87)	1549 (348)
	M _X Nm	(in-lb) 2 (18)	3 (27)	4 (35)	6 (53)	30 (266)
Moment Load ³ (Max)	M _Y Nm	(in-lb) 12 (106)	14 (124)	15 (133)	57 (504)	69 (611)
	M _Z Nm	(in-lb) 8 (71)	14 (124)	15 (133)	57 (504)	69 (611)
Torque – No Load ⁴	M ₀ Nm	(in-lb) 0.4 (4)	0.6 (5)	0.6 (5)	0.6 (5)	0.6 (5)
@ 0 Stroke	m ₀ kg	(lbs) 0.7 (1.54)	1.0 (2.20)	1.1 (2.42)	1.3 (2.86)	0.9 (1.98)
Weight Per Meter of Stroke	m _{OS} kg	(lbs) 1.6 (3.52)	3.0 (6.60)	3.4 (7.48)	4.2 (9.24)	3.3 (7.26)
Carriage ⁴	m _C kg	(lbs) 0.2 (0.44)	0.9 (1.98)	1.0 (2.20)	1.7 (3.74)	1.0 (2.20)

OSPE32B Performance

		Standard	Powe	ProLine	
Carriage (Bearing System)		Carriage	PS32/35	PS32/44	PL32
Part Number ¹		—	20307	20308	20875
Max Order Stroke ²	OS _{max} mm	5000	3500	3500	3750
Normal Load ³ (Max)	F _Y / F _Z N (lbs)	300 (67)	303 (68)	747 (168)	2117 (476)
	M _X Nm (in-lb) 8 (71)	4 (35)	16 (142)	52 (460)
Moment Load ³ (Max)	M _Y Nm (in-lb) 25 (221)	15 (133)	57 (504)	132 (1168)
	M _Z Nm (in-lb) 16 (142)	15 (133)	57 (504)	132 (1168)
Torque – No Load ⁴	M ₀ Nm (in-lb	0.5 (4)	0.8 (7)	0.8 (7)	0.8 (7)
@ 0 Stroke	m ₀ kg (lbs)	1.5 (2.64)	1.9 (4.18)	2.1 (4.62)	2.0 (4.40)
Weight Per Meter of Stroke	m _{OS} kg (lbs)	3.2 (7.04)	5.1 (11.22)	5.9 (12.98)	5.8 (12.76)
Carriage ^₄	m _C kg (lbs)	0.4 (0.88)	1.2 (2.64)	1.9 (4.18)	1.6 (3.52)

OSPE50B Performance

		Standard	Power	rSlide	ProLine
Carriage (Bearing System)		Carriage	PS50/60	PS50/76	PL50
Part Number ¹		—	20309	20310	20876
Max Order Stroke ²	OS _{max} mm	5000	3500	3500	3750
Normal Load ³ (Max)	F _Y / F _Z N (lbs)	850 (191)	975 (219)	1699 (382)	5626 (1265)
	M _X Nm (in-lb)	16 (142)	29 (257)	59 (522)	201 (1779)
Moment Load ³ (Max)	M _Y Nm (in-lb)	80 (708)	81 (717)	149 (1319)	451 (3992)
	M _Z Nm (in-lb)	32 (283)	81 (717)	149 (1319)	451 (3992)
Torque – No Load ^₄	M ₀ Nm (in-lb)	0.6 (5)	0.9 (8)	0.9 (8)	0.9 (8)
@ 0 Stroke	m ₀ kg (lbs)	4.2 (9.24)	5.5 (12.10)	6.3 (13.86)	5.4 (11.88)
Weight Per Meter of Stroke	m _{OS} kg (lbs)	6.2 (13.64)	10.4 (22.88)	12.8 (28.16)	10.0 (22.00)
Carriage ^₄	m _C kg (lbs)	1.0 (2.20)	3.3 (7.26)	5.9 (12.98)	3.5 (7.70)

¹ PowerSlide or ProLine guide bearings can be ordered individually with assigned part number in the table and specified, five digit order stroke value (mm), following the part number (-nnnn) to designate the appropriate length guide rail. To order PowerSlide or Proline bearing with the actuator, use the appropriate order in item 10

² Longer strokes available upon request. Contact factory.
 ³ Load and moment based on 8000 km performance Refer to "Calculating Load Factors" for additional information.
 ⁴ For tandem and bi-parting options, double the values listed.

Maximum Permissible Unsupported Length — Determining end cap and profile mounting placement

OSPE...B Series actuators need to be mounted onto a solid machine base or frame structure using appropriately positioned end cap and profile mounts . This ensures that the actuator will not undergo excessive deflection based on the application's load and length requirements.

The greater the load and/or the longer the length between mounts, the more the actuator is susceptible to deflection. Deflection is also dependent on the carriage orientation (Fz for top oriented carriage or Fy for a side mounted carriage).

To determine correct end cap and profile mount placement, please follow the steps shown in the example below.

Bi-Parting Carriage

Use the deflection graphs (next page), to ensure that the load will not exceed the maximum allowed deflection.

Example:

A horizontal application uses an OSPE32B with a top oriented carriage. The maximum load to the carriage is 10 kg and the order stroke is 3,700 mm (see Dimensions to calculate order stroke).

Therefore, the overall length of the actuator will be 4,000 mm:

3,700 mm + 2 x Dim "X " (150 mm) = 4,000 mm

- Use the appropriate Fz graph (next page) for a top loaded carriage. (Note: with the standard carriage, top loaded Fz and side loaded Fy values are the same).
- 2) Calculate the Load "F" in Newtons based on the 10 kg application load requirement:

 $10 \text{ kg x } 9.81 \text{ kg/ms}^2 = 98.1 \text{ N}$

- Draw a line from 98 N on the Y-axis to the OSPE32B curve, then down to the X-axis.
- 4) The value of "k" is approximately 3,600 mm.
- 5) Since the overall length (4,000 mm) is greater than this value "k", the actuator will require an additional third fixture point — two end cap mounts and one profile mount — equally spaced to create a distance "k" of 2000 mm in between.
- 6) Maximum deflection of the actuator with this mounting configuration will be less than 4 mm:

0.2% of 2,000 mm = 4 mm

If the application requires less deflection, then simply reduce the distance "k" appropriately. In this example, for instance, the application must not exceed 2 mm (1/2 the maximum deflection calculated). Therefore, "k" must also be 1/2, or 1000 mm.

To achieve this reduced maximum deflection, the actuator will require five fixture points — two end cap mounts and three profile mounts — equally spaced with a distance "k" of 1000 mm in between.

Maximum Permissible Unsupported Length

Determining end cap and profile mounting placement

Use the appropriate deflection graph to ensure that the application load does not exceed the deflection curve. Supporting the actuator within the recommended maximum distance "k" will ensure that the installation will have a maximum deflection equal to 0.2% of distance "k."

To further reduce deflection, simply reduce the distance between end cap and profile mounts as described in the example on the previous page.

DIMENSIONS

Base Unit Dimensions w/Standard Carriage

Bi-Parting Carriage

* See Options & Accessories for clevis mount and inversion mount optional carriage dimensions.

Actuator Size	Α	A1	A2	В	D	DC	F	F	G	н	J	J	D	к
OSPE25B	33.5	30	15	M5 x 10	19 ^{H7}	37.	01	0 _{i6}	24	31	22	5	7	117
OSPE32B	42.0	38	18	M6 x 12	26 ^{H7}	36.	51	0	26	38	25	6	51	152
OSPE50B	59.4	50	32	M8 x 16	40 ^{H7}	48.	51	6 h8	34	49	25	8	5	200
	L	Н	Ν	Р	Q	R	S	т		U	V	WC	WD	Х
OSPE25B	33	65	25	M5 x 8	41	52.5	27	M5	x 10	40	39.5	21.5	10.4	125
OSPE32B	36	90	27	M6 x 10	52	66.5	36	M6	x 12	52	51.7	28.5	10.4	150
OSPE50B	36	110	27	M6 x 10	87	92.5	70	M6	x 12	76	77	43.0	10.4	200

Order Stroke Dimensional Requirements

Actuator Size	KM _{min}	KM _{rec}
OSPE25B	130	190
OSPE32B	170	230
OSPE50B	220	320
OSPE25B OSPE32B OSPE50B	130 170 220	190 230 320

Order Stroke Safety Distance:

The mechanical end position should not be used as a mechanical end stop, thus an additional *Safety Distance* at both ends of travel must be incorporated into the Order Stroke. The safety distance for servo-driven systems is equivalent to the travel distance per revolution of the drive shaft. AC motor-driven systems with VFD require a larger safety distance than servo systems. For further information and design assistance, please consult factory.

 $\rm KM_{min}$ is the minimum distance between two carriages possible; $\rm KM_{rec}$ is the recommended distance for optimal performance.

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

DIMENSIONS

DIMENSIONS

PowerSlide Dimensions

Dimensions - mm

*Dimension XX is required on the drive side of the actuator to provide adequate clearance between the PowerSlide guide bearing and the motor/gearhead housing assembly. Please consult factory for assistance if you are retrofitting

a PowerSlide onto an existing system.

Guide Rail Size	HG	KG	LG	MG	NG	PG	QG	RG	RX	WX	Х	XX
PS25/25	20.0	145	80	125	64	M6 x 11	79.5	73.5	53.0	11.0	125	5
PS25/35	21.5	156	95	140	80	M6 x 12	89.5	73.0	52.5	12.5	125	10
PS25/44	26.0	190	116	164	96	M8 x 15	100.0	78.5	58.0	15.0	125	27
PS32/35	21.5	156	95	140	80	M6 x 12	95.5	84.5	58.5	12.5	150	—
PS32/44	26.0	190	116	164	96	M8 x 15	107.0	90.0	64.0	15.0	150	6
PS50/60	28.5	240	135	216	115	M8 x 17	130.5	123.5	81.0	17.0	200	5
PS50/76	39.0	280	185	250	160	M10 x 20	155.5	135.5	93.0	20.0	200	25

ProLine Dimensions

Guide Rail Size	HG	KG	KX	LG	MG	MX	NG	PG	QG	RG	RX	UX	Х	XX
PL25	23	154	1 44	64	120	60	50	M6 x 12	72.5	74	53	40.5	125	10
PL32	25	197	187	84	160	80	64	M6 x 12	91.0	88	62	49.0	150	11
PL50	29	276	266	110	240	120	90	M6 x 16	117.0	118	75	62.0	200	24

OPTIONS & ACCESSORIES

Order Code

R Clevis Mounting Option for Standard Carriage

The aluminum clevis mount option bolts directly to the standard carriage to eliminate parallelism deviations and strain to the carriage when the actuator is mounted onto machine guide rails. Clevis mounting provides compensation for misalignment in Z and Y directions and can tilt around the X and Y axis.

When external guides are involved in the application, slight parallelism deviations can lead to mechanical strain on the carriage and actuator. This can be avoided by the use of a clevis mount that provides freedom of movement compensation on several axes.

Actuator	Part	Weight*					D	imens	ions ·	– mr	n				
Size	Number*	(kg)	н	НС	К	L	М	МС	Ν	Р	PC	т	U	V	W
OSPE25B	20005FIL	0.091	39	52	40	38	30	16	16	M5	5.5	21	19	3.5	2
OSPE32B	20096FIL	0.091	50	68	60	62	46	40	25	M6	6.6	30	28	6.0	2
OSPE50B	20097FIL	0.308	61	79	60	62	46	—	25	M6	—	30	28	6.0	2

*Part number and weight are for individual unit.

Order Code

M Inversion Mounting Option for Standard Carriage

For dirty environments or spacerestricted installations, inversion of the actuator is recommended.

The aluminum inversion bracket transfers the driving force to the opposite side of the actuator allowing the load to be attached to the top side of the actuator while the carriage and sealing band remain protected on the bottom side. The size and position of the mounting holes are the same as on the standard carriage. **Note:** Profile mounts and magnetic switches can only be used on the free side of the actuator.

Actuator Size	Part Number*	Weight* (kg)	Dimensions — mm						
			К	м	Ν	Р	R	S	т
OSPE25B	20037FIL	0.302	117	65	25	M5 x 6	33.5	31	31
OSPE32B	20161FIL	0.449	150	90	27	M6 x 6	39.5	38	38
OSPE50B	20166FIL	0.947	200	110	27	M6 x 8	52.0	55	55

*Part number and weight are for individual unit.
Motor Mounting Kit Options

Note: Screw thread to mount motor to flange plate is M3

Actuator	Order Code	Order Code				Dimens	ions –	mm			
Size	6 *	∕7*	Α	В	С	D	Е	F	G	LCH	MF
	0	AA	46.66	M3	41	20.00	1.6	6.35	24.8	47	12
	0	AB	66.67	M4	55	38.10	1.6	6.35	20.5	47	9
	0	AC	66.67	M5	60	38.10	1.6	9.53	20.8	47	9
	0	AD	66.67	M5	60	38.10	1.6	9.525	31.8	47	19
	0	B5	46.00	M4	60	30.00	2.5	6.00	25.0	47	12
	0	AM	46.00	M4 ¹	41	30.00	2.5	8.00	25.0	47	12
OSPE25B	0	B6	63.00	M4	60	40.00	2.5	9.00	20.0	47	10
	0	AH	63.00	M5	60	40.00	2.5	9.00	20.0	47	12
	0	A2	63.00	M5	60	40.00	2.5	11.00	23.0	47	12
	0	B7	70.00	M5	60	50.00	3.0	8.00	25.0	47	17
	0	B8	70.00	M5	60	50.00	3.0	12.00	30.0	47	17
	0	AG	75.00	M5	70	60.00	2.5	11.00	23.0	47	10
	0	B1	90.00	M5	75	60.00	2.5	11.00	23.0	47	10
	0	AB	66.67	M5	60	38.10	1.6	6.35	20.5	49	10
	0	AC	66.67	M5	60	38.10	1.6	9.525	20.8	49	10
	0	AD	66.67	M5	60	38.10	1.6	9.525	31.8	49	18
	0	AE	98.43	M5	85	73.03	3.0	12.70	30.0	49	16
	0	AF	98.43	M6	85	73.03	3.0	12.70	37.0	49	26
	0	B6	63.00	M4	55	40.00	2.5	9.00	20.0	49	11
	0	AH	63.00	M5	60	40.00	2.5	9.00	20.0	49	11
	0	A2	63.00	M5	60	40.00	2.5	11.00	23.0	49	11
	0	BJ	66.67	M5	60	38.10	1.6	12.70	20.0	49	10
	0	B7	70.00	M5	60	50.00	3.0	8.00	25.0	49	16
OSPE32B	0	B8	70.00	M5	60	50.00	3.0	12.00	30.0	49	16
	0	AN	70.00	M5	60	50.00	3.0	14.00	30.0	49	16
	0	AG	75.00	M5	70	60.00	2.5	11.00	23.0	49	11
	0	B9	75.00	M5	70	60.00	2.5	14.00	30.0	49	16
	0	BA	75.00	M5	70	60.00	3.0	16.00	40.0	49	26
	0	B0	75.00	M6	70	60.00	3.0	14.00	30.0	49	16
	0	B1	90.00	M5	75	60.00	2.5	11.00	23.0	49	11
	0	B2	90.00	M5	75	60.00	2.5	14.00	30.0	49	16
	0	BB	90.00	M6	80	70.00	3.0	14.00	30.0	49	16
	0	B4	90.00	M6	80	70.00	3.0	16.00	40.0	49	26
	0	B3	95.00	M6	80	50.00	2.5	14.00	30.0	49	16

*When ordering with actuator, use order code 🙆 (gearhead designation) and order code 🧭 to specify motor mounting kit. See Ordering Information.

Blue order codes indicate rapid shipment availability

(continued on next page)

	Actuator	Order Code	Order Code				Dimens	sions –	mm			
	Size	6 *	∕7*	Α	В	С	D	Е	F	G	LCH	MF
		0	AF	98.43	M6	85	73.03	3.0	12.70	37.0	76	15
		0	AE	98.43	M5	88	73.03	3.0	12.70	30.0	67	14
		0	B9	75.00	M5	75	60.00	2.5	14.00	30.0	67	14
		0	BA	75.00	M5	70	60.00	3.0	16.00	40.0	76	15
		0	B0	75.00	M6	75	60.00	3.0	14.00	30.0	67	14
		0	B2	90.00	M5	80	60.00	2.5	14.00	30.0	67	14
		0	BB	90.00	M6	80	70.00	3.0	14.00	30.0	67	14
		0	B4	90.00	M6	80	70.00	3.0	16.00	40.0	76	15
	OSPE50B	0	AP	90.00	M6	80	70.00	3.0	19.00	40.0	76	15
		0	B3	95.00	M6	85	50.00	2.5	14.00	30.0	67	14
		0	A1	99.00	M6	88	73.00	3.0	9.525	31.5	67	14
		0	A3	100.00	M6	90	80.00	3.5	14.00	30.0	67	14
		0	AL	100.00	M6	88	80.00	3.0	16.00	40.0	76	15
		0	AJ	100.00	M6	88	80.00	3.0	19.00	40.0	76	15
		0	A4	115.00	M8	100	95.00	3.5	19.00	40.0	76	15
		0	BD	130.00	M8	115	95.00	3.0	19.00	40.0	76	15
		0	BF	130.00	M8	115	110.00	3.5	19.00	40.0	76	15

(continued from previous page)

*When ordering with actuator, use order code ③ (gearhead designation) and order code ⑦ to specify motor mounting kit. See Ordering Information.

Blue order codes indicate rapid shipment availability

Belt Driven Tables

Mounted Motor Options

Actuator	Order Code	Order Code			Dimension	s — mm	
Size	6 *	⑦*	Motor description	С	LCH	LM	MF
	0	L0	LV233-01-10	58	47	79	9
	0	L1	HV233-01-10	58	47	79	9
OSPE25B	0	K0	BE233FJ-KPSN	58	47	143	19
	0	K1	BE233FJ-KPSN with brake (CM233FJ-115027)	58	47	178	19
	0	LO	LV233-01-10	58	49	79	10
	0	L1	HV233-01-10	58	49	79	10
	0	L2	LV343-03-10	86	49	127	26
	0	L3	HV343-01-10	86	49	127	26
	0	K0	BE233FJ-KPSN	58	49	143	18
OSPE32B	0	K1	BE233FJ-KPSN with brake (CM233FJ-115027)	58	49	178	18
	0	K2	BE344LJ-KPSN	86	49	188	16
	0	K3	BE344LJ-KPSB	86	49	220	16
	0	KC	PM-FBL04AMK	62	49	108.2	16
	0	KD	PM-FBL04AMK2 (Brake)	62	49	148.2	16
	0	L2	LV343-03-10	86	76	127	15
	0	L3	HV343-01-10	86	76	127	15
	0	K2	BE344LJ-KPSN	86	67	188	14
	0	K3	BE344LJ-KPSB	86	67	220	14
	0	KJ	PM-FCL10AMK	80	76	152.7	15
OSPE50B	0	KK	PM-FCL10AMK2 (Brake)	80	76	193	15
COFLOOD	0	M0	MPP0923D1E-KPSN	89	76	178	15
	0	M1	MPP0923D1E-KPSB	89	76	212	15
	0	M2	MPP1003D1E-KPSN	98	76	175	15
	0	M3	MPP1003D1E-KPSB	98	76	224	15
	0	M4	MPP1003R1E-KPSN	98	76	175	15
	0	M5	MPP1003R1E-KPSB	98	76	224	15

*When ordering with actuator, use order code 🙆 (gearhead designation) and order code 🕖 to specify mounted motor. See Ordering Information.

Gearhead Mounting Kit Options

Gearhead Mounting Kits include a coupling housing, coupling and flange

OCDESSE	U	00	44	54	60	35	3	12	25	49	14.5
USPE32B	0	C1	62	S5	75	52	8	16	36	49	23.0
OSDE50B	0	C1	62	S5	75	52	8	16	36	76	18.5
OSPE50B	0	C2	80	S6	95	68	10	22	46	76	23.0

*When ordering with actuator, use order code (gearhead designation) and order code (to specify gearhead mounting kit. See Ordering Information.

Blue order codes indicate rapid shipment availability

Mounted Gearhead with Motor Mounting Kit Options

Mounted Gearhead with Motor Mounting Kit include a coupling housing, coupling, flange, and gearhead with coupler and flange

_.

Actuator	Code	Code	der Dimensions – mm										
Size	6 ¹	7 ²	Α	в	С	D	Е	F	G	LCH	LGH	MAK	MF
	A or B	AA	46.66	M3	43	20.00	1.6	6.35	24.8	47	48.5	19.0	14.0
	A or B	AB	66.67	M5	55	38.10	1.6	6.35	20.5	47	48.5	15.7	14.0
OSDE25B	A or B	B5	46.00	M4	43	30.00	2.5	6.00	25.0	47	48.5	19.0	14.0
0372238	A or B	AM	46.00	M4	43	30.00	2.5	8.00	25.0	47	48.5	19.0	14.0
	A or B	B6	63.00	M4	55	40.00	2.5	9.00	20.0	47	48.5	13.7	14.0
	A or B	AH	63.00	M5	55	40.00	2.5	9.00	20.0	47	48.5	19.0	14.0
	C, D or E	AB	66.67	M5	62	38.10	1.6	6.35	20.5	49	67.0	16.5	23.0
	C, D or E	AC	66.67	M5	62	38.00	1.6	9.53	20.8	49	67.0	16.5	23.0
	C, D or E	AD	66.67	M5	62	38.10	1.6	9.525	31.8	49	67.0	22.5	23.0
	C, D or E	AE	98.43	M5	80	73.03	3.0	12.70	30.0	49	67.0	22.5	23.0
	C, D or E	AF	98.43	M6	85	73.03	3.0	12.70	37.0	49	67.0	30.0	23.0
	C, D or E	B6	63.00	M4	62	40.00	2.5	9.00	20.0	49	67.0	16.5	23.0
OSPE32B	C, D or E	AH	63.00	M5	62	40.00	2.5	9.00	20.0	49	67.0	16.5	23.0
	C, D or E	B8	70.00	M5	62	50.00	3.0	12.00	30.0	49	67.0	22.5	23.0
	C, D or E	AN	70.00	M5	62	50.00	11.0	14.00	30.0	49	67.0	22.5	23.0
	C, D or E	AG	75.00	M5	62	60.00	2.5	11.00	23.0	49	67.0	16.5	23.0
	C, D or E	B9	75.00	M5	62	60.00	2.5	14.00	30.0	49	67.0	22.5	23.0
	C, D or E	BB	90.00	M6	80	70.00	3.0	14.00	30.0	49	67.0	22.5	23.0
	C, D or E	A3	100.00	M6	89	80.00	3.5	14.00	30.0	49	67.0	22.5	23.0
	C, D or E	AB	66.67	M5	62	38.10	1.6	6.35	20.5	76	67.0	16.5	18.5
	C, D or E	AC	66.67	M5	62	38.00	1.6	9.53	20.8	76	67.0	16.5	18.5
	C, D or E	AD	66.67	M5	62	38.10	1.6	9.525	31.8	76	67.0	22.5	18.5
	C, D or E	AE	98.43	M5	80	73.03	3.0	12.70	30.0	76	67.0	22.5	18.5
	C, D or E	AF	98.43	M6	85	73.03	3.0	12.70	37.0	76	67.0	30.0	18.5
	C, D or E	B6	63.00	M4	62	40.00	2.5	9.00	20.0	76	67.0	16.5	18.5
OSPE50B	C, D or E	AH	63.00	M5	62	40.00	2.5	9.00	20.0	76	67.0	16.5	18.5
	C, D or E	B8	70.00	M5	62	50.00	3.0	12.00	30.0	76	67.0	22.5	18.5
	C, D or E	AN	70.00	M5	62	50.00	3.0	14.00	30.0	76	67.0	22.5	18.5
	C, D or E	AG	75.00	M5	62	60.00	2.5	11.00	23.0	76	67.0	16.5	18.5
	C, D or E	B9	75.00	M5	62	60.00	2.5	14.00	30.0	76	67.0	22.5	18.5
	C, D or E	BB	90.00	M6	80	70.00	3.0	14.00	30.0	76	67.0	22.5	18.5
	C, D or E	A3	100.00	M6	89	80.00	3.5	14.00	30.0	76	67.0	22.5	18.5

¹ When ordering with actuator, use order code (a) to specify mounted gearhead size and ratio: **A** PV40TA-005 (ratio 5:1); **B** PV40TA-010 (ratio10:1); **C** PV60TA-003 (ratio 3:1); **D** PV60TA-005 (ratio 5:1); **E** PV60TA-010 (ratio 10:1). See Ordering Information. ² When ordering with actuator, use order code (c) o specify motor mounting kit. See Ordering Information.

Blue order codes indicate rapid shipment availability

Mounted Gearhead and Motor Options

Mounted Gearhead and Mounted Motor Options include a coupling housing, coupling, flange, gearhead with coupler, flange and motor

Actuator	Order Code O	rder Code			Di	mension	s – m	m	
Size	6 ¹	⑦ ²	Motor description	С	LCH	LGH	LM	MAK	MF
	A or B	L0	LV233-01-10	58	47	48.5	79	15.7	14.0
OGDE25B	A or B	L1	HV233-01-10	58	47	48.5	79	15.7	14.0
USPEZJD	A or B	KA	PM-FAL01AM8N	40	47	48.5	95.2	19.0	14.0
	A or B	KB	PM-FAL01AM8N2 (Brake)	40	47	48.5	131.6	19.0	14.0
	C, D or E	L0	LV233-01-10	58	49	67.0	79	16.5	23.0
	C, D or E	L1	HV233-01-10	58	49	67.0	79	16.5	23.0
	C, D or E	L2	LV343-03-10	86	49	67.0	127	30.0	23.0
	C, D or E	L3	HV343-01-10	86	49	67.0	127	30.0	23.0
	C, D or E	K0	BE233FJ-KPSN	58	49	67.0	143	22.5	23.0
OSPE32B	C, D or E	K1	BE233FJ-KPSN w/ brake (CM233FJ-115027)	58	49	67.0	178	22.5	23.0
	C, D or E	K2	BE344LJ-KPSN	86	49	67.0	188	22.5	23.0
	C, D or E	K3	BE344LJ-KPSB	86	49	67.0	220	22.5	23.0
	C, D or E	KC	PM-FBL04AMK	62	49	67	108.2	22.5	23.0
	C, D or E	KD	PM-FBL04AMK2 (Brake)	62	49	67	148.2	22.5	23.0
	C, D or E	L0	LV233-01-10	58	76	67.0	79	16.5	18.5
	C, D or E	L1	HV233-01-10	58	76	67.0	79	16.5	18.5
	C, D or E	L2	LV343-03-10	86	76	67.0	127	30.0	18.5
	C, D or E	L3	HV343-01-10	86	76	67.0	127	30.0	18.5
	C, D or E	K0	BE233FJ-KPSN	58	76	67.0	143	22.5	18.5
OSPE50B	C, D or E	K1	BE233FJ-KPSN w/ brake (CM233FJ-115027)	58	76	67.0	178	22.5	18.5
	C, D or E	K2	BE344LJ-KPSN	86	76	67.0	188	22.5	18.5
	C, D or E	K3	BE344LJ-KPSB	86	76	67.0	220	22.5	18.5
	C, D or E	KC	PM-FBL04AMK	62	76	67	108.2	22.5	18.5
	C, D or E	KD	PM-FBL04AMK2 (Brake)	62	76	67	148.2	22.5	18.5

¹ When ordering with actuator, use order code () to specify mounted gearhead size and ratio: A PV40TA-005 (ratio 5:1); B PV40TA-010 (ratio10:1);
 C PV60TA-003 (ratio 3:1); D PV60TA-005 (ratio 5:1); E PV60TA-010 (ratio 10:1). See Ordering Information.
 ² When ordering with actuator, use order code () to specify mounted motor on gearhead. See Ordering Information.

End Cap Mounting Options

End Cap Mounting Selection Overview

See "Maximum Permissible Unsupported Length" for end cap mounting placement requirements.

Recommended for mounting position with carriage on top
 Recommended for mounting position carriage side only (3 or 9 o'clock position)

Order Code

Type A1, A2 and A3 – Standard End Cap

Actuator		Part	Weight*			D	imension	s – mr	n		
Size	Туре	Number*	(kg)	Α	в	С	СН	D	G	м	Ν
	A1	18156FIL	0.031							18	22
OSPE25B	A2	18157FIL	0.044	39	22	27	5.8	16	2.5	33	37
	A3	18158FIL	0.055							45	49
	A1	18161FIL	0.050							20	30
OSPE32B	A2	18162FIL	0.066	50	26	36	6.6	18	3.0	34	44
	A3	18163FIL	0.159							42	52

*Part number and weight are for individual piece.

Order Code

Type B1 and B4 – Reinforced End Cap

Actuator		Part	Weight*			D	imension	s — mr	n		
Size	Туре	Number*	(kg)	Α	В	С	СН	D	G	м	Ν
OSPE25B	B1	18159FIL	0.010	20	22	07	ΕQ	16	2.5	42	22
	B4	18160FIL	0.110	39	22	21	0.C	10	2.5	80	60
OSPE32B	B1	18164FIL	0.078	50	00	00	0.0	10	0.0	55	30
	B4	18165FIL	0.380	50	20	30	0.0	18	3.0	85	60

*Part number and weight are for individual piece.

Order Code

Type C1, C2, C3 and C4 – Block End Cap

Actuator		Part	Weight*			Dime	ensions –	- mm		
Size	Туре	Number*	(kg)	Α	В	С	СН	D	М	Ν
	C1	18166FIL	0.146						30	48
OSPE50B	C2	18167FIL	0.210	96	04	40	0.0	10 5	39	57
	C3	18168FIL	0.300	00	24	40	9.0	12.5	54	72
	C4	18169FIL	0.412						77	95

*Part number and weight are for individual piece.

Profile Mounting Options

See "Maximum Permissible Unsupported Length" for end cap and profile mounting placement requirements.

Profile Mounting Selection Overview

	Standard Carriage					P	owerSlie	de			F	roLin	е	
Туре		25	32	50	25/25	25/35	25/44	32/35	32/44	50/60	50/76	25	32	50
2 Internal Threads	D1	•	•	•	•	•	•	•	•	•	•	•	•	•
2 Thru Holes	E1	•	•	•	•	•	٠	•	•	٠	٠	•	•	•
	E2											•	•	•
	E3				•	•		•		•				
1.	E4						•		•		•			
3 Thru Holes	MAE	•	•	•	•	•	•	•	•	•	•	•	•	•

Recommended for mounting position with carriage on top
 Recommended for mounting position carriage side only (3 or 9 o'clock position)

Order Code

2, 5 or 8 (1, 2 or 3 pair)

Type D1 (with two internal threads)

Actuator	Dout	\//a;abt*				Dimens	ions – n	nm			
Size	Number*	(kg)	Α	С	СН	D	DB	Е	EB	м	Ν
OSPE25B	20008FIL	0.061	50	36	M5 x 10	27	28.5	34.5	36	38	22
OSPE32B	20157FIL	0.072	50	36	M5 x 10	33	35.5	40.5	43	46	30
OSPE50B	20162FIL	0.167	60	45	M6 x 11	40	45.0	52.0	57	71	48

*Part number and weight are for individual piece.

		Part	Weight*						Dime	nsions	– mn	า					
Size	Туре	Number*	(kg)	Α	в	С	СН	CJ	D	DB	Е	EB	F	FB	G	м	Ν
	E1	20009FIL	0.074												8	38	22
OCDEDEE	E 2	20352FIL	0.125	50	06	26	E	10 v E 7	40	44 E	01 E	26	47 E	40	23	53	37
USPE296	E 3	20353FIL	0.120	50	20	30	5.5	10 X 5.7	40	41.5	34.5	30	47.5	49	35	65	49
	E4	20354FIL	0.020												46	76	60
	E1	20158FIL	0.092												10	46	30
OSDE20D	E2	20355FIL	0.141	50	07	00		10 5 7	40	40 F	40 F	40	F 4 F	57	24	60	44
USPE32E	E3	20356FIL	0.140	50	21	30	5.5	10 x 5.7	40	48.5	40.5	43	54.5	57	32	68	52
	E4	20357FIL	0.197												40	76	60
	E1	20163FIL	0.189												10	71	48
	E2	20361FIL	0.235	~~	0.4	45	7.0		50	64.0	50.0	F7	07.0	70	19	80	57
OSPE50B	E 3	20362FIL	0.338	60	34	45	7.0	_	59	64.0	52.0	57	67.0	72	31	95	72
	E4	20363FIL	0.442												57	118	95

*Part number and weight are for individual piece.

Order Code

3, 6 or 9 (1, 2 or 3 pair)

Type MAE (with three thru holes)

	Devit	\ A /!l_++*					D	limen	sions –	- mm						
Actuator Size	Part Number*	weight* (kg)	Α	в	С	СН	CJ	D	DB	Е	EB	F	FB	G	м	Ν
OSPE25B	12278FIL	0.271	92	26	40	5.5	10 x 5.7	40	41.5	34.5	36	47.5	49	8	38	22
OSPE32B	12279FIL	0.334	92	27	40	5.5	10 x 5.7	46	48.5	40.5	43	54.5	57	10	46	30
OSPE50B	12280FIL	0.668	112	34	45	7.0	_	59	64.0	52.0	57	67.0	72	10	71	48

*Part number and weight are for individual piece.

ORDERING INFORMATION

Select an order code from each of the numbered fields to create a complete OSPE..B model order number. Include hyphens and non-selective characters as shown in example below.

Ĩ)	2	3	4	5	6	\bigcirc	8	۹	10	11	12	13	14
Order Number Example: OSI	ΡE	25 –	0	0	0	0	0 –	00000	- P	0	0	0	0	0

1 Series

OSPE Origa System Plus Electromechanical

2 Actuator Bore Size

- 25 41 mm W x 53 mm H
- 32 52 mm W x 67 mm H
- 50 87 mm W x 93 mm H

3 Drive Train

0 Belt actuator with internal glider bearing

(4) Carriage

- O Standard
- 1 Tandem (two carriages for higher load capabilities)
- 2 Bi-Parting (two driven carriages for opposing movements)

5 Drive Shaft and Motor Input

- 0 Plain shaft, motor input left
 - Plain shaft, motor input right
 - Double plain shaft, motor
- 3 Double plain shaft, motor

Mounted Gearhead Options

- 0 No gearhead
 - A PV40TA-005 (gear ratio 5:1)*
 - B PV40TA-010 (gear ratio 10:1)*
 - **C** PV60TA-003 (gear ratio 3:1)*
 - **D** PV60TA-005 (gear ratio 5:1)*
 - E PV60TA-010 (gear ratio 10:1)*

* Requires selection from "Mounted Gearhead with Motor Mounting Kit" or "Mounted Gearhead and Motor" (see Options & Accessories) for item ⑦ below.

⑦ Gearhead/Motor Mounting Options

 No gearhead or motor mounting option Motor Mounting Kits (see Options & Accessories for available option dimensions and delivery)

Mounted Motors (see Options & Accessories for available option dimensions and delivery) Gearhead Mounting Kits (see Options & Accessories for available option dimensions and delivery)

Mounted Gearhead with Motor Mounting Kit (see Options & Accessories for available option dimensions and delivery)

Mounted Gearhead and Motor (see Options & Accessories for available option dimensions and delivery)

8 Order Stroke*

Ρ

00000 5-digit input (in mm) * See Dimensions to calculate required order stroke. Maximum catalog stroke: OSPE25B = 03000 mm; OSPE32B and OSPE50B = 05000 mm Longer strokes available upon request. Consult factory.

Iterative and Dovetail Grove Covers

Standard hardware with Parker gold cover strip

Blue order codes indicate rapid shipment availability Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

(10) Carriage Options

- 0 No external guide rail
- 6 ProLine PL25, PL32, PL50*
- E PowerSlide PS25/25*
- F PowerSlide PS25/35 or PS32/35*
- G PowerSlide PS25/44 or PS32/44*
- H PowerSlide PS50/60*
- PowerSlide PS50/76*
- M Inversion Mounting**
- R Clevis Mounting **

* Requires standard carriage (select order code "0" from ④. See Dimensions for additional information.

** Requires standard carriage (select order code "0" from ④. See Options & Accessories for Inversion Mounting and Clevis Mounting.

1 External Guide Rail Orientation

Diagonal Strain Strain (See Options & Accessories)

- 0 No end cap mounting
- 1 1 pair A1* (standard end cap) or C1** (block end cap)
- 2 1 pair A2* (standard end cap) or C2** (block end cap)
- 3 1 pair A3* (standard end cap) or C3** (block end cap)
- 4 1 pair B1* (reinforced end cap) or C4** (block end cap)
- **5** 1 pair B4* (reinforced end cap)

* For size 25 and 32 ** For size 50

13 Profile Mounting (see Options & Accessories)

- 0 No profile mounting
- 2 1 pair D1 (with 2 internal threads)
- 5 2 pair D1 (with 2 internal threads)
- 8 3 pair D1 (with 2 internal threads)
- 1 1 pair E1 (with 2 thru holes)
- 4 2 pair E1 (with 2 thru holes)
- 7 3 pair E1 (with 2 thru holes)
- 3 1 pair MAE (with 3 thru holes)
- 6 2 pair MAE (with 3 thru holes)
- 9 3 pair MAE (with 3 thru holes)
- K 1 pair E2 (with 2 thru holes)
- N 2 pair E2 (with 2 thru holes)
- R 3 pair E2 (with 2 thru holes)
- L 1 pair E3 (with 2 thru holes)
- P 2 pair E3 (with 2 thru holes)
- S 3 pair E3 (with 2 thru holes)
- M 1 pair E4 (with 2 thru holes)
- Q 2 pair E4 (with 2 thru holes)
- T 3 pair E4 (with 2 thru holes)

(14) Magnetic Sensor Mounting*

- 0 No sensor mounting
- A 1 pc. N.O., NPN, with M8 connector
- B 2 pc. N.C., NPN, with M8 connector
- c 1 pc. N.O., NPN, with M8 connector
- 2 pc. N.C., NPN, with M8 connector
 1 pc. N.O., PNP, with M8 connector
- D 1 pc. N.O., PNP, with M8 connector
 E 2 pc. N.C., PNP, with M8 connector
- F 1 pc. N.O., PNP, with M8 connector
 - 2 pc. N.C., PNP, with M8 connector

* Extension cable with M8 connector and 5 m cable flying lead cable for Sensor with M8 plug can be ordered separately; use part number 003-2918-01

Blue order codes indicate rapid shipment availability

OSPE..BV Fixed Belt-Driven Actuators

Actuators with Fixed Belt for Vertical Applications

- Fixed actuator head for low moving mass ______
- Integrated ball bearing guide for high bending moments
- Magnetic switch set for contactless position sensing
- Easy to install
- Low maintenance

Features

- High acceleration and speeds
- Drive Shaft versions with clamp shaft or plain shaft
- Power transmission by belt
- Moving axis profile
- Complete motor and control packages
- IP 20 rating

OSPE20BHD

OSPE25BHD

	OSPE20BV	OSPE25BV
Maximum Travel (mm)	1,000	1,500
Maximum Payload F _z (N)	1,600	3,000
Maximum Acceleration (m/sec ²)	20	20

The OSPE...BV vertical fixed beltdriven actuator with integrated ball bearing guide is designed specifically for lifting loads in vertical orientation. The light weight design allows to use smaller motors with this actuator keeping the robust and aesthetically pleasing design of the OSPE series.

The compact and modular design allows the integration of the OSPE.. BV in any machine layout, providing very little space, without sacrificing payload or thrust capacity.

- Drive shaft with both clamp and plain shaft
- Drive shaft with plain shaft
- Drive shaft with double plain shaft for parallel operation of two Z-axes with an intermediate drive shaft

Actuator Head Orientation

All OSPE..BV actuator heads are standard with an integrated ball bearing guide and are available with either left or right side gearhead/motor mounting.

Drive Head Options

Standard or tandem with additional actuator head and two additional carriers for higher bending moments.

Multi-axis Systems

A wide range of adapter plates and intermediate drive shafts simplifies engineering and installation. Please consult factory for your individual system design.

Magnetic Switches Set

Magnetic switches with connector, mounting rail and magnets for contactless sensing of the end positions. Cable (suitable for cable chain) can be ordered separately in 5 m, 10 m or 15 m length.

Options and Accessories

Information on all OSPE..BV Series options is detailed in Options & Accessories. Simply select all the options needed to solve your application requirements, then order with the actuator using convenient order codes (see Ordering Information). To order an option separately as an upgrade to an existing system or as a replacement part, use the individual option part numbers provided.

(1) Carriage

Low profile, high strength aluminum carriage with threaded holes for ease of mounting

- Belt tensioning station Easy access for belt tension without removing the payload
- (3) Corrosion resistant steel sealing band Magnetically fastened to the actuator body and provides sealing to IP54
- (4) Lubrication access port Easy access maintenance allows for single point lubrication of bearing trucks at any point along travel
- (5) Slotted profile With dovetail grooves for strength, actuator mounting, and mounting of sensor and other accessories
- (6) Integrated ball bearing truck For high performance, high payload and moment load demands. (Optional roller wheels available.)
- Steel reinforced timing belt High thrust force transmission and long life
- (8) Clamp shaft Optimal, zero-backlash coupling for gearhead and motor
- End housing mounting
 Threaded mounting holes allow for a multitude of mounting options

SPECIFICATIONS

OSPE..BV Performance Data

Actuat	or Size				OSPE20BV	OSPE25BV
Travel	Distance per Revo	olution	s _{lin}	mm	108	160
Linear	Speed (Max)		v _{max}	m/s	3	5
Accele	eration (Max)		a _{max}	m/s ²	20	20
Repea	tability			μm	± 50	± 50
Order	Stroke (Max)			mm	1,000	1,500
Recom	nmended Permissi	ble Mass	(Max)	kg	10	20
Thrust	Force (Max)		FAmax	N	650	1,430
	. ,		Ашал	lbs	146	321
Torque	on Drive Shaft (M	lax)	M _{Amax}	NM	12	38
				IN-ID	104	333
		RMS	M ₀	in lb	0.9	1.4
Torque	e* – No Load			Nm	0 1 1	12
		Peak	M ₀	in-lb	10	1.5
				N	1,600	2.000
			F _Y	lbs	360	450
Load**	f (Max)		-	Ν	1,600	3,000
			FZ	lbs	360	674
			NA	Nm	20	50
			IVIX	in-lb	177	443
Bending Moment Load* (Max)		М.,	Nm	100	200	
		(ivian)	IVIY	in-lb	885	1,770
			M⊸	Nm	100	200
				in-lb	885	1,770
			<1	m/s	650	1,430
A rce			<2	m/s	605	1,288
с С С	N @ Specified a	Speed	<3	sm/s	450	1,170
ust Aax			<4	m/s	—	1,052
Ч Ч			<0	1 m		1,013
F	N @ Specified S	Stroke		2 m	605	1,400
			<1	m/s	12	38
Σ			<2	m/s	11	34
ax)			<3	m/s	8	31
Ξ	Nm @ Specified	Speed	<4	m/s	—	28
en			<5	m/s	—	27
ord	Nm @ Specified	Stroke	<	1 m	12	38
E C	nin e opecined	OUOKE	<	2 m	11	36
Inertia	o				100	4 005
@ Zer	o Stroke Actor of Stroko		J ₀	kgmm ² /m	480	1,090
Per 1	kg Moved Mass		J _{OS}	kamm²/ka	296	649
Weight	t		-11	J		0.0
@ Zer	ro Stroke		m ₀	kg	2.8	6.2 7 g
Per N	leter of Stroke		m _{OS}	kg/m	4.5	2.6
Move	d Mass of Carriag	е	m _C	kg	1.5	2.0
Ambie	nt Temperature Ra	ange		°C	-30 to	+80
IP Rati	ing				IP 2	20

* For Tandem option double the values listed ** Load and bending moment based on 8000 km performance

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

SPECIFICATIONS

DIMENSIONS

OSPE..BV Order Stroke Dimensions

Standard Drive Head

A Order Stroke (Required Travel + 2 * Safety Distance)

Actuator Size	OSPE20BV	OSPE25BV
Α	148	210
KM min	155	225
KM _{rec}	225	275

KMmin is the minimum distance between two drive heads possible. KM_{rec} is the recommended distance between two drive heads for optimal performance.

× :

Tandem Drive Head

Travel a Order Stroke (Required Travel + KMmin + 2 * Safety Distance)

KMmin

Magnetic Switch Dimensions

The magnetic switch set provides contactless sensing of the end positions. The mounting rail and magnetic switches are mounted on the actuator drive head and the magnets are mounted in the dovetail slot on the profile.

Dimension (mm)

	OSPE20BV	OSPE25BV
MA	46.0	56.0
MB	23.7	26.0
MC	42.3	51.0

Order Stroke Safety Distance:

The mechanical end position should not be used as a mechanical end stop, thus an additional Safety Distance at both ends of travel must be incorporated into the Order Stroke. The safety distance for servo-driven systems is equivalent to the travel distance per one revolution of the drive shaft. AC motor-driven systems with VFDs require a larger safety distance than servo systems. For further information and design assistance, please consult factory.

Base Unit Dimensions

Drive Shaft Versions:

• Clamp shaft • Plain Shaft • Clamp Shaft with Plain Shaft • Double Plain Shaft

ORDERING INFORMATION OSPE...BV

Select an order code from each of the numbered fields to create a complete OSPE..BV model order number. Include hyphens and non-selective characters as shown in example below.

Series

OSPE Origa System Plus Electromechanical

2 Bore Size

- 20 73 mm W x 123.3 mm H
- **25** 93 mm W x 154.5 mm H

3 Drive Train

7 Vertical Fixed Belt-Driven Actuator w/Integrated Ball Bearing Guide

(4) Carriage

- 0 Standard
- 1 Tandem (two drive heads for higher actuator stiffness)

(5) Drive Shaft Configuration and Orientation ⁽¹⁾

* Consult factory for all gearhead and motor mounting options ** Only available with order code 00 "No gearhead mounting kit or motor option" (item **§**)

6 Order Stroke*

00000 5-digit input (in mm)*

* Maximum standard stroke: OSPE20BV = 1000 mm; OSPE25BV = 1500 mm. For example, to OSPE..V with maximum order stroke, specify 01500. Longer strokes available upon request. Consult factory.

7 Hardware and Cover Strip

P Standard hardware with Parker gold cover strip

8 Gearhead/Motor Mounting Options

- 00 No gearhead mounting kit or motor option
- xx Consult factory for all gGearhead and motor mounting options

9 Magnetic Sensor Mounting

- 0 No sensor mounting
- B 2 pc. N.C., NPN, with M8 connector
- E 2 pc. N.C., PNP, with M8 connector

* Extension cable with M8 plug and 5 m cable flying lead cable for Sensor with M8 connector can be ordered separately; use part number 003-2918-01

FEATURES

The LCR Series

Miniature Belt-Driven Designs with Maximum Versatility

- Miniature footprint 30 x 40 mm cross-section
- Internal square rail or glider bearing design
- 100% duty cycle
- IP30 stainless steel strip seal
- Low noise 2 and 10 mm leadscrew or long travel belt drive
- Travel lengths to 1000 mm
- Attractive black anodize finish

Features

- Extruded aluminum body incorporates dovetail mounting, T-slots and belt return
- Toe clamp mounting for easy installation
- Dowel pin holes in the LCR30 carriage for repeatable mounting
- Multiple motor mount options accommodate NEMA 11,17 and 23 steppers and NEMA 16 servo motors
- Flush-mounted NPN, PNP, N.O. or N.C. fully adjustable limit sensors maximize flexibility and minimize footprint impact
- Screw-driven version has an optional parallel motor mount for space constrained applications

	LCR30
Maximum Travel (mm)	600
Maximum Payload (N)	500
Maximum Acceleration (m/s ²)	20

*Do not exceed allowable axial and moment loading.

For OEMs looking to automate light payloads, the new LCR (Light Capacity Rodless) linear positioner family provides the smallest form factor with unmatched, easy-touse flexibility.

With any "build-it-yourself" positioner, all the parts required to build a linear motion axis from scratch must be ordered, tracked, received, inventoried, assembled and tested. In contrast, the LCR Series is a completely pre-engineered, pre-tested, ready-to-use positioner solution, which allows OEMs to significantly reduce their time to market with minimized design, procurement, manufacturing, assembly and qualification time or effort.

Based on the proven life science track record of Parker's MX80 and LP28 Series, the LCR was developed specifically to provide a high-quality, easy-to-use, offthe-shelf linear actuator.

LCR solutions are ideal for Maldi-plate and micro-titer tray automation. Rated for 100% duty cycle, the LCR offers smooth, quiet motion ideal for keeping instrument noise to a minimum. With selectable travel lengths up to 1000 mm and payloads up to 100 N (25 lbs), the ability to automate laboratory instruments has never been easier.

Bottom Line Impact

The LCR's proven pre-engineered design will significantly reduce your instrument time to market and improve your ROI.

Tailored to Meet Every Requirement

The LCR is an easy-to-configure off-the-shelf solution with a virtually unlimited array of standard configurations available.

If your application demands a special design, Parker takes the next step and customizes the product to meet your required specification. Common modifications include:

- Clean room components
- Special tool plates
- Mounts for 3rd party motors
- Single or parallel acting electric grippers
- Maximum height or length modifications for space constraints
- And much more

Whether you need blue anodize or a design with a custom carriage for larger than standard payloads, or anything else, Parker excels at application solutions and will modify the LCR to fit your specific needs.

Please call us at 800-245-6903 to discuss your requirements.

Ideal for High-Volume, Light-Capacity, Electrically-Controlled Motion

Life science applications:

- Mass spectroscopy
- Course microscopy
- Analytical instruments
- Laboratory automation
- Micro titer automation
- MALDI plate automation
- Liquid handling
- Syringe pumps

General-purpose applications:

- Point-of-purchase kiosks
- Adjustable guide widths for conveyor lines
- Storage and retrieval
- Part shuttling
- Light payload automation conversion from rodless pneumatics to electric
- General automation for any ≤25 lb payload with basic repeatability requirements

All LCR series actuators are compliant to RoHS and CE directives.

FEATURES

- (1) Motor Mounting Options The most motor mounting options standard with more options easily available
- (2) Encoder options For position verification and position maintenance
- (3) Carriage mounting surface Machined aluminum carriage mounting surface with locating holes
- (4) Stainless steel sealing strip Best in class bearing and drive train protection
- (5) Easily adjustable belt tension system Reduces maintainance and down time
- (6) Minimal instrument/machine size Including flush mount limit sensors
- 7 Profile size

Provides high rigidity for minimal deflection along with "T" and dovetail slots

Flexible drive train options With multiple screw leads for high thrust or reinforced belt drive for highest speeds

Parallel motor mounts available

Stepper drive option Simple and powerful plug and spin P2[™] stepper drive option

Rugged internal square rail Re-circulating bearing or quiet glider bearing for lighter payload needs

Quick and easy mounting options With toe clamps or standard multi-axis connection kits

Metric and Imperial graduated scales

integral to the LCR body frame are among the many custom modifications available.

The P2[™] Drive

An OEM-Friendly Design... The P2 Completes the LCR as an Easy-to-Use Motion Solution

Pairing the LCR with the P2[™] drive, instrument builders eliminate another costly design component and complete their motion package with a single-vendor, easy-to-use solution.

The P2 drive is only 1" x 1" x 3" in size, but packs 2 A of current at 24 VDC to provide superior power density for simple step and direction motion.

The Parker P2 Stepper Drive is a complete step and direction indexer for hybrid step motors. The P2 drive operates stepper motors in full, half, quarter, and sixteenth step modes with an output drive capacity up to 24 VDC and 2.0 amps.

Key Design Advantages

- On board eyelets allow OEMs to measure output current and to set all drives equally
- Two potentiometers allow for easy adjustment of standby and run current
- No programming
- No code to learn
- Robust, high quality product with 100% pre-ship testing

P2 saves a lot more than space...

The P2 Series offers added value to customers who traditionally specify board level drives or design their own drives in house.

1 Free-up engineering, procurement, quality, and assembly resources in house. The P2 Series reduces the instrument/ machine design time by utilizing an off-the-shelf solution.

The result: faster time to market for new products, allowing customers to focus on core competency.

2 The P2 also reduces procurement complexity by reducing the need to chase multiple vendors versus a do-it-yourself drive design.

The result: better return on investment.

3 The P2 Series provides the customer added flexibility to mount the enclosed, protected drive directly onto a motion axis such as the Parker LCR Series, or DIN rail mount in a convenient location.

The result: a well protected, robust drive with quick and easy installation for an easy out-of-box user experience.

Key Design Features

- Supply voltage 12 to 24 VDC
- 2.0 amps max motor output current
- Adjustable run current and standby current
- Single or differential ended inputs
- Enable, step and direction inputs voltages up to ±14 VDC (low/high input): <0.8 V Low, >2 V High
- 1.0 µs minimum step pulse width
- 1.0 µs minimum step pulse low time
- 0 to 40°C operating temperature with natural convection
- 5 to 95% relative humidity, non-condensing
- **Optional DIN rail mount**
- Resolutions of 200, 400, 800 and 3200 steps/rev (with 1.8° step motor)
- Small package (80 mm x 25 mm x 25 mm)
- **RoHS** compliant

SPECIFICATIONS

LCR Series Performance Specifications

Addressing applications which involve positioning of smaller payloads within a very small space envelope, the LCR30 is the ideal solution for OEM instrument manufacturers. The LCR30 offers a reduced overall cost of ownership and a complete solution including amplifier/drive, motor, actuator, bearings, seals, and limit sensors.

LCR Belt-Driven Performance by Profile Size

Specification	Units	LC	R30		
Grade		S (Square Rail)	B (Bushing)		
Bidirectional Repeatability	mm	± 0.2	± 0.5		
Duty Cycle	%	100	100		
Max. Acceleration*	m/s ²	20	20		
Max. Linear Speed	mm/s	870	870		
Normal Load	Ν	90	45		
Moment Load Roll Yaw Pitch	Nm	2.6 6.5 8.2	0.3 0.8 1.5		
Max. Axial Load	Ν	45	45		
Linear Travel/Rev	mm	58.0	58.0		
Breakaway Torque	mNm	85.0	85.0		
Coefficient of Friction		0.02	0.10		
Carriage Weight	Ν	0.5	0.5		
Base Moment of Inertia Ixx Iyy	mm⁴	39,778 46,273	36,162 42,066		

*Do not exceed allowable axial and moment loading.

Model	LCR30
Width x Height (mm)	30 x 40
Repeatability (±mm)	0.2
Max. Normal Load ¹ (N)	90
Max. Axial Load (N)	45
Max. Speed ² (mm/s)	870
Max. Travel Length (mm)	1000
Screw Lead Options (mm/rev)	_

¹ Specifications for square rail design, bushing version reduces normal load to 50% value.

² Specifications for fast screw lead, the fine screw lead will reduce maximum speed.

		LCR30	
	Table Weight	Total Inertia F	Reflected (kg-m ²⁾
Travel	(M23)	No Load	2.5 kg Load
25	1.23	3.111 ⁻⁶	2.161-4
50	1.27	3.145 ⁻⁶	2.161-4
75	1.30	3.189 ⁻⁶	2.162-4
100	1.34	3.232-6	2.162-4
125	1.37	3.276 ⁻⁶	2.163-4
150	1.41	3.319-6	2.163-4
175	1.44	3.363-6	2.163-4
200	1.48	3.406-6	2.164-4
225	1.52	3.500-6	2.164-4
250	1.55	3.493-6	2.165-4
275	1.59	3.536-6	2.165-4
300	1.62	3.580-6	2.166-4
325	1.66	3.623-6	2.166-4
350	1.69	3.667-6	2.166-4
375	1.73	3.710-6	2.167-4
400	1.76	3.754-6	2.167-4
425	1.80	3.797 ⁻⁶	2.168-4
450	1.83	3.8 41 ⁻⁶	2.168-4
475	1.87	3.884-6	2.169-4
500	1.90	3.927-6	2.169-4
525	1.94	3.980 ⁻⁶	2.170-4
550	1.97	4.014-6	2.170-4
575	2.01	4.058-6	2.170-4
600	2.04	4.101-6	2.171-4
625	2.08	4. 1 45 ⁻⁶	2.171-4
650	2.11	4.188-6	2.172-4
675	2.15	4.232-6	2.172-4
700	2.18	4.275-6	2.173-4
725	2.22	4.319-6	2.173-4
750	2.25	4.362-6	2.173-4
775	2.29	4.405-6	2.174-4
800	2.32	4.449-6	2.174-4
825	2.36	4.492-6	2.175-4
850	2.40	4.536-6	2.175-4
875	2.43	4.579-6	2.176-4
900	2.47	4.623-6	2.176-4
925	2.50	4.666-6	2.176-4
950	2.54	4.710-6	2.177-4
975	2.57	4.753-6	2.177-4
1000	2.61	4.796-6	2.178-4

LCR Belt-Driven Performance by Travel Length (no load)

Linear Speed-Force Performance

1 Performance with Parker P2[™] stepper drive running at 24 VDC

2 Performance with Parker Aries AR04 servo drive 3 Performance with Parker ViX drive run at 48 VDC

DIMENSIONS

Idler Unit - Square Rail Models only

P2[™] Stepper Drive

P2 Pin Out Diagram

OPTIONS & ACCESSORIES

X-Y and X-Z Brackets

Dimensions – mm

X-Y Bracket for LCR30 Belt-Driven Units #002-3274-01

(includes two toe clamps with fasteners)

Toe Clamps

Toe clamp kits include socket head fasteners to mount clamp.

Part Number	Quantity
002-3233-01	1
002-3233-04	4
002-3233-100	100

Encoder

When using stepper motors, positional feedback is readily available with the optional rotary encoder. The robust magnetic encoder withstands vibration and provides easy in-position confirmation.

Encoder

Wiring Connection

Pin	Wire	Function
1	White	Ground
2	Green	A+
3	Yellow	A-
4	Brown	+5 VDC
5	Blue	B+
6	Red	B-
7	Pink	Not used
8	Gray	Not used

Part Number	Counts/rev	Bore				
003-4590-01	400	4 mm				
003-4590-02	400	5 mm				
003-4590-03	500	4 mm				
003-4590-04	500	5 mm				
003-4590-05	400	6.35 mm				
003-4590-06	500	6.35 mm				
Encoder Cable (6-pin differential)						

006-2398-1.0

500-2590-1.0	leads
006-2398-3.0	3m high flex with flying
	louus

End-of-Travel Limit Sensors

Limit sensors offer home and end of travel protection in a flush mount design that minimizes the overall width of the LCR series. The limit sensors are available standard as NPN or PNP with normally open or normally closed designs.

Specifications

Operating Voltage: 10-30 VDC Repeatability: $\leq \pm 0.1$ mm EMC: EN 60 947-5-2 Short circuit protections: Yes Reverse Polarity Protection: Yes Enclosure Rating: IP 67 Operating Temperature Range: -25° to 75° C (-13° to 167° F)

Wiring Connection

Pin	Wire	Function
1	Brown	+ VDC
4	Black	NO
3	Blue	– VDC

Part Number	Logic	Cabling
P8SAMQFAZ	PNP N.C.	3 meter flying leads
P8SAMQCHZ	PNP N.C.	0.3 meter with M8
P8SAMMFAZ	NPN N.C.	3 meter flying leads
P8SAMMCHZ	NPN N.C.	0.3 meter with M8
P8SAMPFAZ	PNP N.O.	3 meter flying leads
P8SAMPCHZ	PNP N.O.	0.3 meter with M8
P8SAMNFAZ	NPN N.O.	3 meter flying leads
P8SAMNCHZ	NPN N.O.	0.3 meter with M8
003-2918-01	All cabling	5 meter extension cable for M8 connections

ORDERING INFORMATION I CR

Fill in an order code from each of the numbered fields to create a complete model order code.

(8)

	1	2	3	4	5	6	7	8	9	10	1
Order Example:	LCR	30	LN10	0075	S	S	Α	N08	E0	L1	A1

(1) Series LCR

Series

- (2) Size (width in mm)
 - 30 30 mm wide profile

(3) Drive Train

IDLR	Idler unit; no drive
	mechanism
LN02	2 mm leadscrew with in-
	line motor mount
LN10	10 mm leadscrew with in-
	line motor mount (available
	with LCR30 size only)
BLT0	Single axis belt drive

(4) Travel Length (mm)

хххх	25 mm increments of travel
	LCR30 Screw-Driven:
	25 to 600 mm
	LCR30 Belt-Driven:
	25 to 1000 mm

(5) Bearing Type

- S Square rail bearing
- В Glider bushing bearing

(6) Environmental Protection

S Strip seal protection (standard)

(7)

Motor Mount Position							
I	Inline						
Α	Parallel mount, Position "A"*						
В	Parallel mount, Position "B"*						
С	Parallel mount, Position "C"*						
R	Belt drive, motor right						
L	Belt drive, motor left						
_	No motor						
*Not ava options	ailable with BLT0 drive train						
Motor							
N00	No motor						
N11	NEMA 11 motor mount ²⁾						
N16	SM16 motor mount ³⁾						
N17	NEMA 17 motor mount ³⁾						
N23	NEMA 23 motor mount ³⁾						
M11	NEMA 11 stepper motor ²⁾						
M16	SM162AE-N10N servo motor ³⁾						
M17	NEMA 17 stepper motor ³⁾						
M23	NEMA 23 stepper motor ⁴⁾						
 ²⁾ Not available on BLT0 belt drive version ⁴⁾ Only available on BLT0 belt drive version 							
Motor	Encoder Option						

(9) υp

E0 No encoder

E2 500 line encoder* *Only available with M11, M17, and M23 motor options

Home & End-of-Travel (10)

U	nome						
	L0	No home or limit sensors					
	L1	3 NPN sensors (1 N.O.; 2 N.C.)					
	L2	1 NPN sensor (N.O.)					
	L3	3 PNP sensors (1 N.O.; 2 N.C.)					
	L4	1 PNP sensor (N.O.)					
	L5	3 NPN sensors (2 N.O.; 1 N.C.)					
	L6	1 NPN sensor (N.C.)					
	L7	3 PNP sensors (2 N.O.; 1 N.C.)					
	L8	1 PNP sensor (N.C.)					
11	Steppe	er Drive/Amplifier					
	A0	No P2 Drive					
	A1	P2 Stepper Drive/Amplifier					
	A2	P2 Stepper Drive/Amplifier with 1 meter cable set* (flying leads)					
	A3	P2 Stepper Drive/Amplifier with 1 meter cable set* to ACR					
	A 4	P2 Stepper Drive/Amplifier with 1 meter cable set* to 6K					
	*For longer cable needs please order the A1 option and order cables separately						

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

ORDERING INFORMATION

P2[™] Ordering Information

Ordering Information

Order Exa				ampl 3	e: 4	5	6	7
	P	2	D	2	SD	E0	FL1	KO
(D	Se P2	eries 2	Seri	es			
(2	In D	tellig	ence Step	oper dr	ive		
(3	Р(2	ower	Leve 2 ar	l nps ma	ax		
(4	C SI	omm D	unica Step inpu	tion b and d it	directio	on	
(5	Fe E(edba)	ack No e	encode	er		
(6	C: Fl Fl A(6) 6)	able : _0 _1 _3 C1 C3 (1 (3	Set No d See	cable s	et at left		
(Ð	M K	ount D 1	ing Ki Star mou DIN	t ndard p Inting I Rail M	olate kit incl	uded na Kit	

P2 Options and Accessories

Part Number	Order Code	Description
006-2342-1.0	—	Power Cable – 1 m , High Flex
006-2342-3.0	—	Power Cable – 3 m , High Flex
006-2343-1.0	-	6K Control Cable – 1 m, High Flex
006-2343-3.0	-	6K Control Cable – 3 m, High Flex
006-2344-1.0	-	ACR Control Cable – 1 m, High Flex
006-2344-3.0	-	ACR Control Cable – 3 m, High Flex
006-2345-1.0	-	Control Cable – Flying Leads – 1 m, High Flex
006-2345-3.0	-	Control Cable – Flying Leads – 3 m, High Flex
006-2357-1.0	—	Motor Power Extension – 1 m
006-2357-3.0	-	Motor Power Extension – 3 m
002-3296-1.0	FL1	1 m Flying Lead Cable Set (contains power and communications cable from above list)
002-3296-3.0	FL3	3 m Flying Lead Cable Set (power and communications cable from above list)
002-3297-1.0	AC1	1 m Cable Set to ACR (power and communications cable from above list)
002-3297-3.0	AC3	3 m Cable Set to ACR (power and communications cable from above list)
002-3298-1.0	6K1	1 m Cable Set to 6K (power and communications cable from above list)
002-3298-3.0	6K3	3 m Cable Set to 6K (power and communications cable from above list)
002-3294-01	_	DIN Rail Mounting Kit (DIN clip and screw)
002-3295-01	—	Mounting kit to attach P2 [™] to LCR

HPLA Series Belt Driven Linear Modules

Belt-Drive Actuators for High Thrust, Long Stroke Applications

- Strong steel roller bearing option for highest load capacity – 1530 kg
- Rugged construction for heavy duty applications
- Thrust force capacity to 5455 N
- Standard travel up to 9 meters
- Velocity up to 5 meters/sec.
- Positional repeatability of ±0.2 mm
- Timing belt and pulley drive mechanism for fast, accurate positioning

Proven Technology

- Direct mounting for planetary gear reducers eliminating complexity of additional machined parts or couplings
- Adjustable "end of travel" limit switches and "Home" position sensor
- Cable carrier systems
- Performance matched Parker servo systems
- Structural components for vertical and multiaxis mounting
- Toe clamps and hardware for fast/easy mounting
- External bumper option

-W-F

- Link shafts and support bearing for dual unit axes
- Splice plates for extending travels beyond length available in a single profile

	HLE60 HPLA080		ľ				HPLA180		
			HLE100	HPLA120	н	ILE150			
			HLE60	HPLA80	HLE100	HPLA120	HLE150	HPLA180	
I	Maximum T	ravel (mm)	4,000	5,540	6,200	9,470	7,900	9,240	
Maximum Payload (N)		353	1,304	1,549	2,598	3,402	4,501		
I	Maximum A	cceleration (m/s	²) 10	10	10	10	10	10	

*Do not exceed allowable axial and moment loading.

The HPLA is a rugged "next generation" linear module that offers high speed, high acceleration, and long travel, combined with stiff, rigid construction characteristics. It is ideally suited as a single axis product or as a component for high speed multi-axis gantries.

The HPLA carriage is rigidly supported on three sides by heavy duty roller bearings, housed in a rugged aluminum housing. The bearing wheels are pre-loaded via eccentric bushings to eliminate play in the system, and are strategically located to evenly distribute the load across the length of the carriage.

A high strength steel reinforced drive belt and pulley system provides fast and highly repeatable positioning of the carriage. This high thrust drive belt is securely connected to the carriage by a unique clamping system. This system provides a secure connection and enables easy belt replacement without the need to remove the payload. Having a low coefficient of friction, the carriage design provides a high mechanical efficiency and long service life. Special carriage lengths and linear units with multiple carriages are available for custom applications.

FEATURES

Carriage

(1)

(2)

Roller bearing wheels on three sides of the carriage provide smooth linear motion and support and evenly distribute the load across the length of the carriage. Eccentric bearing wheel bushings eliminate play on all sides of the carriage.

Gearhead

Parker Stealth series gearheads integrated as direct drive options.

(3) Drive Belt

A zero backlash, steel reinforced timing belt provides high speed, high force, and high acceleration. A serrated clamp mechanism between belt and carriage guarantees a safe, strong connection and allows belt replacement without removing the load.

(4) Drive Station

The drive stations are designed to accept planetary gear reducers or provide different shaft outputs for driving the HPLA.

(5) Housing

An extruded aluminum profile provides maximum rigidity (torsion and deflection) at minimum weight. It accommodates steel wheels that ride on integral hardened steel bearing ways, or polyamide wheels that ride in the extruded guideway.

(б) т

Tensioning Station

An easily accessible tensioning station is used to set the drive belt tension.

(7) Roller Bearing

Three rows of preloaded heavy duty steel roller bearings provide the highest load carrying capacity available.

Modular drive system

Increased system stiffness due to larger belt width. Low maintenance. High performance due to hollow shaft input.

Modular guide system

Provides an alternative to composite wheel material, with low maintenance and quiet operations. Steel wheel option on an integrated steel rolling surface for increased load capacity, plus high load-bearing capacity and high levels of rigidity.

Various options for adaptation to wide ranging applications

Steel cover strip, corrosion-resistant stainless steel version for application in clean rooms or in the food industry, and integrated position feedback system for maximum precision.

Optional IP30 Strip Seal

Magnetically attached stainless steel seal strip (not shown) provides environmental protection to interior components.

Roller Bearing Design

Each roller bearing incorporates a low friction, lubricated and sealed radial ball bearing enclosed in a hardened steel outer ring (or raceway). A polyamide tread can be substituted for the steel ring whenever whisper quiet motion is desired.

SPECIFICATIONS

As part of the advanced, cost-effective construction of machines and handling systems, the HPLA is a good choice for applications such as materials handling (palletizing, depalletizing, feeding, and part removal), warehouse technology (parts picking, storage and retrieval), and machine tool automation (workpiece loading and unloading, tool changing). Additional examples include textile machinery building (cross-cutting, slitting and stacking, quilting, seam stitching) and construction (formwork and placing reinforcing steel bars in concrete).

Other typical applications are process engineering (painting, coating, bonding), testing technology (guiding ultrasonic sensors, laboratory equipment), and cleanroom technology (wafer transport, wafer coating).

		HPLA80 HPLA120			HPLA180		HPLA180 (Rack Drive)	
Characteristic	Units	Polyamide Wheel	Steel Wheel	Polyamide Wheel	Steel Wheel	Polyamide Wheel	Steel Wheel	Polyamide Wheel
Unit Weight (basic unit without stroke)							
Standard Carriage, NL	, kg (lb)	6.8 (15.0)	7.5 (16.5)	20.2 (44.4)	21.6 (47.5)	57.2 (125.8)	61.6 (135.3)	78.4 (172.5)
Extended Carriage, VL	kg (lb)	8.6 (18.9)	9.5 (20.9)	25.2 (55.4)	27.1 (59.6)	74.8 (164.6)	80.9 (178.0)	95.2 (209.4)
Carriage Weight Standard Carriage, NL	kg (lb)	1.7 (3.7)	1.8 (4.0)	5.8 (12.8)	6.0 (13.2)	12.3	12.6	32.5 (71.5) ⁽¹⁾
Extended Carriage, VL	kg (lb)	2.6 (5.7)	2.8 (6.2)	8.8 (19.4)	9.2 (20.2)	21.1 (46.4)	21.8 (48.0)	39.8 (87.6) ⁽¹⁾
Weight/Meter of Additional Travel	kg/m (lb/ft)	6.1 (4.1)	7.3 (4.9)	13.7 (9.2)	15.5 (10.4)	29.4 (19.8)	33.6 (22.6)	31.5 (21.2)
Moment of Inertia (related to the drive	e shaft)							
Standard Carriage, NL	kg-cm² (lb-in²)	17.8 (6.1)	18.4 (6.3)	142 (48)	146 (50)	725 (247)	743 (253)	698 (238)
Extended Carriage, VL	kg-cm² (lb-in²)	25.4 (8.7)	26.5 (9.0)	197 (67)	204 (70)	1121 (382)	1154 (393)	845 (288)
Travel and Speed								
Maximum Speed ⁽²⁾	m/s (in/s)	5 (2	200)	5 (2	200)	5 (2	00)	5 (200)
Maximum Acceleration ⁽²⁾	m/s² (in/s²)	10 (3	393)	10 (393)	10 (3	393)	10 (393)
Max. Travel,	mm	5540	5520	9470	9440	9240	9200	8680
Standard Carriage NL®	(in)	(218)	(217)	(372)	(371)	(363)	(362)	(341)
Max. Travel, Extended Carriage VL ⁽³⁾	mm (in)	5390 (212)	5370 (211)	9270 (365)	9240 (363)	8940 (352)	8900 (350)	8380 (330)
Geometric Data								
Cross Section, Square	mm (in)	80 (3	3.15)	120 (4.72)	180 (7.09)	180 (7.09)
Moment of Inertia Ix	cm⁴ (in⁴)	139 (3.34)	724 (*	17.39)	3610 (86.73)	3610 (86.73)
Moment of Inertia ly	cm₄ (in₄)	165 (3.96)	830 (*	19.94)	4077 (97.95)	4077 (97.95)
Moment of Elasticity	N/mm² (lb/in²)	(0.1044	x 10⁵ 1 x 10 ⁸)	0.72 (0.1044	x 10⁵ 4 x 10 ⁸)	(0.1044	x 10⁵ I x 10 ⁸)	0.72 x 10° (0.1044 x 10 ⁸)
Pulley Data, Torques, Forces								
Travel Distance per Revolution	mm/rev (in/rev)	180 (7.09)	270 (*	10.63)	420 (1	6.54)	280 (11.02)
Response Radius of Drive Pulley	mm (in)	28.7	(1.13)	43.0	(1.69)	66.8 ((2.63)	44.6 (1.75)
Maximum Drive Torque	Nm (lb-in)	47.4	(420)	131.4	(1165)	368 (3	3264)	58 (514)
Maximum Belt Traction (effective lo	bad)	Refer to	Load-Bea	ring Capaci	ty and Max	kimum Perm	nissable Mo	oment Load Charts
Repeatability ⁽³⁾⁽⁴⁾	mm (in)	± 0.2 (±	. 0.008)	± 0.2 (±	0.008)	± 0.2 (±	(800.0	$\pm 0.05 (\pm 0.002)$

(1) Includes weight of drive module.

(2) Greater speeds and accelerations may be achieved.

(3) Bumper to bumper maximum stroke - splicing possible for longer travel distances including safety zone.

(4) Nominal value - component dependent. For improved repeatability consult factory.

HPLA080 Series – Load-Bearing Capacity of Carriage and Timing Belt

Load-Bearing Capacity of HPLA080 Timing Belt (Fx)

			Transferable Thrust Force (n)		
		Nominal Belt Tension		Maximum Belt Tension	
Description	Gearhead	Drive Option	(81,000 km life)	(46,000 km life)	
Supported Pulley	PX90/PX115 PV90/PV115 PS90	S03/S04/ S08/S09	925	1115	

The forces and moments that the carriage is capable of transferring are speed-dependent. The curves shown

in the graphs apply to a standard carriage (S). With the extended carriage (E), all the values apart from Fx (load-bearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

The curves show the maximum loadbearing capacity of a carriage in one direction of force or torque. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be reduced if necessary.

Virtual Engineer software is available for determination of precise carriage loading.

HPLA080 Maximum Permissable Moment Load (Mx, My and Mz) (Values double for extended carriage)

200 My with steel roller guide 180 Mz with steel roller guide [<u>m</u>] Mx with steel roller guide 160 My with polyamide roller guide torque Mz with polyamide roller guide 140 Mx with polyamide roller guide Maximum permissible 120 100 80 60 40 20 00 2 1 3 Velocity [m/s]

HPLA120 Series – Load-Bearing Capacity of Carriage and Timing Belt Load-Bearing Capacity of HPLA120 Timing Belt (Fx)

			Transferable Thrust Force (n)		
			Nominal Maximur Belt Tension Belt Tensi		
Description	Gearhead	Drive Option	(81,000 km life)	(46,000 km life)	
Supported Pulley	PV115 PX115 PS90/PS115	S03/S04/ S08/ S09	1700	2235	

HPLA120 Load-Bearing Capacity (Fy and Fz)

The forces and moments that the carriage is capable of transferring are speed-dependent. The curves shown in

the graphs apply to a standard carriage (S). With the extended carriage (E), all the values apart from Fx (load-bearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

(Values double for extended carriage) 7000 Fz with steel roller guide 6500 Fy with steel roller quide 6000 Fz with polyamide roller guide Ξ Fy with polyamide roller guide 5500 -oad bearing capacity 5000 reduced if necessary. 4500 4000 3500 3000 2500 2000 1500 1000 500 0 2 0 1 3 4 Velocity [m/s] 600 My with steel roller guide [Nm] Mz with steel roller guide Mx with steel roller guide torque 500 My with polyamide roller quide Mz with polyamide roller guide Mx with polyamide roller quide permissible 400 300 Maximum 200 100 0 0 2 3 1 4 Velocity [m/s]

The curves show the maximum loadbearing capacity of a carriage in one direction of force or torque. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be

Virtual Engineer software is available for determination of precise carriage loading.

HPLA180 Series – Load-Bearing Capacity of Carriage and Timing Belt

Fz with steel roller guide Fy with steel roller guide

Fz with polyamide roller guide

Fy with polyamide roller guide

Load-Bearing Capacity of HPLA180 Timing Belt (Fx)

HPLA180 Load-Bearing Capacity (Fy and Fz)

(Values double for extended carriage)

15000

12500

10000

7500

			Transferable Thrust Force (n)		
			Nominal Maximum Belt Tension Belt Tensio		
Description	Gearhead	Drive Option	(81,000 km life)	(46,000 km life)	
Supported Pulley	PS115 PS142	S03/S04/ S08/S09	4170	5455	

The forces and moments that the carriage is capable of transferring are speeddependent.

The curves shown in the graphs apply to a standard carriage (S). With the extended carriage (E), all the values apart from Fx (load-bearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

The curves show the maximum loadbearing capacity of a carriage in one direction of force or torque. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be reduced if necessary.

5

Virtual Engineer software is available for determination of precise carriage loading.

-oad bering capacity [N] 5000 2500 0 1 2 n 3 Δ Velocity [m/s]

HPLA180 Maximum Permissable Moment Load (Mx, My and Mz) (Values double for extended carriage)
HPLA Characteristics

The HPLA deflection curves can be used for determining the deflection based on the profile length and the application load weight. Applications requiring high acceleration forces can place a severe strain on the system stability. In these cases, a solid substructure may be required with the HPLA product being supported at frequent intervals.

These deflection curves illustrate the deflection d, based on the HPLA profile being simply supported at both ends. The graphs take into consideration the self deflection due to the weight of the profile, along with the load to be transported. The maximum deflection cannot be exceeded. If the maximum deflection is exceeded based on your application parameters, then additional supports are required. Alternatively, the next larger profile size may be considered. For deflection formulas and calculations, please refer to the Technical Information Library found on our web site: www. parkermotion.com

Dual Axis Considerations

When two parallel linear modules are required to form a single axis, the span or distance between each unit determines which type of shaft connection is required. In some cases, a link shaft support bearing might also be required. The link shaft bearing is used to support the linking shaft of an HPLA dual axis when there is a large center to center distance. This bearing must be used if the critical speed is exceeded with the dual-axis link shaft.

Figure B

" A "	Span	(mm)
--------------	------	------

Series	(min.)	(max.)
HPLA080	351	3000
HPLA120	351	3000
HPLA180	351	3000

Download 2D & 3D files from www.parker.com/emn/HPLA080

DIMENSIONS

HPLA080 Drive Unit

Section A-A

48

16

Dimension A (mm)

Description	With Strip Seal	Without Strip Seal
Standard Carriage - Polyamide Wheels	862	792
Standard Carriage - Steel Wheels	882	812
Extended Carriage - Polyamide Wheels	1012	942
Extended Carriage - Steel Wheels	1032	962

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

DIMENSIONS

HPLA120 Drive Unit

Dimension A (mm)

Description	With Strip Seal	Without Strip Seal
Standard Carriage - Polyamide Wheels	1005	915
Standard Carriage - Steel Wheels	1031	941
Extended Carriage - Polyamide Wheels	1205	1115
Extended Carriage - Steel Wheels	1231	1141

Download 2D & 3D files from www.parker.com/emn/HPLA180

HPLA180 Drive Unit

Dimensions (mm)

DIMENSIONS

Dimension A (mm)

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Description	With Strip Seal	Without Strip Seal			
Standard Carriage - Polyamide Wheels	1408	1206			
Standard Carriage - Steel Wheels	1446	1246			
Extended Carriage - Polyamide Wheels	1706	1506			
Extended Carriage - Steel Wheels	1746	1546			

DIMENSIONS

Idler Unit Dimensions

Dimensions (mm)

	. .	Wheel Type										
Series	Carriage Length		With Strip Seal						With	out Strip	Seal	
		21	Α	В	С	D	Е	Α	В	С	D	Е
HPLA080	Standard	Polyamide	55	-	250	40	10	20	-	250	-	10
HPLA080	Extended	Polyamide	55	-	400	40	10	20	-	400	-	10
HPLA080	Standard	Steel	55	10	250	40	10	20	10	250	-	10
HPLA080	Extended	Steel	55	10	400	40	10	20	10	400	-	10
HPLA120	Standard	Polyamide	65	-	300	50	15	20	-	300	-	15
HPLA120	Extended	Polyamide	65	-	500	50	15	20	-	500	-	15
HPLA120	Standard	Steel	65	13	300	50	15	20	13	300	-	15
HPLA120	Extended	Steel	65	13	500	50	15	20	13	500	-	15
HPLA180	Standard	Polyamide	128	-	400	100	20	28	-	400	-	20
HPLA180	Extended	Polyamide	128	-	700	100	20	28	-	700	-	20
HPLA180	Standard	Steel	128	20	400	100	20	28	20	400	-	20
HPLA180	Extended	Steel	128	20	700	100	20	28	20	700	-	20

Dimensions (mm)

HPLA/HLE OPTIONS & ACCESSORIES

Limit and home sensors, switches, cable carriers, splice plates, and more.

See Options & Accessories at the end of the belt-driven section.

ORDERING INFORMATION HPLA

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Orde	er Example:	HPLA080	D1	B1	T2000	C1	DA1000	S08	F02	G2-05	K24	R1	H1	LH1	E1
1	Series HPLA08 HPLA12 HPLA18	60 10 10							C1 C2 C3 C4	Sta Ext Sta Ext	andard Le ended Le andard Le ended Le e photos	ength (ength (ength (ength (below.	Carriage Carriage Carriage Carriage	e with L e with L e with C e with C	oad Plat .oad Plat Clamping Clamping	e* :e* Bar* Bar*
2	Drive S D0 D1 D2	ystem Idler Unit Timing Belt Di Timing Belt Di	rive, Nominal rive, Maximur	Thrus n Thr	st, Ma ust, N	aximum I Nominal I	_ife _ife	6	Link S DA000 DAnnr	Shaft 10 No 11 Do	Option Link Sha uble Unit	aft - Sir , Speci	ngle Axis ify Cente	s or Idle er to Ce	er Unit enter Dis	stance (m
3	Bearing B1 *B2	9 Option Polyamide Ro Steel Rollers * For steel roller please consult	llers option in vertic factory for spe	al anc ecial in	l inver struct	ted orient ions.	ations,	•	Drive S00 S03 S04 S05 S06	Shaf No Su Su Su Su	t Config Shaft, Ic pported I pported I pported I	l uratic Iler Uni Pulley, Pulley, Pulley, Pulley,	t Flange I Flange I Shaft O Shaft O	Left Right Iption, I	_eft Right	
(4)	Travel Tnnnn	Specified trave	el in mm (nnn	n = n	nm)				S07 S08 S09	Su Su	pported pported	Pulley, Pulley, Pulley	Shaft O Flange I Flange I	ption, E Left, Sh Bight	Both naft Righ Shaft Let	t +
5	Carriag	e						8	Drive F00 F08 F09 F10 F11 F12	Hous No PV PX PS PS PS	Flange Flange 90/PX90 115/PV1 90 Flang 115 Flan 142 Flan	Flange Flange 15 Flar e (HPL ge (HP ge (HP	e (HPLA nge (HP A080 a LA120 LA180	.80 ON LA080 nd HPL & HPL/ only)	LY) and HP A120 or	LA120 o nly) ly)
	S00	S01 S			S04	4 S			04 Dual		S05 € •••	S06	S07 € •	S	08 S	

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

iven

Fill in an order code from each of the numbered fields to create a complete model order code.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14)
Order Example:	HPLA080	D1	B1	T2000	C1	DA1000	S08	F02	G2-05	K24	R1	H1	LH1	E1

9 Gearbox Option

G0-00No GearboxG08-nnPX90 Gearbox includedG09-nnPX115 Gearbox includedG10-nnPS90 Gearbox includedG11-nnPS115 Gearbox includedG12-nnPS142 Gearbox includedG14-nnPV90 Gearbox includedG15-nnPV115 Gearbox includednn = ratioSingle stage ratios 3:1, 5:1, 10:1Dual stage ratios 15:1, 25:1

10 Motor Kit Option

- K00 No Flange
- K20 NEMA23 stepper, 1/4" shaft
- K21 BE23
- K23 SMN60, MPM72 (metric), N070, J070
- **K24** SMN82, MPM89 (metric), N092, J092
- **K26** BE34
- K34 MPP092x motor kit
- K36 Parker MPP100/MPJ100
- K39 Parker MPP115/MPJ115
- K41 Parker MPP142/MPJ142
- K50 Parker HDY55; MPL15XX (Allen Bradley)
- K51 AKM3X-AN (Kollmorgen)
- K52 SGMAH-04 (Yaskawa)
- K53 SGMAH-08 (Yaskawa)
- K54 MKD041 (Indramat)
- K55 AKM4X-AN (Kollmorgen)
- K56 MKD070 (Indramat)
- K57 MKD090 (Indramat)

1 Environmental Option

- **R1** Standard preparation with strip seal¹
- R2 Standard preparation with no strip seal
- **R3** Corrosion resistant preparation with strip seal ^{1, 2}
- **R4** Corrosion resistant preparation with no strip seal ²
- ¹ C1, C2 Carriage Load Plate Only
- ² B1 Bearing Option Polyamide Rollers Only)

12 Mounting Orientation

- H1 Carriage Up
- H2 Carriage Down
- H3 Carriage on Side, Drive Station Up
- H4 Carriage on Side, Drive Station Down

13 Limit/Home Switch Option*

- LH0 No Limit Switch Assembly
- LH3 Three NPN Prox Switches, 10-30 VDC
- LH4 Three PNP Prox Switches, 10-30 VDC
- *C1, C2 Carriage Load Plate Only

(14) Linear Encoder

- E1 Without Linear Encoder
- E5* 5.0 Micron Resolution, Magnetic Type
- E7* Sine Cosine Output, Magnetic Type
- *C1, C2 Carriage Load Plate Only
- *Consult factory for linear encoder options and quotation.

HLE-RB Series Belt Driven Linear Modules

Belt-Drive Actuators for High Thrust, Long Stroke Applications

- Standard travel up to 7.9 meters*
- Load Capacities up to 600 kg
- ±0.2 mm positional repeatability
- Timing belt and pulley drive mechanism for fast, accurate positioning
- Roller wheel bearings for smooth high speed linear motion

· Low particle generation (clean room suitability

High dynamic performance due to low-mass,

• IP30 strip seal

to class 100)

Quiet operation

play-free wheels

*Longer travels available with splice kits.

Design AdvantagesLow running friction

· Low wear and low maintenance

· High efficiency and long service life

- Minimal preventative maintenance required
- T-slots integrated on all sides of the profile for mounting attachments or for use as a cable duct
- Timing belts can be replaced without removing load attachment plate
- Multiple configuration options due to T-slots available on both the profile and load plate

						dia		
HLE60 HPLA080	HLE100	HPLA120	Н	HLE150		HPLA180		
	HLE60	HPLA80	HLE100	HPLA120	HLE150	HPLA180		
Maximum Travel (mm)	4,000	5,540	6,200	9,470	7,900	9,240		
Maximum Payload (N)	353	1,304	1,549	2,598	3,402	4,501		
Maximum Acceleration (m/s	²) 10	10	10	10	10	10		

*Do not exceed allowable axial and moment loading.

The HLE-RB linear modules are ideal as single axis products or as components for high speed multi-axis gantries. With thousands of units in operation worldwide the HLEs are proven performers offering long life and trouble-free operation.

The HLE Linear Module consists of a lightweight carriage which can be precisely positioned within an extruded aluminum housing by a timing belt and pulley drive system. The housing, constructed from extruded aluminum with a square cross sectional geometry, demonstrates excellent deflection characteristics.

The protective anolite coating provides durability as well as an attractive silver appearance. It includes T-slots along its entire length for flexible mounting. The drive mechanism is a zero backlash steel reinforced timing belt. The tension station, conveniently located at the end of the unit provides for quick and easy belt adjustment. The drive station is designed to accept planetary gear reducers as well as a wide variety of servo and stepper motors. The bearing system for the RB models is comprised of three rows of roller wheels integral to the carriage which are guided by extruded tracks within the housing.

A 1-8

(1) Carriage

Roller bearing wheels are installed on three sides of the carriage to provide smooth linear motion and support. The wheels are positioned to evenly distribute the load across the length of the carriage. Eccentric bearing wheel bushings are adjusted to eliminate play on all sides of the carriage. Due to a low coefficient of friction, the carriage design provides a high mechanical efficiency and long service life. The carriages are available in standard and extended lengths. Special carriage lengths and linear units with multiple carriages are available for custom applications.

(2) Load Attachment Plate

Load attachment plates are available for every type of carriage. With integral T-slots or tapped with holes in a standard mounting pattern, they allow easy mounting of your load to the carriage of the HLE. Multiple HLEs can easily be mounted together by using standard clamping profiles. Tripping plates are mounted to the side of the load attachment plate to activate home or end of travel switches mounted to the side of the HLE. For special applications, the load plates can be designed to customer specified requirements.

(3) Drive Belt

A zero backlash, steel reinforced timing belt provides high speed, high acceleration and good bidirectional repeatability.

(4) Drive Station

Rigid cast housing with standard flanges for a variety of gearboxes. The drive stations are designed to accept planetary and worm gear reducers or provide different shaft outputs for driving the HLE.

(5) Housing

Lightweight and self-supporting aluminum profiles are offered in three sizes:

HLE60: 60 x 60 mm HLE100: 100 x 100 mm HLE150: 150 x 150 mm

T-slots are provided for mounting the linear unit itself, applying additional components and accessories, or combining multiple HLEs. T-slots with plastic covers provide a simple cable conduit.

6 Tensioning Station

"Easy access" tensioning bolts allow external adjustment of belt tension.

Roller Bearing

(7)

Each wheel consists of a lubricated and sealed radial ball bearing to reduce friction and maintenance. The bearing is enclosed within a tough polyamide tread to reduce noise and provide long service life.

Optional Features

- Direct mounting for planetary gear reducers
- Adjustable "end of travel" limit switches and "home" position sensor
- Clean room preparation option
- Cable carrier systems
- Performance matched Parker servo systems
- Structural components for vertical and multiaxis mounting
- Toe clamps and hardware for fast and easy mounting
- External bumpers
- Link shafts and support bearings for dual axis units
- Splice plates for extending travels beyond length available in a single profile

IP30 Strip Seal

Magnetically attached stainless steel seal strip (not shown) provides environmental protection to interior components.

HPLA/HLE OPTIONS & ACCESSORIES

Limit and home sensors, switches, cable carriers, splice plates, and more. See Options & Accessories at the end of the belt-driven section.

SPECIFICATIONS HLE-RB Series

As part of the advanced, cost-effective construction of machines and handling systems, the HPLA is a good choice for applications such as materials handling (palletizing, depalletizing, feeding, and part removal), warehouse technology (parts picking, storage and retrieval), and machine tool automation (workpiece loading and unloading, tool changing). Additional examples include textile machinery building (cross-cutting, slitting and stacking, quilting, seam stitching) and construction (formwork and placing reinforcing steel bars in concrete).

Other typical applications are process engineering (painting, coating, bonding), testing technology (guiding ultrasonic sensors, laboratory equipment), and cleanroom technology (wafer transport, wafer coating).

Characteristic	Units	HLE	60-RB	HLE1	00-RB	HLE1	50-RB
Unit Weight (basic unit without stroke) Standard Carriage, NL Extended Carriage, VL	kg (lb.) kg (lb.)	2.28 3.98	(5.03) (8.77)	12.70 15.80	(28.00) (34.84)	31.20 38.50	(68.80) (84.89)
Carriage Weight Standard Carriage, NL Extended Carriage, VL Weight per meter of additional length	kg. (lb) kg. (lb) kg/m (lb/ft)	0.8 1.3 3.62	(1.76) (2.87) (2.43)	2.80 4.40 10.00	(6.17) (9.70) (6.72)	7.30 11.50 21.10	(16.10) (25.36) (14.18)
Moment of Inertia (related to the drive shaft) Standard Carriage, NL Extended Carriage, VL	kg-cm² (lb-in²) kg-cm² (lb-in²)	3.07 4.81	(1.05) (1.64)	24.60 36.40	(8.41) (12.45)	123.30 183.60	(42.17) (62.79)
Travel and Speed Maximum Speed ⁽¹⁾ Maximum Acceleration ⁽¹⁾ Maximum Travel ⁽²⁾ —standard carriage, NL Maximum Travel ⁽²⁾ —extended carriage, VL	m/s (in/s) m/s² (in/s²) m (in) m (in)	5 10 4.0 3.8	(120) (393) (160) (149)	5 10 6.2 6.0	(200) (393) (244) (238)	5 10 7.9 7.7	(200) (393) (311) (305)
Geometric Data Cross Section, Square Moment of Inertia Ix Moment of Inertia Iy Moment of Elasticity	mm (in) cm ⁴ (in ⁴) cm ⁴ (in ⁴) N/mm ² (lb/in ²)	57.1 55.8 56.2 0.72 x 10⁵	(2.25) (1.34) (1.35) (0.1044 x 10 ⁸)	100.0 383.0 431.0 0.72 x 10 ⁵	(3.94) (9.20) (10.35) (0.1044 x 10 ⁸)	150.0 1940.0 2147.0 0.72 x 10⁵	(5.91) (46.61) (51.58) (01044 x 10 ⁸)
Pulley Data, Torques, Forces Travel Distance per Revolution Pulley Diameter Maximum Drive Torque ⁽³⁾ Maximum Belt Traction ⁽³⁾ (effective load) Repeatability ⁽⁴⁾	mm/rev (in/rev) mm (in) Nm (lb-in) N (lb) mm (in)	125 39.8 8.87 ±0.2	(4.92) (1.57) (78.5) (±0.008)	170 54.1 40.0 ±0.2	(6.69) (2.13) (354.0) (±0.008)	240 76.4 108.0 ±0.2	(9.45) (3.01) (955.9) (±0.008)

For the following deviations from the above standards, please contact Parker engineering:

(1) Greater speeds and accelerations may be achieved.

(2) Splicing possible for longer travel distances. This may cause reductions in effective load, drive torque, speed, acceleration, and repeatability. Consult factory for strip seal availability on spliced units.

(3) Increased timing belt tension required.

(4) Nominal value - component dependent. For improved repeatability consult factory.

Magnetic strips recessed in the profile ensure that the strip seal is fully sealed with the profile. Polymer inlays serve as a bearing surface for the strip seal.

The timing belt is attached to the carriage with a serrated clamp mechanism which assures a strong connection and makes belt replacement easy without the need to remove payload.

HLE60-RB Series – Load-Bearing Capacity of Carriage and Timing Belt

Load-Bearing Capacity of HLE-60RB Timing Belt (Fx)

HLE60-RB	Transferable Thrust Force (n)						
	Nominal Belt Tension	Maximum Belt Tension					
Drive Option	(81,000 km life)	(46,000 km life)					
Supported Pulley (SP19 - SP30)	500	-					

The forces and moments that the carriage is capable of transferring are speeddependent. The curves shown in the graphs apply to a standard carriage (S). With the extended carriage (E), all the values apart from Fx (load-bearing capacity of timing belt)

can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

Virtual Engineer software is available for determination of precise carriage loading.

HLE60-RB Maximum Permissable Moment Load (Mx, My and Mz) (Values double for extended carriage)

HLE100-RB Series – Load-Bearing Capacity of Carriage and Timing Belt

Load-Bearing Capacity of HLE100 Timing Belt (Fx)

HLE-100RB			Transferab Force	le Thrust e (n)
			Nominal Belt Tension	Maximum Belt Tension
Drive Option	Gearhead	Drive Option	(81,000 km life)	(46,000 km life)
ARO/ALO	PS90 PX115/PV115 PS115	SP10 SP11 SP12	675 675 925	900 900 1115
ARW/ALW/ DAR/DAL	PV90/PX90 PS90 PX115/PV115	SP9 SP10 SP11	500 675 675	675 900 900

HLE100-RB Load-Bearing Capacity (Fy and Fz) (Values double for extended carriage)

The forces and moments that the carriage is capable of transferring are speed-dependent. The curves shown in the graphs apply to a standard carriage (S). With the extended carriage (E), all the lg Belt

values apart from Fx (load-bearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

> The curves show the maximum loadbearing capacity of a carriage in one direction of force or torque. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be reduced if necessary.

Virtual Engineer software is available for determination of precise carriage loading.

HLE100-RB Maximum Permissable Moment Load (Mx, My and Mz) (Values double for extended carriage)

HLE150-RB Series – Load-Bearing Capacity of Carriage and Timing Belt

Load-Bearing Capacity of HLE150 Timing Belt (Fx)

HLE150-RB		Transferable Thrust Force (n)			
			Nominal Belt Tension	Maximum Belt Tension	
Drive Option	Gearhead	Drive Option	(85,000 km life)	(37,000 km life)	
ARO/ALO	PX115/PV115 PS115 PS142	SP10 SP11 SP12	675 1515 1700	900 2015 2235	
ARW/ALW/ DAR/DAL	PX115/PV115 PS115 PS142	SP10 SP11 SP12	675 1515 1700	900 2015 2235	

HLE150-RB Load-Bearing Capacity (Fy and Fz) (Values double for extended carriage)

The forces and moments that the carriage is capable of transferring are speed-dependent. The curves shown in the graphs apply to a standard carriage (S). With the extended

carriage (E), all the values apart from Fx (loadbearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

The curves show the maximum loadbearing capacity of a carriage in one direction of force or torque. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be reduced if necessary.

Virtual Engineer software is available for determination of precise carriage loading.

HLE-RB Deflection Characteristics

The HLE deflection curves can be used for determining the deflection based on the profile length and the application load weight. Applications requiring high acceleration forces can place a severe strain on the system stability. In these cases, a solid substructure may be required with the HLE product being supported at frequent intervals.

These deflection curves illustrate the deflection d, based on the HLE profile being simply supported at both ends. The graphs take into consideration the self deflection due to the weight of the profile, along with the load to be transported. The maximum deflection cannot be exceeded. If the maximum deflection is exceeded based on your application parameters, then additional supports are required. Alternatively, the next larger profile size may be considered. For deflection formulas and calculations, please refer to the Technical Information Library found on our web site www.parkermotion.com

F = Force N

- L = Unsupported length mm
- δ = Deflection mm

Dual Unit Axis Considerations

When two parallel linear modules are required to form a single axis, the span or distance between each unit determines which type of shaft connection is required. In some cases, a link shaft support bearing might also be required.

Figure A

		"А"	' Sp	an (mm)
S	eries	(mi	n.)	(max.)
Н	ILE100	10)5	225
 Н	ILE150	15	55	260

Figure B

	"A" Spa	n (mm)
Series	(min.)	(max.)
HLE100	226	500
HLE150	261	500

Figure C

	"A" Span (mm						
Series	(min.)	(max.)					
HLE60	300	1500					
HLE100	501	_					
HLE150	501	_					

The link shaft bearing is used to support the linking shaft of an HLE dual axis when there is a large center to center distance. This bearing must be used if the critical speed is exceeded with the dual-axis link shaft.

*HLE60 Critical speed is above charted 2000 RPM.

DIMENSIONS

HLE60-RB with PV60 Direct Drive

HLE60-RB Drive with Motor Block

DIMENSIONS

HLE60-RB Idler

HLE100-RB Drive

Dimensions (mm)

HLE100-RB Idler

DIMENSIONS

HLE150-RB Drive

Dimensions (mm)

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

 \bigcirc

_ ____ _

lC

Ο

Ο

 \bigcirc

- ____ - ____ - ____ - ____ -

ORDERING INFORMATION

(12)

(13)

ZA LH0

			1	2	3	4	5	6	7	8	9	(10)	11
	Ord	er Example:	HLE060	RB	NL	Е	1000	DA0000	MBL	SP5	G1205	H1	K24
1	Series						(8) Drive S	Station	Interfa	се		
	HLE060							SP19	Drive	Housing	For PV60)-FN	
~		SP20 Idler Unit											
(2)	Bearing	ј Туре						SP21	No M	otor Blo	ck		
	RD							SP22	Motor	Block N	NEMA 23 V	with 0	.375"
3	Carriad	e Type						SP23	Moto	Block N	NEMA 34 v	with 0	.25" E
e	NL	Standard Carriage						SP24	Moto	r Block N	NEMA 34 v	with 0	.375"
	VL	Extended Carriage						SP25	Motor	Block N	NEMA 34 v	with 0	.50" B
								SP28	Moto	r Block N	NEMA 23	witho	ut Coi
4	Unit Ty	pe						SP29	Moto	Block N	NEMA 34 v	withou	ıt Cou
	M	Idler						SP30	Moto	Block N	veo 70 wit	h 11.0) mm
		Single Axis Unit											
	L						(9) Gearbo	ox Opti	on*			
5	Travel I	enath						G0	No G	earbox (Requires N	ИBR, I	MBL,

Travel Length nnn=mm (3000 mm max for NLcarriage; nnnn 2900 mm max for VL carriage)

Drive Shaft Option - Center to Center 6

DA0000 No Drive Shaft - Single Axis or Idler Unit DAnnnn (nnnn=mm) Dual Axis Center to Center (200 mm min; 1500 mm max) DCnnnn (nnnn=mm) Dual Axis with Covered Link Shaft Center to Center (200 mm min; 1500 mm max)

Shaft Configuration Options (7)

- No Shaft, Idler Unit woo
- ARO Gearhead Right
- Gearhead Left ALO
- ARW Gearhead Right Shaft Left ALW Gearhead Left Shaft Right
- WLO Shaft Left
- WRO Shaft Right
- **WBO** Double Shaft
- MBL Motor Block Left
- Motor Block Right MBR
- MLW Motor Block Left, Shaft Right
- MRW Motor Block Right, Shaft Left
- DAL Double Axis Gearhead, Drive Left
- DAR Double Axis Gearhead, Drive Right
- DML Double Axis, Motor Block Left
- DMR Double Axis, Motor Block Right

/		
	SP19	Drive Housing For PV60-FN
	SP20	Idler Unit
	SP21	No Motor Block
	SP22	Motor Block NEMA 23 with 0.375" Bore Coupling
	SP23	Motor Block NEMA 34 with 0.25" Bore Coupling
	SP24	Motor Block NEMA 34 with 0.375" Bore Coupling
	SP25	Motor Block NEMA 34 with 0.50" Bore Coupling
	SP28	Motor Block NEMA 23 without Coupling

- pling
- Bore Coupling
- No Gearbox (Requires MBR, MBL, MRW, MLW) G0
- G1 Customer Supplied Gearhead*
- G1203 PV60 Gearhead 3:1 Ratio
- G1205 PV60 Gearhead 5:1 Ratio
- G1210 PV60 Gearhead 10:1 Ratio
- G1215 PV60 Gearhead 15:1 Ratio
- G1225 PV60 Gearhead 25:1 Ratio

*Contact factory for approval of any alternative gearbox information.

Mounting Orientation (10)

- H1 Carriage Up
- H2 Carriage Down
- H3 Carriage on Side, Drive Station Up
- H4 Carriage on Side, Drive Station Down

Motor Kit Option (11)

- K00 No Motor Kit
- K21 Motor Kit LV23, HV23, OS23, ES23, VS23 to PV60
- K22 Motor Kit BE23X to PV60
- K23 Motor Kit SM23, SE23 to PV60
- K24 Motor Kit LV34, HV34
- K25 Motor Kit BE34, NO34X, JO34X, TS31, TS32 to PV60
- K26 Motor Kit RS34, ES34 to PV60
- K27 Motor Kit NO70, JO70 to PV60
- K28 Motor Kit SMB60 to PV60

Strip Seal Option (12)

- ZA Unit with Strip Seal (IP30)
- ZΒ Unit without Strip Seal

(13) Limit/Home Switch Option

- LH0 No Limit Switch Assembly
- LH3 Three NPN Prox Switches, 10-30 VDC
- LH4 Three PNP Prox Switches, 10-30 VDC

Fill	in an order code	trom each	h of the nur	nbered	d tield.	s to c	create a		ete r	model	order c	code.	\sim	\sim	\sim	\sim
			(1)	(2)	(3)	(4)	(5)	(6)		(7)	(8)	(9)	(10)	(11)	(12)	(13)
	Order Exam	ple:	HLE100	RB	NL	Ε	1000	DA000	00	ARO	SP7	G2-05	H2	ZB	K6	LH0
1	Series HLE100							SP5 SP6		Motor Motor	Block - Block -	NEMA 34 v with coupli	without ng for .	coupli JO923	ng direct d	drive
2	Bearing Type							SP7 SP8		Motor Motor	Block - Block -	NEMA 42 \ NEMA 42 \	with 0.6 without	625 in. coupli	couplin ng	g
								SP9 SP1()	Drive F Drive F	Housing Housing	for PX90/P for PS90 for PX115/	'V90/PI	EN/PEI	4-090	
3	NL Standar	d Carriage	2				(SP12 9 Gea	2 rbo	Drive I Drive I x Opti	Housing Housing	for PS115	I VIIO			
(4)	Unit Type	a oumago					·	G0-0 G10-	0 nn	No Ge PS90	arbox					
0	M Idler D Dual Axi	s Unit						G11- G12-	nn nn	PX115 PS115						
	E Timing E	3elt Drive, 1	Nominal Thru	ust, Ma	ximum	ı Life		G13- G14-	nn nn	PX90 PV90						
5	Travel Length nnnn Specifie	d travel in r	mm (nnnn =	mm)				G15- nn = Single	nn ratio e stag	PV115 ge ratios	3:1, 5:1,	10:1 Du	al stage	e ratios	15:1, 2	5:1
6	Drive Shaft Opt	ion - Cen	ter to Cent	i er Idler I Ir	nit		(り Mo u H1 H2	intir	n g Orie Carria	entatio ge Up	n				
	DAnnnn (nnnn=n	nm)			inc.			H3 H4		Carria	ge on Si ge on Si	' de, Drive S de, Drive S	tation l tation [Jp Down		
7	Shaft Configura WOO No Shaf	tion Opti t, Idler Unit	i ons t				(1) Strij ZA	o Se	al Opt Unit w	i on ith Strip	Seal (IP30)				
	WLO Shaft Le WRO Shaft Ri	ft ght					(ZB D Mot	or K	Unit w Cit Opt	ithout Si ion	trip Seal				
	ALO Reduce	Shaft r Left r Diabt						K0 K1 K2		J034*,	N034*, I N070* 1	BE34*, TS3 to GT-090	1, TS3	2 to GT	-090, P	E-090
	ARU Reduce ALW Reduce	r Left, Shaf r Bight Shaf	ft Right					K3 K4		J090*, M105*	N090* to GT-0	to GT-090, 190, PE-09(PE-09 0	0		
	DAL Double	Axis, Drive Axis, Drive	Left Right					K5 K6		ES3*, to GT- J034*.	OEM83- 090, PE N034*.	·*, ZETA83- -090 BE34*. TS	·*, S83· 3	-*, RS3	*	
	MBL Motor B MBR Motor B	lock Left lock Right						K7 K8		J090*, M105*	N090*	- , -				
8	Drive Station In	terface						K9 K10		ES3*, RS42,	OEM83- RE42, S	•*, ZETA83- \$106-205	•*, S83•	-*, RS3	*	
	SP0Idler or SSP3Motor B	haft Option	n A 34 with 0.5	00 in. c	oupling)		K11 K12		S106- M145	178, S1	06-250				
	SP4 Motor B	OCK - NEMA	A 34 with 0.3	75 in. c	oupling)		K35 K37 K39		Parker	MPP10 MPP11	0/MPJ100 5/MPJ115				
	WOO WLO W	ro wbo	ALO ARO	D AL	w Af	3W		K41 K50		Parker Parker	MPP14 HDY55	2/MPJ142 ; MPL15XX	(Allen	Bradle	y)	
								K51 K52		AKM3 SGMA	X-AN (K H-04 (Ya	(ollmorgen) askawa)				
			•	Ī				K53 K54 K55		MKD0	H-08 (1) 41 (Indra X-AN (K)	′askawa) amat) olimoraen)				
				6		Ĩ	(K56 B Lim	it/He	MKD0	70 (Indra witch (amat) Option				
	DAL DA	R MI	BL MBR				,	LH0 LH3		No Lin Three	nit Switc NPN Pro	h Assemble ox Switches	y s, 10-3	0 VDC		
	□□])•••() ()=•							LH4		Three	PNP Pro	ox Switches	s, 10-3	0 VDC		

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

••• •••

•

* * *

Fill in an order code from each of the numbered fields to create a complete model order code.

		1	2	3	4	5	6	7	8	9	10	1	12	13
	Order Example:	HLE150	RB	NL	Е	1000	DA0000	ARO	SP1	G2-05	H2	ZA	K7	LH2
1 2	Series HLE150 Bearing Type RB					(8 Drive S SP0 SP10 SP11 SP12	Station Idler c Drive Drive Drive	Interfa or Shaft Housing Housing Housing	ce Option for PX11 for PS11 for PS14	5/PV1 ⁻ 5 2	15		
3	Carriage TypeNLStandard CarriageVLExtended Carriage					(9 Gearbo G0-00 G10-nn G11-nn	No Ge PX118 PS118	on earbox 5 5					
4	Unit TypeMIdlerETiming Belt Drive, NFTiming Belt Drive, N	Nominal Thrus Naximum Thr	st, Max ust, No	kimum ominal	Life Life	ſ	G12-nn G13-nn G15-nn nn = ratio Single sta	PS142 PX90 PV115 age ratios	2 5 3:1, 5:1,	10:1 Du	ual stage	e ratios	15:1, 2	5:1
5	Travel Length nnnn Specified travel in n Drive Shaft Option - Cent	nm (nnnn = n	nm)				H1 H2 H3	Carria Carria Carria	ige Up ige Dow ige on S	n ide, Drive	Statior	n Up	_	
0	DA0000 No Drive Shaft - Sir DAnnnn (nnnn=mm)	ngle Axis or lo	aler Un	nit		(H4 1) Strip S ZA	Carria eal Op t Unit w	ige on S tion <i>v</i> ith Strip	o Seal (IP3	Statior 0)	ר Dowr	1	
7	Shaft Configuration Option	ons					ZB	Unit w	ithout S	Strip Seal				
V	WOO No Shaft, Idler Unit WLO Shaft Left WRO Shaft Right WBO Double Shaft ALO Reducer Left ARO Reducer Right ALW Reducer Left, Shaft ARW Reducer Right, Shaft DAL Double Axis, Drive I DAR Double Axis, Drive I	ERight aft Left Left Right	ALW	ARW		(D Motor K0 K11 K12 K13 K35 K37 K39 K41 K50 K51 K52 K53 K54 K55 K56	Kit Opt No mc S106- M145 M145 Parker Parker Parker Parker AKM3 SGMA SGMA SGMA MKD0 AKM4 MKD0	tion tor kit 178, S11 to GT-1 to GT-1 MPP09 MPP10 MPP14 M	06-250 to 1 15, PE-115 42, PE-142 02/MPJ002 00/MPJ100 5/MPJ115 22/MPJ142 ; MPL15X3 (OLLMORGEN) AMAT) OLLMORGEN) AMAT)	GT-115 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	5, PE-1	15 ≘Y)	
						(K57 *Single st I Limit/H LH0 LH3 LH4	MKD0 rage ratios Iome S No Lin Three Three	90 (INDR/ s: 3, 5, 8, awitch (nit Switc NPN Pro PNP Pro	, 10; Dual s Option h Assembl bx Switche bx Switches	гаде рат y s, 10-3 s, 10-3	105: 12, 60 VDC 0 VDC	15, 16,	20, 25

HLE-SR Series Belt Driven Linear Modules

Belt-Drive Actuators for High Thrust, Long Stroke Applications

- Low running friction
- Low wear and low maintenance
- Quiet operation
- High efficiency
- Long service life
- High dynamic performance due to high load capacity square rail systems

Proven Technology

- Easily accessible lubrication points
- Minimal preventive maintenance required
- T-slots integrated on sides of the profile for mounting attachments or for use as a cable duct
- Timing belts can be replaced without removing load attachment plate
- Multiple configuration options due to T-slots available on both the profile and load plate

-					
HLE60	HPLA080	HLE100	HPLA120	HLE150	HPLA180

	HLE60	HPLA80	HLE100	HPLA120	HLE150	HPLA180
Maximum Travel (mm)	4,000	5,540	6,200	9,470	7,900	9,240
Maximum Payload (N)	353	1,304	1,549	2,598	3,402	4,501
Maximum Acceleration (m/s ²)	10	10	10	10	10	10

*Do not exceed allowable axial and moment loading.

HLE-SR Bearing System

The bearing system is the principal distinction between the RB (Roller Bearing) type modules and the SR (Square Rail) type. The SR employs a square rail bearing system, which permits greater load carrying capability without increasing overall size. Square rail bearings are recirculating ball bearings designed to move heavy loads on a precise linear path. Linear guides, which house several rows of re-circulating ball bearings, ride on a high strength, steel square rail. The steel square rail cross section enables bearing ways to be ground into the sides of the rail. These bearing ways are shaped in an arch which approximates the same radius as the ball bearing. This increases the contact surface between the ball and the rail, thereby increasing the load capacity of the linear bearing.

HLE-SR Drive Principle

The HLE-SR employs the same high performance belt and pulley drive mechanism as the HLE-RB. It features a zero backlash steel reinforced timing belt drive, which provides high speeds, high acceleration, and good bidirectional repeatability. A belt tension station, conveniently located at the end of the unit provides for quick and easy belt adjustment. The drive station is designed to accept planetary gear reducers as well as a wide variety of servo and stepper motors.

Carriage

A rigid carriage assembly is built upon two bearing housings which contain several rows of recirculating ball bearings designed to ride in grooves ground into a steel square rail linear raceway. Longer or custom carriages are also available.

Load Attachment Plate

Longitudinal T-Slots integrated on the top of this plate facilitate the assembly of attachments to the HLE-SR. Utilization of these T-Slots together with standard clamping profiles enables easy straight- forward construction of multiaxis systems.

2 Drive Belt

A zero backlash, steel reinforced timing belt provides high speed, high acceleration and high bidirectional repeatability. A serrated clamp mechanism between belt and carriage guarantees a safe and strong connection.

3 Housing

The HLE-SR housing is a light-weight, compact and selfsupporting extruded aluminum section. It is available in two cross-sections: 60×60 mm (HLE60) and 100×100 mm (HLE100). T-slots along the length are utilized for clamping mechanical components, joining units, and attaching sensors or mechanical switches.

4 Bearing Raceway

A high strength steel alloy bearing rail features precision ground "gothic arch" raceways to provide precise translation and high strength support of the recirculating ball bearings.

(5)

Optional IP30 Strip Seal Magnetically attached stainless steel seal strip provides environmental protection to interior components.

Optional Features

- Direct mounting for planetary gear reducers
- Adjustable "end of travel" limit switches and "Home" position sensor
- Cable carrier systems
- Performance matched Parker servo systems
- Structural components for vertical and multiaxis mounting
- Toe clamps and hardware for fast/easy mounting
- External bumpers
- Link shafts and support bearing for dual unit axes
- Splice plates for extending travels beyond length available in a single profile

SPECIFICATIONS

As part of the advanced, cost-effective construction of machines and handling systems, the HPLA is a good choice for applications such as materials handling (palletizing, depalletizing, feeding, and part removal), warehouse technology (parts picking, storage and retrieval), and machine tool automation (workpiece loading and unloading, tool changing). Additional examples include textile machinery building (cross-cutting, slitting and stacking, quilting, seam stitching) and construction (formwork and placing reinforcing steel bars in concrete).

SPECIFICATIONS

Other typical applications are process engineering (painting, coating, bonding), testing technology (guiding ultrasonic sensors, laboratory equipment), and cleanroom technology (wafer transport, wafer coating).

Characteristic	Units	HLE	60-SR	HLE1	00-SR
Unit Weight (basic unit without stroke) Standard Carriage, NL Extended Carriage, VL	kg (lb.) kg (lb.)	3.5 5.91	(7.7) (13)	16.2 20.0	(35.7) (44.1)
Carriage Weight Standard Carriage, NL Extended Carriage, VL Weight per meter of additional length	kg. (lb) kg. (lb) kg/m (lb/ft)	1.8 2.1 5.5	(4.0) (4.6) (3.7)	2.2 3.8 13.3	(4.9) (8.4) (8.9)
Moment of Inertia (related to the drive shaft) Standard Carriage, NL Extended Carriage, VL	kg-cm² (lb-in²) kg-cm² (lb-in²)	3.52 5.20	(1.20) (1.83)	34.8 52.2	(11.9) (17.9)
Travel and Speed Maximum Speed ⁽¹⁾ Maximum Acceleration ⁽¹⁾ Maximum Travel ⁽²⁾ , NL Maximum Travel ⁽²⁾ , VL	m/s (in/s) m/s² (in/s²) m (in) m (in)	3 10 3.05 2.8	(120) (393) (120) (114)	3 10 6.15 6.0	(120) (393) (242) (236)
Geometric Data Cross Section, Square Moment of Inertia Ix Moment of Inertia Iy Moment of Elasticity	mm (in) cm ⁴ (in ⁴) cm ⁴ (in ⁴) N/mm ² (Ib/in ²)	57.2 48.3 59.5 0.72 x 10⁵	(2.25) (1.16) (1.43) (0.1044 x 10 ⁸)	100 377 432 0.72 x 10⁵	(3.94) (9.06) (10.38) (0.1044 x 10 ⁸)
Pulley Data, Torques, Forces Travel Distance per Revolution Pulley Diameter Maximum Drive Torque ⁽³⁾ Maximum Belt Traction ⁽³⁾ (effective load) Repeatability ⁽⁴⁾	mm/rev (in/rev) mm (in) Nm (lb-in) N (lb) mm (in)	125 39.8 8.87 668 ±0.2	(4.92) (1.57) (79) (150) (±0.008)	240.0 74.5 61.5 1650 ±0.2	(9.45) (2.93) (544) (371) (±0.008)

For the following deviations from the above standards, please contact Parker engineering: (1) Greater speeds and accelerations may be achieved.

(2) Splicing possible for longer travel distances. This may cause reductions in effective load, drive torque, speed, acceleration, and repeatability.

(3) Increased timing belt tension required. (4) Nominal value - component dependant. For improved repeatability consult factory.

HPLA/HLE OPTIONS & ACCESSORIES

Limit and home sensors, switches, cable carriers, splice plates, and more.

See Options & Accessories at the end of the belt-driven section.

HLE-60SR Series – Load-Bearing Capacity of Carriage and Timing Belt

Load-Bearing Capacity of HLE-60SR Timing Belt (Fx)

	Transferrable Thrust Force (n)					
Drive Option	Nominal Belt Tension (81,000 km life)	Maximum Belt Tension (46,000 km life)				
Supported Pulley (SP19 - SP30)	500	-				

The forces and moments that the carriage is capable of transferring are speed-dependent. The curves shown in the graphs apply to a standard carriage (S). With the extended carriage (E), all the values apart from

Fx (load-bearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

HLE-60SR Load-Bearing Capacity (Fy and Fz) (Values double for extended carriage)

The curves show the maximum load-bearing capacity of a carriage in one direction of force or torgue. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be reduced if necessary.

Virtual Engineer software is available for determination of precise carriage loading.

Velocity

HLE-60SR Maximum Permissable Moment Load (Mx, My and Mz) (Values double for extended carriage)

90 (66.4)

75 (55.3)

60 (44.3)

45 (33.2)

30 (22.1)

15 (11.1)

Moment, Nm (ft-lbs)

HLE-100SR Series – Load-Bearing Capacity of Carriage and Timing Belt

Load-Bearing Capacity of HLE-1005K Timing Beit (FX)										
			Transferrable Thrust Force (n)							
	Nominal Maxin Belt Tension Tens									
Drive Option	Gearhead	Drive Option	(81,000 km life)	(46,000 km life)						
ARO/ALO	PS90 PX115/PV115 PS115	SP10 SP11 SP12	675 675 925	900 900 1115						
ARW/ALW/ DAR/DAL	PV90/PX90 PS90 PX115/PV115	SP9 SP10 SP11	500 675 675	675 900 900						

The forces and moments that the carriage is capable of transferring are speeddependent. The curves shown in the graphs apply to a standard carriage (S). With the extended carriage (E), all the values apart

from Fx (load-bearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

HLE-100SR Load-Bearing Capacity (Fy and Fz) (Values double for extended carriage)

HLE-100SR Maximum Permissable Moment Load (Mx, My and Mz)

(Values double for extended carriage)

The curves show the maximum load-bearing capacity of a carriage in one direction of force or torque. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be reduced if necessary.

Virtual Engineer software is available for determination of precise carriage loading.

parker.com/VirtualEngineer

Velocity

		_
Curve	m/sec.	(in/sec.)
Α	0.25	(10)
в	0.50	(20)
С	1.00	(40)
D	2.00	(80)
Е	3.00	(120)

selt Driven Tables

HLE-SR Deflection Characteristics

The HLE deflection curves can be used for determining the deflection based on the profile length and the application load weight. Applications requiring high acceleration forces can place a severe strain on the system stability. In these cases, a solid substructure may be required with the HLE product being supported at frequent intervals.

These deflection curves illustrate the deflection d, based on the HLE profile being simply supported at both ends. The graphs take into consideration the self deflection due to the weight of the profile, along with the load to be transported. The maximum deflection cannot be exceeded unless additional supports are implemented. Alternatively, the next larger profile size may be considered. For deflection formulas and calculations, please refer to the Technical Information Library found on our web site www.parkermotion.com.

F = Force N

- L = Unsupported length mm
- δ = Deflection mm

Deflection Curves

Unsupported Profile Length, mm (in)

HLE60-SR with PV60 Direct Drive

HLE60-SR Drive with Motor Block

Dimensions (mm)

Download 2D & 3D files from www.parker.com/emn/HLE60-SR

HLE60-SR Idler

HPLA/HLE OPTIONS & ACCESSORIES

Limit and home sensors, switches, cable carriers, splice plates, and more.

See Options & Accessories at the end of the belt-driven section.

> Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

DIMENSIONS

HLE100-SR Drive

Dimensions (mm)

HLE100-SR Idler

ORDERING INFORMATION HLE-SR

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	1	(12)	(13)
	Orde	er Example:	HLE060	SR	NL	Ε	2000	DA000	MBR	SP5	G1205	H1	K24	ZA	LH0
1	Series HLE060							DML DMR	Dou Dou	ible Axis Ible Axis	, Motor Blo , Motor Blo	ock Le ock Ri	eft ght		
2	Bearing SR	Туре						SP19 SP20	Driv	e Housir Unit	ng For PV6	60-FN			
3	Carriag NL VL	e Type Standard Carriage Extended Carriage						SP21 SP22 SP23 SP24	Mot Mot Mot Mot	or Block or Block or Block	IOCK (NEMA 23 (NEMA 34 (NEMA 34	8 with With	0.375" 0.25" E 0.375"	Bore (lore Co Bore (Coupling Dupling Coupling
4	Unit Ty r M D E	be Idler Dual Axis Unit Single Axis Unit						SP28 SP28 SP29 SP30	6 Mot 8 Mot 9 Mot 9 Mot	or Block or Block or Block or Block	x NEMA 34 x NEMA 23 x NEMA 34 x Neo 70 w	with with with withc	0.50" E out Cou out Cou .0 mm	ore Co upling pling Bore (Coupling
5	Travel L nnnn	ength nnnn=mm (3000 mn 2900 mm max for VI	n max for NL L carriage)	_ carria	ige;			9 Gear G0 G1	r box Op No (Cus	otion* Gearbox tomer S	(Requires	MBR	, MBL, ad*	MRW,	MLW)
6	Drive SI DA0000 DAnnnn	naft Option - Center No Drive Shaft - Sing (nnnn=mm) Dual Axi	er to Cente gle Axis or Id s Center to (er Iler Un Center	it			G120 G120 G121	0003 03 PV6 05 PV6 0 PV6	0 Gearh 0 Gearh	lead 3:1 R lead 5:1 R	atio atio Batio			
	DCnnnn	(200 mm min; 1500 (nnnn=mm) Dual Axis to Center (200 mm m	mm max) s with Cover nin; 1500 mm	ed Link 1 max)	< Shaft	Cent	er	G121 G122	 5 PV60 Gearhead 15:1 Ratio 25 PV60 Gearhead 25:1 Ratio 						
7	Shaft C	onfiguration Optio	ons					*Cont	*Contact factory for approval of any alternative gearbox information.						
	ARO	Gearhead Right						10 Mou	nting O	rientat	ion				
	ALO	Gearhead Left	<u>и</u> - и					H1 ப2	Can	riage Up					
		Gearnead Right Shat	Right					H3	Can	iage Do riage on	Side Drive	- Stat	ion l In		
	WLO WRO	Shaft Left Shaft Right	i iigint					H4	H4 Carriage on Side, Drive Station Down						
	WBO MBI	Double Shaft Motor Block Left						1) Mote	or Kit O	ption					
	MBR	Motor Block Right						K00	No I	Motor Ki	it In the second				
	MLW	Motor Block Left, Sh	naft Right					K21	Mot	or Kit LV	(23, HV23,	052	3, ES23	s, vs2;	3 to PV60
	MRW	Motor Block Right, S	Shaft Left	4				K22	IVIOL Mot	or Kit St	23X 10 P1	/60 2 to D1	160		
		Double Axis Gearnea	ad, Drive Lei ad. Drive Rid	ι iht				K23	Mot	or Kit IV	VIZS, SEZS VRA HVRA		/60		
	2741		aa, biivo riig	, ite				K25	Mot	or Kit BF	-34. NO34	XIO(34X. TS	31. TS	32 to PV60
	WRO WLO	WBO ARO ALO ARW	V ALW MBR	MBL	MRW	MLW		K26	Mot	or Kit B	534. ES34	to PV	/60	01,10	02 10 1 100
	(P)							K27	Mot	or Kit N	070. JO70) to P\	/60		
								K28	Mot	or Kit SM	MB60 to P	V60			
	H H			Н	H	Ħ		12 Strip	Seal O	ption					
	ЩЦ	ЩЩЩ	Щ	Щ	Щ	Щ		ZA	Unit	with Str	rip Seal (IP	30)			
								ZB	Unit	without	Strip Seal				
								13 Limi	t/Home	Switch	n Option				

- LHO No Limit Switch Assembly
- LH3 Three NPN Prox Switches, 10-30 VDC

F

п п

F

HLE-SR

Fill	in an ord	ler code from ea	nch of the nu	ımber 2	red fie	əlds t 4	to create	e a comp	lete mod 7	lel orde 8	r code. 9	10	1	(12)	(13)
	Orde	er Example:	HLE100	SR	NL	Е	2000	DA000	ARO	SP2	G2-03	H1	ZB	K2	LH0
1	Series HLE100 Bearing SR	Туре						SP6 SP7 SP8 SP9 SP10 SP11	Motor Blo Motor Blo Motor Blo Drive Hou Drive Hou Drive Hou	ock - witl ock - NE ock - NE using for using for using for	h coupling MA 42 with MA 42 with PX90/PV9 PS90 PX115/PV	for JO h 0.625 hout co 90/PEN /115	923 dir 5 in. co oupling I/PER-C	ect driv upling)90	e
3	Carriago NL VL	Standard Carriag Extended Carriag	je je				9	SP12 Gearbox G0-00	Drive Hou C Option No Gearl	using for Dox	PS115				
4	Unit Typ M E F	e Idler Timing Belt Drive Timing Belt Drive	e, Nominal Th e, Nominal Th	rust, N rust, N	1axim 1axim	um Li um Tł	fe nrust	G10-nn G11-nn G12-nn G13-nn G14-nn	PX115 PX115 PX90 PV90						
5	Travel L	ength Specified travel ir	n mm (nnnn =	= mm)			10	nn = ratio Mountin	Single s Gorriage	stage ratio t ation	os 3:1, 5:1,	10:1	Dual st	tage rati	os 15:1, 25:1
6	Drive St DA0000 DAnnnn	naft Option - Ce No Drive Shaft - (nnnn=mm)	nter to Cen Single Axis o	r Idler	Unit		11	H2 H3 H4 Strip Se	Carriage Carriage Carriage	Down on Side, on Side,	Drive Stat Drive Stat	ion Up ion Do [,]	wn		
	Shaft Co WOO WLO WRO ALO ALO ALW ARW DAL DAR MBL MBR	No Shaft, Idler U Shaft Left Shaft Right Double Shaft Reducer Left Reducer Right Reducer Right Reducer Right, S Double Axis, Driv Double Axis, Driv Motor Block Left Motor Block Righ	tions nit aft Right Shaft Left re Left re Right				(1)	ZA ZB Motor K K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10	Unit with Unit with Unit with (it Option No Motor J034*, NC J070*, Nr J090*, Nr M105* ES3*, OE J034*, NC J090*, Nr M105* to ES3*, OE RS42, RE	Strip Se out Strip n r Kit 034*, BEC 070* 090* 2034*, BEC 090* to F 0 PE-115 2M83-*, 2 242, S10	al (IP30) Seal 34*, TS3* 2ETA83-*, 1 34*, TS3* PE-115 2ETA83-*, 1 06-205	S83-*, S83-*,	RS3* RS3*		
8	Drive St SP0 SP3 SP4 SP5 WOO	ation Interface Idler or Shaft Opti Motor Block - NEI Motor Block - NEI WLO WRO WBC	on MA 34 with 0. MA 34 with 0. MA 34 withou D ALO AI	500 in. 375 in. t coupl RO	coup ing ALW	ling Ing ARW € III IIIIIIIIIIIIIIIIIIIIIIIIIIIIII)]	K11 K12 K35 K37 K39 K35 K37 K39 K41 K50 K51 K52 K53	S106-173 M145 MPP092 MPP100 MPP115 Parker M Parker M Parker M Parker M Parker H AKM3X-A SGMAH- SGMAH-	PP092/N PP100/N PP115/N PP142/N DY55; M AN (Kollr 04 (Yask 08 (Yask	250 MPJ092 MPJ100 MPJ115 MPJ142 IPL15XX (A morgen) :awa) :awa) :awa)	ullen Br	adley)		
	DAL	DAR	MBL MBR	romech	anical	& Driv	(13) ves Divisio	K54 K55 K56 K57 *Single sta: Limit/Ho LH0 LH3 LH4 m• Irwin, I	MKD041 AKM4X-A MKD070 MKD090 ge ratios: 3 ome Swi No Limit Three NF Three PN Pennsylvar	(Indrama (Indrama (Indrama (INDRAMA , 4, 5, 8, tch Op Switch A PN Prox S IP Prox S IP Prox S nia • 800	at) norgen) at) T) 10; Dual sta tion Assembly Switches, 1 Switches, 1 D-358-9070	age ratio 10-30 \ 10-30 \ • www	os: 12, [∩] /DC /DC v.parkei	15, 16, 2	20, 25 mn

HZR Series

Belt-Drive Actuators for High Speed, Long Stroke Vertical Applications

- Designed as a vertical axis unit
- Load lifting capacities up to 150 kg
- Velocity up to 5 meters/sec.
- Positional repeatability of ±0.2 mm
- Torsion-resistant housing
- Roller wheel bearings for smooth vertical motion
- High vertical acceleration

Typical Fields of Application

- Materials handling: palletization, feeding, removal
- Textile machinery building: crosscutting, slitting and stacking, quilting, seam stitching
- Process engineering: painting, coating, bonding
- Storage technology: commissioning, inventory
- Machine tool building: workpiece loading, tool changing
- Testing technology: guiding ultrasonic sensors

	HZR50P Standard	HZR50E Extended	HZR80	HZR100
Maximum Travel (mm)	1,500	1,500	1,500	2,000
Maximum Payload (N)				
Maximum Acceleration (m/s ²)	5		5	10

The HZR is a rugged vertical axis unit unique to the high speed automation industry. It is specifically designed to satisfy the mechanical demands placed on the vertical axis of a multi-axis gantry robot – utilized for high throughput lifting and transporting of heavy or bulky loads. The payload is supported by a high strength extruded aluminum profile which is lifted and guided through a torsion-resistant cast aluminum housing. Maintenance-free, heavy duty polyamide bearing wheels evenly distribute and support the high forces induced by rapid horizontal acceleration of the load. A wear-free, steel cord reinforced timing belt transmits large traction forces to provide high accelerations and lifting capability in the vertical direction.

SPECIFICATIONS HZR Series

Characteristics	Units	HZR50P (Standard)		HZR50E (Extended)		HZ	R80	HZR100		
Unit Weight Basic Unit (based on 1 meter travel) Weight of additional length	kg (lb) kg/m (lb/ft)	15.3 2.9	(33.73) (1.95)	17.2 2.9	(37.92) (1.95)	37 7.4	(81.8) (4.9)	60 10.2	(132.3) (6.85)	
Moment of Inertia (based on 1 meter travel) Inertia reflected to drive pulley	kg-cm² (lb-in²)	66.11	(22.58)	66.51	(22.72)	250	(85.4)	357	(122.0)	
Travel and Speed1 Maximum Speed Maximum Acceleration Maximum Travel	m/s (in/s) m/s² (in/s²) m (in)	5 5 1.5	(200) (197) (59.1)	5 5 1.5	(200) (197) (59.1)	5 10 1.5	(200) (393) (59.1)	5 10 2.0	(200) (393) (78.7)	
Geometric Data Cross Section (square profile) Moment of Inertia Ix Section Modulus, W	mm (in) cm⁴ (in⁴) cm³ (in³)	50 29.9 29.9	(1.97) (0.72) (1.82)	50 29.9 29.9	(1.97) (0.72) (1.82)	80 187.1 46.7	(3.2) (4.5) (2.85)	100 383.3 76.6	(3.9) (9.2) (4.67)	
Pulley Data, Torques, Forces Travel Distance per Revolution Pulley Diameter Maximum Drive Torque Static Load Maximum Belt Traction (effective load) Repeatability	mm/rev (in/rev) mm (in) Nm (Ib-in) kg (Ib) N (Ib) mm (in)	180 57.3 47 45 1654 ±0.2	(7.09) (2.26) (416.3) (99.2) (371.8) (±0.008)	180 57.3 47 45 1654 ±0.2	(7.09) (2.26) (416.3) (99.2) (371.8) (±0.008)	240 76.4 108 75 2822 ±0.2	(9.45) (3.01) (956.7) (165) (635) (±0.008)	240 76.4 168 150 4410 ±0.2	(9.45) (3.01) (1488.1) (331) (992) (+0.008)	

1 For higher speeds, accelerations or longer travel consult Parker Application Engineering for assistance.

Force and Moment Loads

The forces and moments that the carriage is capable of transferring are speed-dependent. The curves shown in the graphs apply to a standard guiding (P). With the extended guiding (E), all the values apart from Fx (load-bearing capacity of timing belt) can be doubled if the load is applied equally to both halves of the carriage or distributed uniformly along its entire length.

The curves show the maximum load-bearing capacity of a carriage in one direction of force or torque. If several loads are applied in different directions, the values given by the curves must be derated, i.e. the load or speed should be reduced if necessary.

Moment Load vs. Speed

Extension Loads

DIMENSIONS

Download 2D & 3D files from www.parker.com/emn/HZR50

12

8

35

HZR80

HZR100

Belt Driven Tables

ORDERING INFORMATION HZR Series

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9
		Order Example:	HZR80	1000	Α	SP2	ARO	G2-03	K02	LH1	Е
1	Series HZR50 HZR80 HZR100		 Motor Kit Option K00 No Motor Kit K20 Parker ES23X K21 Parker BE23X K23 Parker N070, ALlen Bradley MPL15XX 								
2	Table Tr nnnn	avel Specified travel in mm (nnnn = mm)	K24Parker N092K26Parker LV/HV34K34Parker MPP092/MPJ092								
3	Mountir A B C D E	Ig Flange Options No Mounting Flange HZR Mounting to HPLA80 HZR Mounting to HLE100 HZR Mounting to HPLA120 HZR Mounting to HLE150		K36 K39 K41 K50 K51 K52 K53 K54	 Parker MPP115/MPJ115 Parker MPP142/MPJ142 Parker HDY55; MPL15XX (Allen Bradley) AKM3X-AN (Kollmorgen) SGMAH-04 (Yaskawa) SGMAH-08 (Yaskawa) 						
4	Drive St SP10 SP11	ation Interface Drive Housing for PX90/PV90 Drive Housing for PS90 Drive Housing for PX115 /P)/1115	(8)	K55 K56 Limit	م N Swit	AKM4X //KD07 t ch As	-ÀN (Kol 0 (Indrar sembly	llmorgen) mat)			
0	SP12 SP13	Drive Housing for PS115		LH0 LH1	No Switch Assembly Three mechanical switches, with 1 NO and 1 NC contact per switch (HZR80 and HZR100)						d 1 NC
(5)	ARO ALO	Gearbox Right Gearbox Left		LH2	T S	wo me witch (chanica HZR80 a	I switches and HZR1	and 1 N 00)	PN prox	ximity
6	Gearbo	x Option		LH3	י ו) ו)	HZR80 hree P	and HZ NP prox	R100) R100) mity switc	ches NO	/NC, 10	-30 VDC
	G0-00 G1-nn	Customer Supplied		LH5	יי ד א	hree N C Trav	PN prox	kimity swite 10-30 VE	ches NO)C (HZR:	"Home 50 only)	",
	G08-nn G09-nn G10-nn	PX90 Gearbox included PX115 Gearbox included PS90 Gearbox included		LH6	T N	Three N NC Trav	PN prox el Limits	kimity swite s 10-30 VE	ches NO DC (HZR	"Home 50 only)	",
	G11-nn G12-nn nn = ratio Single stag	PS115 Gearbox included PS142 Gearbox included ge ratios 3:1, 5:1, 10:1 Dual stage ratios 15:1, 25:1	9	Exter E	ided 1	Optio 6 Addi	n tional Ro	ollers (HZF	850 only)		

Parker Gantry Robot Systems

Minimize Your Engineering Effort

Parker's gantry systems provide cost-effective, easy to integrate solutions that satisfy the vast majority of automation requirements. In addition to our standard gantry systems, Parker offers products with additional capabilities to fulfill the needs of special applications. Our engineering skill and manufacturing expertise have integrated these products into custom-tailored gantry solutions which have successfully addressed the most unique and exacting requirements of machine builders and integrators around the world.

Additional Capabilities

- Motors, Drives and Controls
- Extended Travels
- Rotary Motion Modules
- Cleanroom Preparations
- External Position Feedback
- Vertical Axis Brakes
- End Effectors
- Protective Guarding
- Custom Support Structures

Seven Standard Configurations

Parker's seven standard system configurations are designed to satisfy the vast majority of gantry robot applications. By standardizing on these configurations, Parker has simplified sizing and selection, shortened lead times, and reduced costs for users of these systems. The travels and loads indicated are nominal, and should not be considered limiting factors. Longer travels and increased loads are attainable depending upon the combination of parameters.

System Four Two Axis: XX' – Z

GANTRY ROBOT SYSTEMS

System One

System One provides two axes of horizontal motion. The primary axis (X) is comprised of two HPLA or HLE Linear Modules linked by a common drive shaft, and the secondary axis (Y) is comprised of one HPLA or HLE Linear Module. These linear modules are capable of high speeds and accelerations over long travels. This system is designed for rapid transport of light to moderate loads in a single horizontal plane.

- 1 Support Structure Available (steel or aluminum framing)
- (2) X-Axis Drive Rail Assembly
- (3) X-Axis Driven Rail Assembly
- (4) X-Axis Link Shaft Assembly
- (5) X-Axis Cable Carrier

- 6 X-Axis Drive Motor
- Y-Axis Drive Rail Assembly
- (8) Y-Axis Cable Carrier
- (9) Y-Axis Drive Motor
- (1) Pillow Block Bearing & Support (Based on Application)

	Axis	s Model Numl	oer	Load		Travel		Velocity				
Series No.	X-Axis	Y-Axis	Z-Axis	(kg)	X-Axis (meters)	Y-Axis (meters)	Z-Axis (meters)	X-Axis (m/sec.)	Y-Axis (m/sec.)	Z-Axis (m/sec.)		
1	HLE60RB	HLE60RB	-	15	2.9	1.3	-	2.0	2.0	—		
2	HLE60SR	HLE60SR	_	25	2.8	1.3	_	2.0	2.0	_		
3	HPLA080	HPLA080	-	30	5.4	2.0	-	2.0	3.0	—		
4	HLE100RB	HLE100RB	-	35	6.0	2.0	-	2.0	3.0	_		
5	HLE100SR	HLE100SR	_	75	6.0	2.0	_	2.0	3.0	—		
6	HPLA120	HPLA120	-	85	9.3	3.0	_	2.0	3.0	_		
7	HLE150RB	HLE150RB	—	100	7.9	3.0	_	2.0	3.0	—		

Note: Loads, travels, and velocities shown are interdependent. Increased values are attainable. Actual configuration will depend on application requirements. Please consult factory for more details.

GANTRY ROBOT SYSTEMS

Ζ

System Two

System Two utilizes two linear modules in both axes (X & Y). The second linear module of the Y-axis is an idler unit which increases load capacity (normal and moment) and permits longer travel. The addition of this unit doubles the load capacity over System One. Traction force can be improved by linking the second axis (Y) module to the first with a common drive shaft. The link shaft doubles the potential acceleration of the system. This system is intended for moderate to heavy loads.

- (1) Support Structure Available (steel or aluminum framing)
- (2) X-Axis Drive Rail Assembly
- (3) X-Axis Driven Rail Assembly
- (4) X-Axis Link Shaft Assembly
- (5) X-Axis Cable Carrier
- 6 X-Axis Drive Motor

- (7) Clamping Profile
- (8) Y-Axis Drive Rail Assembly
- (9) Y-Axis Idler Rail Assembly
- (10) Y-Axis Cable Carrier
- (1) Y-Axis Drive Motor
- (2) Pillow Block Bearing & Support (Based on Application)

8

	Axi	s Model Numl	ber	Load		Travel		Velocity			
Series No.	X-Axis	Y-Axis	Z-Axis	(kg)	X-Axis (meters)	Y-Axis (meters)	Z-Axis (meters)	X-Axis (m/sec.)	Y-Axis (m/sec.)	Z-Axis (m/sec.)	
1	HLE60RB	HLE60RB	-	30	2.9	1.3	-	1.0	2.0	-	
2	HLE60SR	HLE60SR	_	50	2.8	1.3	_	1.0	2.0	-	
3	HPLA080	HPLA080	—	60	5.4	2.0	—	2.0	3.0	—	
4	HLE100RB	HLE100RB	_	70	6.0	2.0	_	1.5	4.0	-	
5	HLE100SR	HLE100SR	-	150	6.0	2.0	-	1.5	4.0	-	
6	HPLA120	HPLA120	_	170	9.3	3.0	_	2.0	4.0	_	
7	HLE150RB	HLE150RB	—	200	7.9	3.0	—	2.0	4.0	—	

Note: Loads, travels, and velocities shown are interdependent. Increased values are attainable. Actual configuration will depend on application requirements. Please consult factory for more details

depend on application requirements. Please consult factory for more details. Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

System Three

System Three provides two axes of motion in a vertical plane. A ballscrew driven ET Cylinder is utilized to provide high thrust in the vertical direction. ET Rod Guides, in conjunction with the dual X-axis, minimize the effects of moment and side loading, permitting higher acceleration of the payload.

(1) Support Structure Available (steel or aluminum framing)

1

- (2) X-Axis Drive Rail Assembly
- (3) X-Axis Idler Rail Assembly
- (4) X-Axis Cable Carrier
- (5) X-Axis Drive Motor

(6) ET Cylinder Z-Axis with Flange Plate

2

 $(\overline{\boldsymbol{\imath}})$ Z-Axis Mounting Plate

9

6

(8)

3

(5)

- (8) Z-Axis Drive Motor
- (9) Z-Axis Cable Carrier

	Axis	Axis Model Number				Travel			Velocity	
Series No.	X-Axis	Y-Axis	Z-Axis	(kg)	X-Axis (meters)	Y-Axis (meters)	Z-Axis (meters)	X-Axis (m/sec.)	Y-Axis (m/sec.)	Z-Axis (m/sec.)
1	HLE60RB	—	ETB32	10	2.9	—	0.3	1.5	-	0.5
2	HLE60RB	_	ETB50	20	2.9	_	0.5	1.5	-	0.8
3	HLE60SR	—	ETB32	10	2.8	-	0.3	1.5	-	0.5
4	HLE60SR	_	ETB50	20	2.8	-	0.5	1.5	-	0.8
5	HPLA080	-	ETB50	35	5.4	-	0.5	2.0	-	0.8
6	HLE100RB	_	ETB50	40	6.0	-	0.5	2.0	-	0.8
7	HLE100RB	—	ETB80	50	6.0	-	1.0	2.0	-	0.5
8	HLE100SR	—	ETB50	40	6.0	—	0.5	2.0	-	0.5
9	HLE100SR	—	ETB80	50	6.0	—	1.0	2.0	-	0.5
10	HPLA120	—	ETB80	75	9.3	-	1.0	2.5	-	0.5
11	HPLA120	—	ETB100	100	9.3	—	1.0	2.5	-	1.0
12	HLE150RB	_	ETB80	75	7.9	_	1.0	2.5	_	0.5
13	HLE150RB	—	ETB100	100	7.9	-	1.0	2.5	-	1.0

Note: Loads, travels, and velocities shown are interdependent. Increased values are attainable. Actual configuration will depend on application requirements. Please consult factory for more details.

depend on application requirements. Please consult factory for more details.

GANTRY ROBOT SYSTEMS

- ① Support Structure Available (steel or aluminum framing)
- (2) X-Axis Drive Rail Assembly
- (3) X-Axis Idler Rail Assembly
- (4) Z-Axis Mounting Plate
- (5) X-Axis Cable Carrier

- 6 X-Axis Drive Motor
- $(\overline{\boldsymbol{\jmath}})$ Z-Axis Electric Cylinder
- (8) Z-Axis Drive Motor
- (9) Z-Axis Cable Carrier

	Axis	Axis Model Number				Travel			Velocity		
Series No.	X-Axis	Y-Axis	Z-Axis	(kg)	X-Axis (meters)	Y-Axis (meters)	Z-Axis (meters)	X-Axis (m/sec.)	Y-Axis (m/sec.)	Z-Axis (m/sec.)	
1	HLE60RB	-	ETB32	10	2.9	—	0.3	1.5	—	0.5	
2	HLE60RB	—	ETB50	20	2.9	—	0.5	1.5	-	0.8	
3	HLE60SR	—	ETB32	10	2.8	—	0.3	1.5	-	0.5	
4	HLE60SR	_	ETB50	20	2.8	_	0.5	1.5	-	0.8	
5	HPLA080	—	ETB50	35	5.4	—	0.5	2.0	-	0.8	
6	HLE100RB	—	ETB50	40	6.0	—	0.5	2.0	-	0.8	
7	HLE100RB	—	ETB80	50	6.0	—	1.0	2.0	-	0.5	
8	HLE100SR	_	ETB50	40	6.0	—	0.5	2.0	-	0.5	
9	HLE100SR	—	ETB80	50	6.0	—	1.0	2.0	-	0.5	
10	HPLA120	—	ETB80	75	9.3	—	1.0	2.5	-	0.5	
11	HPLA120	—	ETB100	100	9.3	—	1.0	2.5	-	1.0	
12	HLE150RB	_	ETB80	75	7.9	—	1.0	2.5	-	0.5	
13	HLE150RB	—	ETB100	100	7.9	—	1.0	2.5	—	1.0	

Note: Loads, travels, and velocities shown are interdependent. Increased values are attainable. Actual configuration will depend on application requirements. Please consult factory for more details.

Ζ

System Five

Belt Driver Tables

- (1) Support Structure Available (steel or aluminum framing)
- (2) X-Axis Drive Rail Assembly
- $(\ensuremath{\mathfrak{3}})$ X-Axis Idler Rail Assembly
- (4) X-Axis Cable Carrier

- (5) X-Axis Drive Motor
- (6) HZR Z-Axis with Flange Plate
- (7) Z-Axis Cable Carrier
- (8) Z-Axis Drive Motor

	Axis	Model Nur	nber	Load		Travel			Velocity		
Series No.	X-Axis	Y-Axis	Z-Axis	(kg)	X-Axis (meters)	Y-Axis (meters)	Z-Axis (meters)	X-Axis (m/sec.)	Y-Axis (m/sec.)	Z-Axis (m/sec.)	
1	HLE100RB	—	HZR80	50	6.0	—	1.0	2.0	-	1.5	
2	HLE100RB	—	HZR100	100	6.0	_	1.5	2.0	—	1.5	
3	HLE100SR	—	HZR80	50	6.0	—	1.0	2.0	-	1.5	
4	HLE100SR	—	HZR100	100	6.0	_	1.5	2.0	-	1.5	
5	HPLA120	—	HZR80	50	9.3	—	1.0	2.5	-	1.5	
6	HPLA120	_	HZR100	100	9.3	_	1.5	2.5	-	1.5	
7	HLE150RB	_	HZR80	50	7.9	_	1.0	2.5	_	1.5	
8	HLE150RB	_	HZR100	100	7.9	_	1.5	2.5	_	1.5	

Note: Loads, travels, and velocities shown are interdependent. Increased values are attainable. Actual configuration will depend on application requirements. Please consult factory for more details.

12

(11)

(16

System Six

System Six is a three-axes version of System Two. HPLA/ HLE linear modules provide motion in the X and Y directions while a vertically mounted ET cylinder provides the third axis (Z) of motion. The ET cylinder provides high vertical thrust capacity at moderate speeds. With the Z-axis retracted, this system can transport moderate to heavy loads 4 at high rates of speed over long travel distances.

- (1) Support Structure Available (steel or aluminum framing)
- (2) X-Axis Drive Rail Assembly
- (3) X-Axis Driven Rail Assembly
- (4) X-Axis Link Shaft Assembly
- (5) X-Axis Cable Carrier
- (6) X-Axis Drive Motor
- (7) Pillow Block Bearing Support (Based on Application)
- (8) Clamping Profile
- (9) Y-Axis Drive Rail Assembly

(10) Y-Axis Idler Rail Assembly

3

- (1) Y-Axis Cable Carrier
- (12) Y-Axis Drive Motor
- (13) Z-Axis ET Electric Cylinder
- 14 Z-Axis Drive Motor
- (15) Electric Cylinder Mounting Plate
- (16) Electric Cylinder Mounting Bracket
- (17) Z-Axis Cable Carrier

	Ax	Axis Model Number				Travel			Velocity	
Series No.	X-Axis	Y-Axis	Z-Axis	(kg)	X-Axis (meters)	Y-Axis (meters)	Z-Axis (meters)	X-Axis (m/sec.)	Y-Axis (m/sec.)	Z-Axis (m/sec.)
1	HLE60RB	HLE60RB	ETB32	10	2.9	1.0	0.3	1.0	1.5	0.5
2	HLE60RB	HLE60RB	ETB50	20	2.9	0.5	0.5	1.0	1.5	0.8
3	HLE60SR	HLE60SR	ETB32	10	2.8	1.0	0.3	1.0	1.5	0.5
4	HLE60SR	HLE60SR	ETB50	20	2.8	0.5	0.5	1.0	1.5	0.8
5	HPLA080	HPLA080	ETB50	45	5.4	1.5	0.5	2.0	2.0	0.8
6	HLE100RB	HLE100RB	ETB80	50	6.0	1.5	1.0	2.0	2.0	0.5
7	HLE100SR	HLE100SR	ETB80	50	6.0	1.4	1.0	2.0	2.0	0.5
8	HPLA120	HPLA120	ETB100	100	9.3	3.0	1.0	2.5	2.5	1.0
9	HLE150RB	HLE150RB	ETB100	100	7.9	3.0	1.0	2.5	2.5	1.0

Œ

(15)

(10)

1

Loads, travels, and velocities shown are interdependent. Increased values are attainable. Actual configuration will Note: depend on application requirements. Please consult factory for more details.

System Seven

- (3) X-Axis Driven Rail Assembly
- (4) X-Axis Link Shaft Assembly
- (5) X-Axis Cable Carrier
- (6) X-Axis Drive Motor
- Clamping Profile (7)
- (8) Y-Axis Drive Rail Assembly

- (10) Y-Axis Cable Carrier
- (1) Y-Axis Drive Motor
- (12) HZR Z-Axis with Flange Plate
- (13) Z-Axis Cable Carrier
- (14) Z-Axis Drive Motor
- (5) Pillow Block Bearing & Support (Based on Application)

	Ax	Axis Model Number				Travel			Velocity	
Series No.	X-Axis	Y-Axis	Z-Axis	(kg)	X-Axis (meters)	Y-Axis (meters)	Z-Axis (meters)	X-Axis (m/sec.)	Y-Axis (m/sec.)	Z-Axis (m/sec.)
1	HLE100RB	HLE100RB	HZR80	50	6.0	2.0	1.0	2.0	2.0	1.5
2	HLE100RB	HLE100RB	HZR100	100	6.0	1.3	1.5	2.0	2.0	1.5
3	HLE100SR	HLE100SR	HZR80	50	6.0	2.0	1.0	2.0	2.0	1.5
4	HLE100SR	HLE100SR	HZR100	100	6.0	1.3	1.5	2.0	2.0	1.5
5	HPLA120	HPLA120	HZR80	50	9.3	4.0	1.0	2.5	2.5	1.5
6	HPLA120	HPLA120	HZR100	100	9.3	3.3	1.5	2.5	2.5	1.5
7	HLE150RB	HLE150RB	HZR80	50	7.9	4.0	1.0	2.5	2.5	1.5
8	HLE150RB	HLE150RB	HZR100	100	7.9	3.3	1.5	2.5	2.5	1.5

Note: Loads, travels, and velocities shown are interdependent. Increased values are attainable. Actual configuration will depend on application requirements. Please consult factory for more details.

Gantry Systems Capabilities & Accessories

Parker's gantry systems provide cost-effective, easy to integrate solutions that satisfy the vast majority of automation requirements. In addition to these standard gantry systems, Parker offers products with additional capabilities to fulfill the needs of special applications. Our engineering skill and manufacturing expertise have integrated these products into customtailored gantry solutions which have successfully addressed the most unique and exacting requirements of machine builders and integrators around the world.

Support Structures

Parker can include the support structure and machine guarding as part of your complete system solution. Parker's ParFrame[®] extruded aluminum structures are suited for light to medium duty requirements. High strength steel supports are offered for applications involving greater loads and forces.

Aluminum Structures

- Lightweight aluminum extrusions
- Economical modular construction
- Standard metric sizes compatible with linear drive units

Steel Support Structures

- Heavy duty support
- High system stiffness
- Ideal for higher overhead gantries
- Engineered and fabricated to customer specifications

HPLA/HLE/HZR OPTIONS & ACCESSORIES

Limit and Home Sensors

"End of Travel" Limit Sensors are offered to assure safe operation of the unit by restricting travel to within allowable parameters. This range is dependent upon the load, velocity and acceleration factors determined by the application.

A "Home" Sensor can be positioned to establish a "Machine Start-up" location within the range of travel. Either mechanical or electrical proximity switches can be selected. Limit sensors can be easily positioned along the length of travel to further reduce the allowable operating envelope.

Electrical Proximity Switches

4-wire NPN switch with mounting hardware

Product	Part Number
HPLA (all models):	002-2440-03
HLE60-RB, HLE60-SR	002-1892-01
HLE100-RB, HLE100-SR	510-900010
HLE150-RB, HLE150-Z	510-900030

4-wire PNP switch with mounting hardware

Part Number
002-2440-01
002-1892-02
510-900020
510-900040

Inductive proximity switches are triggered by a standard tripping plate mounted to the side of the carriage. Available in both NPN and PNP 4-wire DC complementary outputs, the switches can be wired either NO or NC operation.

Sensing Distance	4 mm ± 10%
Voltage Supply	10-30 VDC
Switching Capacity	200 mA
Switching Response	2000 Hz
Current Consumption	<200 mA
Voltage Drop	<3 V
Protection Class	IP67
Operating Temperature	-25° C to 70° C (-13° F to 158° F)
Lead Termination	5 meter (200 in)
Reverse Polarity Protection	Yes
Short Circuit Protection	Yes

A cable carrier assembly is normally needed to transport cables to the carriage or custom payload. A complete cable carrier assembly includes the carrier, trough, end brackets, and mounting hardware. The cable carrier should be specifically matched to the linear actuator and other application requirements. Because of the extreme amount of cable flexing associated with high speed cable management, Parker uses only long life high-flex cables with its gantry systems. We recommend that all electric cables be approved for high speed cable carrier usage and that manufacturer's guidelines for bend radii are followed.

Cable Carrier Guidelines

Hose lines should be highly flexible and should only extend slightly under pressure. Weight should be distributed across the cable track as evenly as possible. Cables must not be twisted when routed in the cable carrier and should be routed next to one another with approximately 10% additional space.

Avoid laying several lines on top of each other and laying lines of different diameters directly next to one another. If multiple layers must be used, divides should be inserted between each layer – should such circumstances arise, please contact a Parker application engineer. If there is no alternative to routing several lines beside each other without subdivisions, the clearance height within the carrier must be less than line diameter. This is the only way of preventing the cables from twisting. The supply cables must be able to move freely in the cable carrier – they must never be fastened or bundled together. Separating strips must always be inserted between flat cables routed in multiple layers.

Due to diversity of the requirements associated with high speed cable management systems, it is recommended that you contact your Parker applications engineer.

Toe Clamps

The toe clamps are used to rapidly install and fasten various combinations of linear actuators to each other; to a ParFrame⁻ structure; or to a mounting surface. Two clamps are required to fasten an HLE, HPLA, or HLEZ to a load attachment plate. The table at right shows the profiles for the various axis combinations.

			Dimensions						
Used With	Part Number	Α	В	С	D	Е	F	G	Х
HLE60-RB, HLE60-SR	000-7752-01	54	18	10	12	6	43	M5	70
HPLA080	500-000931	76	27	17	20	10	48	M5	100
HPLA080	500-000932	90	27	17	20	10	60	M8	100
HPLA080	500-000930	110	27	17	20	10	70	M8	100
HLE100-RB, HLE100-SR	500-000905	90	30	20	20	10	60	M6	120
HPLA120	500-000925	110	37.5	26	25	12.5	70	M8	145
HPLA180	500-000920	170	45	36	30	15	110	M10	210
HLE150-RB, HLE150-Z	500-000902	140	40	30	25	12	90	M8	176

Splice Plates

Splice Plates enable travels to be extended significantly beyond the standard range which is limited by extrusion length. Design concepts and factory installation expertise combine to produce perfectly splicevd units which are easily recreated on site. The splice plate connection is only recommended for units with the carriage in the top or the bottom position.

		Dimei	1210112	
Model/Size	Α	В	С	Ref.
HPLA080	300	70	15	80
HLE100-RB, HLE100-SR	400	90	15	100
HPLA120	400	110	15	120
HLE150-RB, HLE150-Z	500	130	15	150
HPLA180	500	165	20	180

D:

monoiono

be Clam;

T-Nuts and T-Bolts

The T-nuts and bolts are used to fasten any element into the T-slots of the profile and to the upper side of the flange plate.

Standard	Corrosion			Di	mensic	ons (m	m)	
Part Number	Part Number	Used With	Α	В	С	D	Е	F
100-2353-01	-	HLE60-RB, HLE60-SR	11	9	M5	3	-	-
131-700102	135-725390	HPLA080	10	10	M5	8	4	5.6
131-700147	-	HPLA080	20	10	M5	8	4	5.6
131-700103	135-725400	HLE100-RB, HLE100-SR	13	13	M6	10	6	-
131-700135	-	HPLA120, HLE150-RB, HLE150-Z	15	15	M6	12	6	10
131-700104	135-725402	HPLA120, HLE150-RB, HLE150-Z	15	15	M8	12	6	10
131-700141	-	HPLA120, HLE150-RB, HLE150-Z	30	15	M8	12	6	10
131-700112	135-725401	HPLA180	18	18	M6	14	7	12
131-700111	135-725420	HPLA180	35	18	M10	14	7	12

.

.

T-Bolts

T-Nuts

Standard Corrosion Standard Resistant Part Number Used With Part Number Used With			Dimensions (mm)					
		Used With	Α	В	С	D	Е	
131-700030	135-725430	HPLA080	10	10	M6	15	4	
131-700031	-	HPLA080	10	10	M6	25	4	
131-700032	-	HPLA080	10	10	M6	30	4	
131-700001	—	HLE100-RB, HLE100-SR	13	13	M8	25	6	
131-700002	135-725450	HLE100-RB, HLE100-SR	13	13	M8	32	6	
131-700007	135-725459	HPLA120	15	15	M10	25	6	
131-700008	135-725460	HPLA120, HLE150-RB, HLE150-Z	15	15	M10	32	6	
131-700009	135-725465	HLE150-RB, HLE150-Z	15	15	M10	40	6	
131-700016	135-725482	HPLA180	18	18	M12	25	7	
131-700015	135-725480	HPLA180	18	18	M12	50	7	

External Bumpers

External bumpers serve as adjustable hard stops. They are fitted to the grooves in the housing profile and are often utilized for restricting total travel.

HPLA Series

					Dime	nsions	(mm)			
Part Number	Used With	Α	В	С	D	Е	F	G	н	J
510-006497	HPLA080	30	45	90	56	5.5	91	5	15	11
510-007497	HPLA120	50	60	140	74	9	150	10	30	17
510-008497	HPLA150	70	88	200	100	11	225	10	50	30

HLE Series

					Dim	ensions (mm)			
Part Number	Used With	Α	В	С	D	Е	F	G	н	J
510-300004	HLE100-RB, HLE100-SR	90	20	30	24	60	40	6.6	11	6.8
510-300005	HLE150-RB, HLE150-Z	140	20	30	24	90	90	6.6	11	9.0

Linear Servo Motor Driven Positioners

High Speed, High Precision Tables

Positioning systems needed for many of today's high-technology applications must satisfy an ever-increasing demand for high throughput and the need for extreme precision. Semiconductor, fiber optics, computer peripherals, metrology, solar scribing, digital printing, and other high-end industries require positioning systems which demonstrate quick response, high acceleration, high velocity, and fast settling time, in conjunction with micron and submicron level positioning.

Parker's linear motor product group is designed to satisfy this attribute combination of performance and precision. Products and systems in this section feature advanced direct-drive technology, which enables payloads to be directly driven by highly efficient brushless servo motors.

- Velocity up to 5 m/sec.
- Acceleration to 5 Gs
- Encoder resolution to 0.1 microns
- Long life cable management system
- Certified accuracy and repeatability

400LXR Series Linear Motor Tables

Optimum performance through slotless motor technology and performance-matched mechanical elements and feedback devices. Page 309

Trilogy Ironless Motor Positioning Tables

Trilogy motor and positioner combined in a pre-engineered, easily integrated, ready-to-run package. Page 317

400LXR Series Linear Motor Tables

High precision "plug and play" modules

- Pre-engineered package
- Performance matched components
- Protection from environment
- Laser certified precision

Typical Enhancements

- Velocity to 3 m/sec.
- Acceleration to 5 Gs
- Encoder resolution to 0.1 microns
- Long life cable management system
- Proven protective strip seal
- Certified accuracy and repeatability

404LXR

Linear motors cannot function on their own. Before motion can occur, a platform must be engineered to provide support, direction, and feedback for the linear motor. Bearings, cables, connectors, encoder, travel stops, homing sensor and other components must be performance matched and integrated to achieve desired motion and control.

Parker linear motor tables provide all this and more in a pre-engineered, easily mounted, ready to run package. The linear motor magnet rail is mounted to a stationary base and the forcer is mounted to the moveable carriage. The only contact between the moving carriage and the stationary base is through the linear support bearings. High-precision square rail bearings provide load support, low-friction translation, and a precise linear path.

406LXR

A high resolution linear encoder provides the required velocity and positional information to the motor controller, and a unique cable management system enables high performance motion with a life of 10 million cycles, dependent on motion cycle speeds, acceleration, and environmental condition.

Parker tables, with the slotless linear motor, are offered in two sizes: 404LXR and 406LXR.

The 400LXR Series linear servo motor tables achieve optimum performance by combining slotless motor technology with performance matched mechanical elements and feedback devices. Fast response, high acceleration, smooth translation, high velocity, and quick settling time describe the performance characteristics found in the 400LXR while high repeatability, precise accuracy, and sub-micron resolution

Series	404LXR	406LXR
Travel (mm)	1000	1950
Load (kg)	45	180
Continuous Force (N)	50	110
Peak Force (N)	180	330

define the positioning attributes.

The 400LXR Tables are offered in two widths (100 and 150mm), and travel lengths up to 2 meters to accommodate the size and performance requirements of many industries including life sciences, photonics, semiconductor, digital printing, solar panel, and general automation.

A vast assortment of "designer friendly" features and options simplify the engineering challenges often confronted with "base model" positioning devices. Features like the IP30 protective strip seal and long life cable management system exemplify the built-in value found in the 400LXR units. Other selectable enhancements like cleanroom compatibility, travel limit sensors, motor drives, encoder resolution, and pinning holes for tooling location, simplify machine design and integration efforts.

(1) "Pass-Through" Cabling

Pre-wired, plug-in connection of the moving payload for easy hookup of user instruments or end effectors.

(2) Connector Panel

Electrically shielded panel provides "plug-in" connectivity and quick disconnect for all signal and power requirements.

(3) High Strength Aluminum Body

Extruded aluminum housing is precision machined to provide outstanding straightness and flatness.

(4) Magnet Rail

Single rail of high energy rare earth magnets offers lower weight and lower cost than double magnet type.

(5) Slotless Linear Motor

Provides a highly responsive, zero backlash drive system. Slotless motors offer excellent heat management, durability, and have built-in thermal sensor and hall sensors.

6 Linear Guidance System

The highly engineered carriage and bearing system effectively counters the combined problematic effects of heat, high-speed and high acceleration.

7 Integral Linear Encoder

Protected non-contact feedback with selectable resolutions to 0.1 micron. Z channel is factory aligned to home sensor for precise homing.

(8) Limit/Home Sensors

Proximity sensors establish end of travel and "home" location and are easily adjustable over entire length to restrict the travel envelope.

(9) "Quick Change" Cabling

Innovative cable transport module offers extended life (10 million cycles, dependent on motion cycle speeds, acceleration, and environmental condition) and a simple cable changing system for preventative maintenance.

(10) Protective Seals

Hard shell aluminum cover combined with stainless steel strip seals provide IP30 protection to interior components as well as enhances overall appearance.

"Designer Friendly" Features and Options

A vast assortment of "designer friendly" features and options simplify the engineering challenges often confronted with "base model" positioning devices. Features like the IP30 protective strip seal and long life cable

management system exemplify the built-in value found in the 400LXR units. Other selectable enhancements like cleanroom compatibility, travel limit sensors, motor drives, encoder resolution, and pinning holes for tooling location, simplify machine design and integration efforts.

Flexibility and Multi-Axis Compatibility

The 400LXR's selection flexibility and mounting compatibility with the 400XR ballscrew driven tables enables single-axis or complex multi-axis units to be configured in a straightforward manner. Parker's matching servo drives and motion controllers can be included to complete the motion system.

Customs and Systems

For specialized applications requiring customization, Parker design engineers can easily modify these tables to suit, or engineer complete interactive linear motion systems to desired specifications. Parker's 400LXR series tables

have taken the mystery, difficulty and cost out of integrating linear motor tables into high throughput precision positioning applications.

SPECIFICATIONS 404LXR and 406LXR

The 400LXR Series linear servo motor tables are preengineered "plug and play" modules that combine slotless linear motor technology with performance matched mechanical elements.

Model		404LXR	406L	XR
Motor		8 Pole	8 Pole	12 Pole
Rated Load	kg (lb)	45 (99)	180 (396)	180 (396)
Maximum Acceleration			5 Gs	
Maximum Velocity Encoder Resolution: 0.1 μm 0.5 μm 1.0 μm 5.0 μm Sine Output	(m/sec)	0.3 1.5 3.0 3.0 3.0	0.3 1.5 3.0 3.0 3.0	0.3 1.5 3.0 3.0 3.0
Positional Repeatability Encoder Resolution: 0.1 µm 0.5 µm 1.0 µm 5.0 µm Sine Output		(Interp	± 1.0 μm ± 1.0 μm ± 2.0 μm ± 10.0 μm olation Depender	t)
Peak Force	N (lb)	180 (40)	225 (50)	330 (75)
Continuous Force	N (lb)	50 (11)	75 (17)	110 (25)
Carriage Mass	(kg)	1.4	3.2	4.1

Travel Dependent Specifications

		Accura	acy* (μm)	Unit Weight (Kg)			
	Posit	tional					
Travel (mm)	Reso 0.1	lution	Straightness	404LXR	406LXR	406LXR	
	0.5	5.0	& Flatness	8-Pole	8-Pole	12-Pole	
	1.0						
50	6	16	6	4.4	8.7	11.1	
100	7	17	6	4.8	-	-	
150	8	18	9	5.2	10.3	13.4	
200	10	20	10	5.6	-	-	
250	12	22	12	6.0	12.6	14.1	
300	14	24	13	6.4	-	-	
350	16	26	15	6.8	13.3	15.7	
400	18	28	16	7.2	-	-	
450	20	30	18	-	14.8	17.2	
500	21	31	19	8.0	-	-	
550	23	33	21	-	16.4	18.7	
600	25	35	22	8.9	-	-	
650	26	36	24	-	17.9	20.2	
700	28	38	25	9.7	-	-	
750	29	39	27	-	19.4	21.8	
800	31	41	29	10.6	-	-	
850	32	43	30	-	20.9	23.3	
900	33	44	32	11.5	-	-	
950	34	44	33	10.4	22.5	-	
1000	30	45	30	12.4	_	27.1	
1000	20	47	41	-	26.2	_	
1200	42	49	41	-	20.3	30.0	
1450	42	53	43	_	30.1	- 50.9	
1500	40	54	50	_	50.1	_	
1600	44	55	53	_	_	34.7	
1700	40	56	56	_	33.0	-	
1750	46	56	57	-	-	_	
1850	47	57	60	_	-	38.6	
1950	48	58	63	-	37.7	-	
2000	48	58	65	-	-	-	
2350	49	59	76	_	_	_	
2500	50	60	80	-	-	-	
2850	50	60	84	-	_	_	
3000	50	60	84	-	-	-	

Encoder Specifications

Description	Specification
Input Power	5 VDC ±5% 150 mA
Output (Incremental)	Square wave differential line driver (EIA RS422) 2 channels A and B in quadrature (90°) phase shift.
Reference (Z Channel)	Synchronized pulse, duration equal to one resolution bit. Repeatability of position is unidirectional moving toward positive direction.

Limit and Home Specifications

Description	Specification
Input Power	+5 to +24 VDC 60 mA (20 mA per sensor)
Output	Output form is selectable with product: Normally Closed Current Sinking Normally Open Current Sinking Normally Closed Current Sourcing Normally Open Current Sourcing All types Sink or Source max of 50 mA
Repeatability	Limits: ±10 microns (unidirectional) Home: See Z channel specifications

Hall Effect Specifications

Description	Specification
Input Power	+5 to +24 VDC, 30 mA
Output	Open Collector, Current Sinking, 20 mA Max

 * Accuracy stated is at 20° C, utilizing slope correction factor provided

DIMENSIONS 404LXR

Z4-Negative

9000 0000

Download 2D & 3D files from www.parker.com/emn/404LXR

DIMENSIONS

Dimensions (mm)

Cable Module (Strip Seal/Hardcover)

OEM Cables/Strip Seal	OEM Cables/Hardcover
Cable Module/Strip Seal	Cable Module/Hardcover

End Views A-A

	Travel	Dimensions (mm)						
Model	(mm)	Α	в	С	D	Е		
404T00LXR	50	368.0	1	100.0	12	346.0		
404T01LXR	100	418.0	1	100.0	12	396.0		
404T02LXR	150	468.0	1	100.0	12	446.0		
404T03LXR	200	518.0	1	100.0	12	496.0		
404T04LXR	250	568.0	1	100.0	12	546.0		
404T05LXR	300	618.0	2	200.0	16	596.0		
404T06LXR	350	668.0	2	200.0	16	646.0		
404T07LXR	400	718.0	2	200.0	16	696.0		
404T09LXR	500	818.0	3	300.0	20	796.0		
404T11LXR	600	918.0	3	300.0	20	896.0		
404T13LXR	700	1018.0	4	400.0	24	996.0		
404T15LXR	800	1118.0	4	400.0	24	1096.0		
404T17LXR	900	1218.0	5	500.0	28	1196.0		
404T19I XR	1000	1318.0	5	500.0	28	1296.0		

Download 2D & 3D files from www.parker.com/emn/406LXR

DIMENSIONS

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

1850

2308

44

10

1000.0

48

10

1000.0

1950

406T14LXR

Linear Motor Driven Tables

OPTIONS & ACCESSORIES

OPTIONS & ACCESSORIES

Cable Transport Module

The LXR's Cable Transport Module offers the convenience of "plug and play" connectivity for fast, easy table installation and "quick change" replacement. This system of cable management includes the highest quality high-flex cable with a life rating of 10 million cycles (dependent on motion cycle speeds, acceleration, and environmental condition), a cable track with support brackets, a "quick change" carriage cartridge, and a plug-in connector panel housing. It also provides a "pass-through" connection and cabling for customer application. This transport module option is ideal for high throughput continuous duty requirements where downtime is not acceptable.

Connection Ends

OEM Cable System

The LXR's unharnessed cable system is offered for OEMs and others who have independent methods of routing and managing cables. These systems offer the "quick change" cartridge, "pass-through" connection and round high-flex cables in lengths of 3.0 or 7.5 meters. They are available with flying lead end terminations, as well as Gemini connectors.

"Quick Change" Cartridge

Cable Extensions – Flying Leads Terminations

404LXR Cable Transport Module

Cable	Tr	ansport	Mod	ule	Oı	rder	Code

Order	Extension Cable								
Code	Length (m)	Termination							
CM02	No E	xtension Cables							
CM07	3.0	Flying Leads							
CM08	7.5	Flying Leads							
CM13	3.0	HD15M-VF Connector							
CM14	7.5	HD15M-VF Connector							
CM17	2.0	HD15M-CF12							
GIVIT7	5.0	Connector							
CM18	7.5	HD15M-CF12							
••	1.0	Connector							

2-Axis System w/Expandable Cable

Management

OEM Cable System Order Code

Order	Extension Cable							
Code	Length (m)	Termination						
CM03	3.0	Flying Leads						
CM04	7.5	Flying Leads						
CM11	3.0	HD15M-VF Connector						
CM12	7.5	HD15M-VF Connector						
CM15	3.0	HD15M-CF12 Connector						
CM16	7.5	HD15M-CF12 Connector						

User "Pass-Through" Cabling

Cable concerns regarding routing and durability for payload or instrument signals are addressed by the pass-through connectivity feature included with both of the LXR cable management systems. Nine pin D-connectors provided on the carriage (with the transport module units) and the cable connecting block combine with high-flex, long life cables for easy setup and dependable performance.

Note: Extension cables are available and can be ordered separately: 006-1743-01 (3 meters); 006-1743-02 (7.5 meters).

- Pre-wired plug-in connection to the moving payload
- Nine user conductors for end-effectors or instruments
- High-flex long life cables:

Ribbon Cable – Transport Module System Round Cable – OEM System

HD1 15 Pin HD	SM-VF D-SUB Plug	HD15N 15 Pin HD	I-CF12 -SUB Plug	
Pin #	Function	Pin #	Function	
1	Z+	1	SENSE-	
2	Z-	2	SENSE+	
3	GND	3	HALL1	
4	NO CONN	4	+5V	
5	+5V	5	+5V	
6	GND	6	HALL2	
7	A-	7	A-/SIN-	
8	A+	8	A+/SIN+	
9	HALL1	9	HALL3	
10	TEMP	10	TEMP	
11	B-	11	B-/COS-	
12	B+	12	B+/COS+	
13	HALL2	13	Z+	
14	HALL3	14	Z-	
15	NO CONN	15	GND	
HD15M-VF Connector compatible with IPA, Vix and Aries Feedback Connector		HD15M-CF12 Connector compatible with Compax 3 F12 Feedback Connector		

Cable Connector Configuration

Simple Configuration - Digital Drive Options

All digital drives ordered in the LXR part number configuration come set up with a motor file including electrical parameters to set continuous and peak currents, current loop compensation values, and default gain settings. Users will have the ability to override these parameters for special application requirements. Tuning is easy to use and intuitive for users and is available via a variety of methods. The motor and loading information must be known by the drive to determine the baseline tuning gains. These are simple parameter entries the user can complete with the help of standard Parker supplied front-end software tools.

For complete details on drive product features and specifications, please refer to the "Drives & Controllers" section of this catalog.

Dowel Pinning Options **order Codes: P1 P2 P3** Standard dowel pin locating holes P1 are offered on all 400LXR

units to facilitate repeatable mounting of tooling or payload.

In addition, pinning options P2 and P3 are offered for precise orthogonal mounting of the second axis in a multi-axis system. In this case, the bottom side of the table base is match drilled and reamed to the first axis to provide exact orthogonal location. This convenient option eliminates concerns regarding contamination or damage often associated with machining for locating pins in an assembled unit. In some instances a 404LXR pinning adapter may be required part number 100-9584-01.

OPTIONS & ACCESSORIES

Cleanroom Preparation Option

Order Codes: R2

Cleanroom compatible linear tables are often required for laboratory and production applications in industries such as semiconductor, life science, electronics, and pharmaceuticals.

400LXR tables with cleanroom preparation were tested in Parker's vertical laminar flow work station, which utilizes ULPA filters to produce an environment having a cleanliness of class 1 prior to testing. Tables were tested in a variety of orientations with sampling both below the table and at the carriage mounting surface. Laminar flow rate is 0.65 inches W.C.

Special cleanroom testing can be provided upon request. For more information on cleanroom testing, contact a Parker Applications Engineer at 800-245-6903.

About Cleanrooms

A room in which the concentration of airborne particles is controlled within defined limits. Federal Standard 209E statistically defines the allowable number of particles per cubic foot of air.

The chart below describes the conditions that must be maintained for the cleanroom to have a specific "class" rating.

Number of Allowable Particles (Measured particle size in microns µm)

Class	0.1	0.2	0.3	0.5	5
1	35	7.5	3	1	0
10	350	75	30	10	0
100	—	750	300	100	0
1000	—	—	-	1000	7
10000	—	—	-	10000	70
100000	—	—	-	100000	700

Toe Clamp Accessories

Part Number:

100-8376-01 (404LXR) 002-3624-01 (406LXR)

Toe clamps for mounting 400LXR tables are ordered separately.

Note that 400LXR Series toe clamps are not interchangeable with toe clamps for 400XR Series tables.

Standard Cleanroom Preparation

- Stringent cleaning and handling measures
- Cleanroom rated lubrication
- Strip seal replaced with hard shell cover

Testing at 4.5 inches below table

Testing at carriage mounting surface

400LXR Cleanroom Compatibility

	Class						
Table Velocity	4.5" Below Table	At Carriage Surface					
250 mm/sec	10	1					
500 mm/sec	25	1					
1000 mm/sec	50	5					
2000 mm/sec	250	25					
3000 mm/sec	500	100					

ORDERING INFORMATION

404LXR

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	12	13	14)
	Order I	Example:	404	T04	LXR	М	Ρ	D13	H3	L2	CM09	Z2	E2	R1	A4	P1
1	Series 404	-					(9 (Cable N CM01	/lanag No C	ement ables – Fi	ree Trav	/el			
2	Travel –	mm 8 Dele Meter						(CM02 CM03	Cable 3.0m	e Transpo OEM Ca	rt Modi ble Set	ule (only - FL)		
	тоо	50								7.5m	OEM Ca	ble Set	- FL	1 *		
	T01	100								Cable	e Trans IVI Trans M	od. W/3	3.0m - F 7.5m - F	L^ 1 *		
	T02	150							CM11	3 0 m		00. w/ i ahla Sa	1.011 - F		Connecto	r
	T03	200						Ċ	CM12	7.5 m	n OEM Ca	able Se	t - HD15	5M-VF C	Connecto	or
	104 T05	250						C	CM13	Cable	e Trans M	od. w/3	3.0m - ⊢	D15M-	VF Conr	nector
	T05 T06	350						C	CM14	Cable	e Trans M	od. w/ī	7.5m - ⊢	D15M-	VF Conr	nector
	T07	400						C	CM15	3.0m	OEM Ca	ble Set	- HD15	M-CF12	2 Conne	ctor
	T09	500						C	CM16	7.5m	OEM Ca	ble Set	- HD15	M-CF12	Conne	ctor
	T11 T13	600 700						C	CM17	Cable Conn	e Trans M lector	od. w/3	3.0m - ⊦	ID15M-0	CF12	
	T15	800						C	CM18	Cable	e Trans M	od. w/7	7.5m - ⊦	ID15M-0	CF12	
	T17	900					*	Extensio	on cable fo	or pass t	hrough cor	nection	is availat	ble and ca	an be ord	lered
	T19	1000					S *	separately * When v	y: #006-17 viring to a	743-01 (Compa	3 meters); x3 please s	#006-17 elect cu	743-02 (7 irrent sou	.5 meters rcing sen	s) sors	-1.
3	Model						(Sonnecto	DI SIVI-VF r	Connec	tor compa	lible with	TIPA, VIX	and Ane	s reeupa	ICK
	LXR	Linear Motor					H	HD15M-C MD14-PF	CF12 Coni Connecto	nector comp	ompatible v atible with	with Cor P Series	npax 3 F (PD-xxP	12 Feedb) Feedba	ack Conr ck Conne	nector ector
4	Mountir	ng					(10	Z Chan	nel Lo	cation*					
	М	Metric						4	<u>2</u> 1 70	None	e ivo End E	Popition	2			
~									- <u>-</u> 73	Cent	er Positic	-0511101 m	1			
(5)	Grade							7	_0 74	Nega	ative Fnd	Positic	on			
	Р	Precision						-		* Refe	r to dimensi	ons				
(6)	Drive T	/pe					(1) E	Encode	r Opti	on					
0	D3	Free Travel (No	Motor)					E	E1	None	Э					
	D13	8 Pole Motor	,					E	2	1.0 µ	ım Resolı	ution				
								E	Ξ3	0.5 µ	ım Resolı	ution				
(7)	Home S	ensor						Ŀ	=4 -c	0.1 µ	IM Resolu	ution				
0	H1	None-Free Trave	el (onlv)					1	15 17	5.0 µ	IM Resolu	ution 'noodo	-			
	H2	N.C. Current Sir	nkina						=7	Sine		ncoue	ſ			
	H3	N.O. Current Si	nkina				(12 E	Environ	menta	al					
	H4	N.C. Current Sc	urcina					F	71	Strip	Seal					
	H5	N.O. Current Sc						F	R2	Hard	Cover w	/Class	10 Clea	anroom	Prep	
	110	N.O. Ouront Oc	urung					F	73	Hard	Cover w	ithout	Cleanro	om Pre	р	
8	Limit Se	ensor					(13 I	Digital I	Drive						
	L1	None-Free Trave	el (only)					4	41	No D	Prive					
	L2	N.C. Current Sir	nking				Ć	î4) F	Pinnina	Optic	on					
	L3	N.O. Current Sir	nking						21	Nom	nulti-axis	pinning	a			
	L4	N.C. Current Sc	ourcing					F	P2 *	X axi	s transfei	r pinnir	- ng to Y (or Z axis	s - 30 a	rc-sec
	L5	N.O. Current Sc	ourcing					F	> 3 *	Y axi	s transfei	r pinnir	ng to X a	axis - 30) arc-se	C
			5					* n	Transfer (equest. C	oinning t all 1-800	o XR from)-245-6903	LXR req 3 for mul	uires add Iti-axis pir	itional bra	acket and ions & qu	l EPS lote

ORDERING INFORMATION 406LXR

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	12	13	14)
	Order	Example:	406	T08	LXR	М	Ρ	D13	H2	L2	CM09	Z2	E2	R1	A4	P1
1	Series 406							9	Cable CM01	Mana No	agemen Cables –	t Free T	ravel	sh <i>i</i> t		
2	Travel -	- mm 8 Pole Ma	otor	1	2 Pole	Motor			CM02 CM03	3.0)m OEM (Cable S	Set-FL	iiy)		
	T01	50		•					CM07	r.c Ca	hle Trans	Mod v	v/3.0m-F	= *		
	T02	150			50)			CM08	Ca	ble Trans	Mod. v	v/7.5m-F	= *		
	T03	250			150)			CM11	3.0)m OEM (Cable S	et - HD1	5M-VF	Connec	tor
	T04	350			250)			CM12	7.5	5m OEM (Cable S	et - HD1	5M-VF	Connec	tor
	T05	450			350)			CM13	Ca	ble Trans	Mod. v	v/3.0m -	HD15N	M-VF Co	nnector
	T06	550			450)			CM14	Ca	ble Trans	Mod. v	v/7.5m -	HD15M	M-VF Co	nnector
	107 TO9	65U 750			550	J			CM15	3.0)m OEM (Cable S	et - HD1	15M-CF	12 Conr	nector
	T00 T09	850			750	ן ר			CM16	7.5	om OEM (Cable S	et - HD1	5M-CF	12 Conr	nector
	T10	950			850)			CM17	Ca	ble Trans	Mod. v	v/3.0m -	HD15M	M-CF12	
	T11	1200			1100)				Ca	hnector	Mod. v	v/7.5m -	HD15	M-CF12	
	T12	1450			1350)			CM18	Cc	nnector					
	T13	1700			1650)			* Extens	ion cab	e for pass t	through	connectio	on is ava	ilable and	can be
	T14	1950			1850)			ordered ** When Notes -	separat wiring t HD15M	ely: #006-1 o a Compa -VF Conne	743-01 x3 plea ctor con	(3 meters) se select (npatible w	s); #006- current s /ith IPA, `	1743-02 ourcing s Vix and A	(7.5 meters) ensors ries
3	Model								Feedbac	k Conn	ector					
	LXR	Linear Motor							HD15M- Connect MD14-P	-CF12 C tor ?F Conn	connector c	ompatik batible w	ole with C vith P Seri	ompax 3 es (PD-x	3 F12 Fee xP) Feedl	dback oack
4	Mounti	ng							Connect	tor						
	М	Metric						10	Z Cha	nnel I	Location	ז*				
(5)	Grade								Z1 72	Po	nie sitivo Enc	d Poeit	ion			
\bigcirc	P	Precision							73	Ce	onter Posi	tion				
									Z4	Ne * B	egative Er	nd Pos	ition			
6		ype										10010				
	Free Ira	ivel (No Motor)						11	Encod	der Op	otion					
	D3	8 Pole Motor (N	lo Moto	r)					E1	No	one					
	D5	12 Pole Motor (No Mot	or)					E2	1.() µm Res	olutior	l			
	Linear N	Notor							E3	0.8	5 µm Res	olution	1			
	D13	8 Pole Motor C	arriage						E4	0.	i µm Res	olution	l			
	D15	12 Pole Motor (Carriage						E5 E7	S.C Sir	ne Output	t Enco	der			
7	Home S	Sensor						(12)	Enviro	onmei	ntal					
	H1	None-Free Trav	el (only)					-	R1	St	rip Seal					
	H2	N.C. Current Si	nking						R2	Ha	ard Cover	w/Cla	ss 10 C	leanroc	m Prep	
	H3	N.O. Current Si	nking					13	Diaita		0					
	H4	N.C. Current Sc	ourcing					U			e Drivo					
	H5	N.O. Current So	ourcing							INC						
Q	l imit C	opeor						14	Pinnir P1	ng Op No	tion o multi-ax	is pinn	ing			
٢									P2 *	Ха	axis trans	fer pin	ning to `	Y or Z a	axis - 30	arc-sec
		NONE-Free Irav	el (UNIY) alviac						P3 *	Υa	axis trans	fer pin	ning to >	Kaxis -	30 arc-	Sec
	L2 1.2		nking nking						* Transfe	er pinnin	g to XR froi	m LXR r	equires a	dditional	bracket a	and EPS
	L3	N.C. Current SI	IIKIIIg						request.	Call 1-8	300-245-69	903 for r	nulti-axis	pinning o	options &	quote
	L4	IN.C. Current SC	Jurcing													

L5

N.O. Current Sourcing

Trilogy I-FORCE Ironless Linear Positioners

High performance and design flexibility

- Trilogy positioners use ground steel or aluminum bases for flatness and parallelism
- Single- or dual-bearing rail positioners for application flexibility
- Available with magnetic or optical encoder
- Dual-rail positioners have bellows as a standard option.
- Multiple carriage options are available on all positioner series.
- Different cable track widths available for added stiffness and rigidity
- Different cable track widths available as custom options for user payload tubes and cables

Series	T1S / T1D	T2S / T2D	T3S / T3D	T4S / T4D
Motor	110 ironless	210 ironless	310 ironless	410 ironless
Max base length (in)	33.6	120	144	137.76
Load (kg)	11.3*/13.5**	27.2*/45.3**	72*/108**	90*/181**
Acceleration (G's) ***	5	5	5	5
Velocity (m/s) †	up to 3	up to 5	up to 5	up to 5
Peak force (N)	202.5	494.2	1170.0	3928.1
Continuous force (N)	45.4	110.3	262.0	878.6
Resolution (micron)	0.1 to 5.0	0.1 to 5.0	0.1 to 5.0	0.1 to 5.0
Repeatability (micron) ‡	±1	±1	±1	±1

* Single rail load specifications

** Dual rail load specifications

*** Consult factory for higher accelerations

T1D/T1S

T3D/T3S

Trilogy's positioners have selectable single- or dual-bearing to match the performance and cost requirements for each application. In addition, they are designed to connect together using transition plates for XY or multi-axis configurations. Options include a variety of cable management systems in addition † Peak velocity is encoder dependent‡ Repeatability is resolution dependent

T4D/T4S

to bellows and hard covers. Consult the factory for more details on the bellows positioner option (2D, 3D, and 4D positioners).

Flexibility, multi-axis compatibility, and ease of customization make the I-Force linear positioners a superior choice for high performance and value.

Parker Trilogy's I-Force linear positioners utilize our highperformance I-Force ironless linear motors in a pre-engineered, easily integrated, ready-to-run package. The principal design goal for these positioners is to achieve high performance at an economical cost while preserving the design flexibility to accommodate customization.

FEATURES

- Trilogy positioners use ground steel or aluminum bases for flatness and parallelism because aluminum extrusions often do not meet the accuracy requirements for straightness and flatness.
- 2 Trilogy has **single- or dual-bearing rail positioners** to better match the performance and cost requirements for each application
- (3) Flexible cable management system for various customer options
- (4) Single rail of high energy rare earth magnets offers lower weight and lower cost than double magnet type.
- (5) Multiple carriage options available for each Trilogy Series model

Trilogy positioners are powered by Trilogy I-FORCE Ironless Linear Motors							
1	and the second sec	For detailed specifics on standalone Trilogy Linear Motors, visit http://bit.ly/ AT_IM.					
	Series	I-Force Ironless					
	Continuous force	5.5 to 197.5 lbf (24.5 to 878.6 N)					
	Peak force	45.5 to 883 lbf (202.5 to 3928 N)					
	Cogging force	Zero					
	Attractive force	Zero					
	Magnet tracks	Dual					
	Heat dissipation	Good					
	Applications	Rapid accelerations, extremely smooth motion					

SPECIFICATIONS

T1D		LINEAR I ENC	MAGNETIC ODER	LINEAR OPTICAL ENCODER OPTIONS (NOTE 5)				
PERFORMANCE		5.0µm	1.0µm	5.0µm	1.0µm			
Peak Velocity	in/s (m/s)	275 (7)	100 (2.5)	196 (5)	120 (3)			
Resolution	in (µm)	0.0002 (5)	0.000 04 (1.0)	0.000 02 (0.5)	0.000 004 (0.1)			
Repeatability	in (µm)	±0.0004 (±10)	±0.000 8 (2.0)	±0.000 06 (1.5)	±0.000 04 (1.0)			
Accuracy – Magnetic	±(30μm +50μm/m) ± (25μm +50μm/m)							
Accuracy - Optical				+(5um	+30um/m)			

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		110-1	110-2
Peak Force	Ν	108.5	202.5
	lb	24.4	45.5
Continuous Force	Ν	24.5	45.4
	lb	5.5	10.2
Peak Power	W	938	1641
Continuous Power	W	47	82

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in (µm)	±.000127 in/in (±127µm/m)	±.000013 in/in (±13µm/m)
Flatness restrained on flat surface in (µm)	±0.013 (±330)	

Note: Straightness/Flatness specifications based on system mounted to surface of flatness ±0.0005in/ft

PHYSICAL		- 1	- 2
Carriage Assembly	lbs (kg)	Please consult fac	ctory for weight.
Base Assembly			
T1DA Aluminum (0.375" thick)	os/ft (kg/m)	Please consult fac	ctory for weight.
Carriage Assembly	in (mm)	5.4 (137.2)	7.8 (198.1)
Coil Bar Length	in (mm)	3.20 (81.3)	5.60 (142.2)
LOAD			
Vertical (Fv) see note 11	lbs (kg)	30 (13.5)	30 (13.5)
Side (Fs) see note 11	lbs (kg)	15 (6.8)	15 (6.8)
Moments - Roll (Mr) see note 11	Lb-ft (N-m)	15 (20)	15 (20)
Moments - Pitch (Mp) see note 11	Lb-ft (N-m)	52 (70)	52 (70)
Moments - Yaw (My) see note 11	Lb-ft (N-m)	52 (70)	52 (70)

1. Total travel = OAL - .45" (11.43 mm) - carriage length.

- 2. Maximum base length is 33.6" (853.4 mm).
- 3. Aluminum base is black anodized.

4. For complete motor specifications, refer to 110 series motor data sheet.

- 5. Optical encoder, RGH series, available in 0.05 μ m, 0.1 μ m, 0.5 μ m, 1.0 μ m, 5.0 μ m.
- Cables extend past base by approximately 0.6[°] when carriage is at negative hard stop.
- 7. Cable Track extends 0.280[°] higher than carriage mounting surface. Space must be taken into account when mounting load.

- 8. Standard cable track provided is 20mm wide 18mm BR.
- Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6...) or 2.400" (9.6, 14.4, 19.2, 24.0....) from each end depending on base length.
- 10. Specification subject to change without notice.
- Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.

SPECIFICATIONS

Download 2D & 3D files from www.parker.com/emn/T1D

DIMENSIONS

Dimensions shown in inches.

DIMENSIONS

T1D

Moving Carriage Assembly

Stationary Base Assembly

Dimensions - mm (in)

-LIMIT

TOTAL TRAVEL = OAL - 0.200" (5.08 mm) - CARRIAGE LENGTH OAL = BASE LENGTH + 0.250" (6.35 mm) BASE LENGTH = MULTIPLE OF 2.400" (60.96)

CARRIAGE SIZE

	- 1	mm	- 2	mm
CL	5.400	137.16	7.800	198.12
В	0.732	18.59	1.932	49.07
Coil	110-1	110-1	110-2	110-2

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

SPECIFICATIONS

LINEAR MAGNETIC ENCODER

LINEAR OPTICAL ENCODER OPTIONS (NOTE 5)

PERFORMANCE		5.0µm	1.0µm	5.0µm	1.0µm
Peak Velocity	in/s (m/s)	275 (7)	100 (2.5)	196 (5)	120 (3)
Resolution	in (µm)	0.0002 (5)	0.000 04 (1.0)	0.000 02 (0.5)	0.000 004 (0.1)
Repeatability	in (µm)	±0.0004 (±10)	±0.000 8 (2.0)	±0.000 06 (1.5)	±0.000 04 (1.0)
Accuracy – Magnetic	±(3	0μm +50μm/m) =	±(25µm +50µm/m)		

Accuracy - Optical

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		110-1	110-2
Peak Force	Ν	108.5	202.5
	lb	24.4	45.5
Continuous Force	Ν	24.5	45.4
	lb	5.5	10.2
Peak Power	W	938	1641
Continuous Power	W	47	82

±(5µm +30µm/m)

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in [µm]	±0.000127 in/in (±127µm/m)	±.000013 in/in (±13µm/m)
Flatness restrained on flat surface in [µm]	±0.013 (±330)	
Nata Otrainkteans / Elateans an aifirations has all an aust	m may inted to avurfage of flatages , 0.00	

Note: Straightness/Flatness specifications based on system mounted to surface of flatness ± 0.0005 in/ft

PHYSICAL		- 2	- 3
Carriage Assembly	lbs (kg)	1.1 (0.50)	1.5 (0,68)
Base Assembly			
T1SA Aluminum (0.375" thick))	lbs/ft (kg/m)	2.8 (1.3)	2.8 (1.3)
Carriage Assembly	in (mm)	3.40 (86.4)	5.80 (147.3)
Coil Bar Length	in (mm)	3.20 (81.3)	5.60 (142.2)

LOAD		- 1	- 2
Vertical (Fv) see note 11	lbs (kg)	25 (11.3)	25 (11.3)
Side (Fs) see note 11	lbs (kg)	13 (5.7)	13 (5.7)
Moments - Roll (Mr) see note 11	Lb-ft (N-m)	11 (15)	11 (15)
Moments - Pitch (Mp) see note 11	Lb-ft (N-m)	44 (60)	44 (60)
Moments - Yaw (My) see note 11	Lb-ft (N-m)	44 (60)	44 (60)

1. Total travel = OAL - 2.85" (72.39 mm) - carriage length.

- 2. Maximum base length is 33.6" (853.4mm).
- 3. Aluminum base is black anodized.
- 4. For complete motor specifications, refer to 110 series motor data sheet.
- 5. Optical encoder, RGH series, available in 0.05 μ m, 0.1 μ m, 0.5 μ m, 1.0 μ m, 5.0 μ m.
- 6. Cables extend past base by approximately $0.6^{\rm \prime\prime}$ when carriage is at negative hard stop.
- 7. Standard cable track provided is 33mm wide 18mm BR.

- Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6...) or 2.400" (9.6, 14.4, 19.2, 24.0...) from each end depending on base length.
- 9. Specification subject to change without notice.
- Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- 11. For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- 12. The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.

Download 2D & 3D files from www.parker.com/emn/T1S

Dimensions shown in inches.

DIMENSIONS

T1S

Moving Carriage Assembly

Stationary Base Assembly

OAI = BASE LENGTH + 1.25 IN (31.75) TRAVEL = BASE LENGTH - 1.6 - CARRIAGE LENGTH TRAVEL (mm) = BASE LENGTH - 40.64 -CARRIAGE LENGTH

COIL SIZE

	- 1	- 2
CARRIAGE LENGTH	3.4 (86.4)	5.8 (147.3)
A (1ST MOUNTING HOLE)	0.224 (5.7)	0.440 (11.2)
B (DOWEL PIN HOLE)	0.224 (5.7)	0.440 (11.2)

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

ORDERING INFORMATION

T1D/T1S

Fill in an order code from each of the numbered fields to create a complete model order code for T1D/T1S.

			1	2	3	4	5	6	7	8	9	10	1	12	
	Order E	Example:	Т	1	D	Α	012	3	Ν	S	В	Α	G	2	
1	Series T	Open Posi	tioner					10	Cat A	ole Lei	n gth 1 Meter				
2	Motor C 1	oil Series 110 Motor			B3 MeterC7.5 MeterL3 Meter Extension Cables (with Connector)					h Connector Bc					
3	Bearing Rail ConfigurationDDual Bearing RailsSSingle Bearing Rails								M 7.5 Meter Extension Cables (with Conne Connector Box ONLY (no cables) *Options A, B, C: cable measured from last cable carrier link *Options L, M: cable measured from connection box at end c					vith Connector I les) carrier link box at end of base	
4	Base Material A 0.375" Al							1	Cable ConnectorizationAP-Series DC						
5	Length of Base XXX Length of base in inches* Maximum: 33.6" Minimum: 9.6" Increment: 2.4" T1S Base Length (increments of 2.4" [60.96mm]) Travel + Carriage Length + 1.6" [40.64mm]							=	B Flying Leads C HD15M-CF12 Connector G Gemini V HD15M-VF Connector Z No cables Notes - HD15M-VF Connector compatible with IPA, Vix and Aries Feedback Connector						
	*Truncate inch base	Travel + Car base length , "XXX" equa	rriage Lengt in part num ls "016"	h + 0.2 oer. Exa	" [5.08r ample:	nm] for a 16	6.8	-	HD1: Conr MD1- Conr	nector 4-PF Co nector	2 Connec nnector c	ompatibl	atible wi	n Compa Series (P	ax 3 F12 Feedback D-xxP) Feedback
6	Coil Size 1 2	1 pole 2 pole 1 pole 2 pole 2 pole	Carriage T1S 3.4" (8 T1S 5.8" (1 T1D 5.4" (1 T1D 7.8" (1	Lengtl 6.4mm 47.3mi 37.6mi 98.12r	1 i) m) mm)			D	Cat 0 2	ole Tra	i ck None Standar	d			
7	Cooling N	No cooling													
8	Winding S P	Type Series Parallel													

9 Encoder

- A Magnetic 1µm
- B Magnetic 5µm
- **Q** Optical 5µm
- L Optical 1µm
- M Optical 0.5µm
- P Optical 0.1µm
- R Optical 1 V p-p sine/cosine
- X No encoder

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

120		LINEAR ENC	MAGNETIC ODER	LINEAR OPTICAL (No	ENCODER OPTIONS OTE 5)
PERFORMANCE		5.0µm	1.0µm	5.0µm	1.0µm
Peak Velocity	in/s (m/s)	275 (7)	100 (2.5)	196 (5)	120 (3)
Resolution	in (µm)	0.0002 [5]	0.000 04 (1.0)	0.000 02 (0.5)	0.000 004 (0.1)
Repeatability	in (µm)	±0.0004 [±10]	±0.000 8 (2.0)	±0.000 06 (1.5)	±0.000 04 (1.0)
Accuracy – Magnetic	±(3	0μm +50μm/m) ։	±(25µm +50µm/m)		
Accuracy – Optical				±(5µm	+30µm/m)

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		210-2	210-3	210-4
Peak Force	Ν	255.8	375.0	494.2
	lb	57.5	84.3	111.1
Continuous Force	Ν	57.4	84.1	110.3
	lb	12.9	18.9	24.8
Peak Power	W	1583	2261	2940
Continuous Power	W	79	113	147

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in (µm)	±0.000127 in/in (±127µm/m)	±.000013 in/in (±13µm/m)
Flatness restrained on flat surface in (µm)	±0.003 + .000254 in/in (±76 + 254µm/m)	
Note: Straightness /Elathons apositionations based on av	atom mounted to ourface of flataces 10,000 Ein/ft	

Note: Straightness/Flatness specifications based on system mounted to surface of flatness ±0.0005in/ft

PHYSICAL		- 2	- 3	-4
Carriage Assembly	lbs (kg)	3.1 (1.4)	4.1 (1.9)	5.5 (2.5)
Base Assembly				
T2DA Aluminum (0.375'' thick)	lbs/ft (kg/m)	10.8 (4.9)	10.8 (4.9)	10.8 (4.9)
Carriage Assembly	in (mm)	4.20 (106.7)	6.60 (167.6)	9.00 (228.6)
Coil Bar Length	in (mm)	7.20 (182.9)	9.60 (243.8)	12.00 (304.8)
LOAD		- 2	- 3	- 4
Vertical (Ev) see note 11	lbs (ka)	60 (27-1)	80 (36 3)	100 (45 3)

Vertical (Fv) see note 11	lbs (kg)	60 (27. 1)	80 (36.3)	100 (45.3)
Side (Fs) see note 11	lbs (kg)	40 (18.1)	60 (27.2)	60 (27.2)
Moments - Roll (Mr) see note 11	Lb-ft (N-m)	40 (53)	60 (80)	60 (80)
Moments - Pitch (Mp) see note 11	Lb-ft (N-m)	100 (34)	200 (270)	200 (270)
Moments - Yaw (My) see note 11	Lb-ft (N-m)	100 (34)	200 (270)	200 (270)

1. Total travel = OAL - 3.00" (76.2 mm) - carriage length.

- 2. Maximum base length is 120" (3048 mm).
- 3. Aluminum base is black anodized.
- 4. For complete motor specifications, refer to 210 series motor data sheet.
- 5. Optical encoder, RGH series, available in 0.05μm, 0.1μm, 0.5μm, 1.0μm, 5.0μm.
- Cables extend past base by approximately 0.6^{ex} when carriage is at negative hard stop.
- 7. Cable Track extends 0.15" higher than carriage mounting surface. Space must be taken into account when mounting load.

- 8. Standard cable track provided is 30mm wide 18mm BR.
- Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6...) or 2.400" (9.6, 14.4, 19.2, 24.0....) from each end depending on base length.
- 10. Specification subject to change without notice.
- Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- 12. For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.

Download 2D & 3D files from www.parker.com/emn/T2D

Moving Carriage Assembly

Stationary Base Assembly

TOTAL TRAVEL = OAL - 3.00" (76.2 mm) - CARRIAGE LENGTH OAL = MULTIPLE OF 2.400" (60.96)

	- 2	mm	- 3	mm	- 4	mm	
CL	4.200	106.68	6.600	167.64	9.00	228.6	
Α	3.200	81.28	5.600	142.24	8.00	203.80	
В	<u> </u>	<u> </u>	2.800	71.12	4.0	101.60	
Coil	210-2		21	0-3	210-4		

CARRIAGE SIZE

TOC

120		LINEAR I ENC	MAGNETIC ODER	LINEAR OPTICAL (N	ENCODER OPTIONS
PERFORMANCE		5.0µm	1.0µm	5.0µm	1.0µm
Peak Velocity	in/s (m/s)	275 (7)	100 (2.5)	196 (5)	120 (3)
Resolution	in (µm)	0.0002 (5)	0.000 04 (1.0)	0.000 02 (0.5)	0.000 004 (0.1)
Repeatability	in (µm)	±0.0004 (±10)	±0.000 8 (2.0)	±0.000 06 (1.5)	±0.000 04 (1.0)
Accuracy – Magnetic	±(3	0µm +50µm/m) :	±(25µm +50µm/m)		
Accuracy – Optical				±(5µm	i +30µm/m)

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		210-2	210-3	210-4
Peak Force	Ν	255.8	375.0	494.2
	lb	57.5	84.3	111.1
Continuous Force	Ν	57.4	84.1	110.3
	lb	12.9	18.9	24.8
Peak Power	W	1583	2261	2940
Continuous Power	W	79	113	147

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in (µm)	±0.000127 in/in (±127µm/m)	±.000013 in/in (±13µm/m)
Flatness restrained on flat surface in (µm)	±0.003 + .000254 in/in (±76 + 254µm/m)	

Note: Straightness/Flatness specifications based on system mounted to surface of flatness ±0.0005in/ft

PHYSICAL		- 2	2	- 3	-4
Carriage Assembly	lbs(kg)	2.1 (0),9)	3.1 (1.4)	3.8 (1.7)
Base Assembly					
T2SA Aluminum (0.375'' thick)	lbs/ft (kg/m)	9.10 (4.2)	9.10 (4.2)	9.10 (4.2)
Carriage Assembly	in (mm)	4.20 (1	06.7)	6.60 (167.6)	9.00 (228.6)
Coil Bar Length	in (mm)	7.20 (1	82.9)	9.60 (243.8)	12.00 (304.8)
LOAD		- 2	- 3	- 4	
Vertical (Fv) see note 11	lbs (kg)	40 (18.1)	50 (22.7)	60 (27.2)	
Side (Fs) see note 11	lbs (kg)	20 (9.1)	30 (13.6)	30 (13.6)	
Moments - Roll (Mr) see note 11	Lb-ft (N-m)	20 (27)	30 (40)	30 (40)	
Moments - Pitch (Mp) see note 11	Lb-ft (N-m)	50 (67)	100 (135)	100 (135)	
Moments - Yaw (My) see note 11	Lb-ft (N-m)	50 (67)	100 (135)	100 (135)	

1. Total travel = OAL - 3.00" (76.2 mm) - carriage length.

- 2. Maximum base length is 120" (3048 mm).
- 3. Aluminum base is black anodized.

4. For complete motor specifications, refer to 210 series motor data sheet.

- 5. Optical encoder, RGH series, available in 0.05μm, 0.1μm, 0.5μm, 1.0μm, 5.0μm.
- 6. Cables extend past base by approximately 0.6 $\tilde{}$ when carriage is at negative hard stop.
- Cable Track extends 0.15" higher than carriage mounting surface. Space must be taken into account when mounting load.

- 8. Standard cable track provided is 30mm wide 18mm BR.
- Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6...) or 2.400" (9.6, 14.4, 19.2, 24.0....) from each end depending on base length.
- 10. Specification subject to change without notice.
- 11. Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- 12. For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.

Download 2D & 3D files from www.parker.com/emn/T2S

DIMENSIONS

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

210-3

210-4

210-2

Coil

Linear Motor Driven Tables

ORDERING INFORMATION T2D/T2S

R

х

Optical 1 V p-p sine/cosine

No encoder

Fill in an order code from each of the numbered fields to create a complete model order code for T2D/T2S.

				1	2	3	4	5	6	7	8	9	10	11	(12)	
	Order	Example:		Т	2	D	Α	012	3	Ν	S	В	Α	В	3	
1	Series T Open Positioner B Bellows Positioner available - consult factory for details									Cable Length A 1 Meter B 3 Meter C 7.5 Meter						
2	Motor (2	Motor Coil Series 2 210 Motor Coil								L M Z	3 7 (8 Meter 7.5 Mete Connec	Extensioner Extension Extensioner Extensioner Box	on Cabl sion Ca ONLY (r	es (wit bles (v no cab	h Connector Bo: vith Connector E les)
3	Bearin g D S	g Rail Conf Dual Bear Single Bea	igurat i ing Rail aring Ra	i on s ails						*Options A, B, C: cable measured from last cable carrier link *Options L, M: cable measured from connection box at end of base. *7.5 Meter Flying Lead Cables available on:						
4	 All bases with Magnetic encoder All bases with Magnetic encoder under 86" All bases with Optical encoder under 86" For bases with Optical encoder over 86" the cable lengt be GL = 10M - (base length in meters + 0.3M) 															
(5)	Length of Base XXX Length of base in inches* Maximum: 120.0" * Minimum: 9.6" Increment: 2.4" Base Length (increments of 2.4" [60.96mm]) = Travel + Carriage Length + 3.0" [76.2mm] *Truncate base length in part number. Example: for a 16.8 inch base, "XXX" equals "016" *Consult factory for longer lengths.						n]) = 6.8	1	Cable ConnectorizationAP-Series DCBFlying LeadsCHD15M-CF12 ConnectorGGeminiVHD15M-VF ConnectorZNo cablesNotes - HD15M-VF Connector compatible with IPA, Vix and AriesFeedback Connector							
6	Coil Siz 2	2 pole	Carr 4.2"	iage (106.6	Length 8mm)	ו				Connector MD14-PF Connector compatible with P Series (PD-xxP) Feedback Connector					D-xxP) Feedback	
	3 4	3 pole 6.6" (106.64mm) 4 pole 9.0" (228.60mm)						(12)	 Cable Track None Standard 							
7	Cooling	9								3	c	nanuar	u			
	Ν	No cooling	g													
8	Windin S P	g Type Series Parallel														
9	Encode A B Q L M P	Magnetic Magnetic Optical 5µ Optical 1µ Optical 0. Optical 0.	1µm 5µm ım 5µm 1µm													

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

T3D			LINE			;	LINE			ODER OP	TIONS	
PERFORMANCE			5 0um	ENCO	DER 1 Oum	•		5 Oum	(NOTE 5) 1 Oum		
Poak Volocity	in/s (m	/c) (0.0μ		100 (2	5)	-	106 (5)		120 (2)		
Peak velocity	in (um)	/5)	213 (1) 0002 (5	3	0.000.04	(1_0)	0.00		0		1)	
Popostability	in (µm)	+0 (0002 (J	") 1 (1)		(1.0)		00.02(0.3)	U.		0)	
Accuracy - Magnetic	in (µm)	+(30um		(m) + (t)	$\frac{1}{25} 100000$	(2.0) um/m)	10.0	00 00 (1.5)	Ξt	0.000 04 (1.	.0)	
Accuracy - Magnetic		Ξ(ΟΟμΠ	τουμπι	/11) ±(4	20µm +00	μπνπη		+(5)	انت <u>۲</u> 30 ال	m/m)		
Note: For travels less than 1	l meter ac	curacy sho	ould be c	alculate	d at 1 meter	r			uni +oopi			
MOTOR MODEL	3 [.]	1 0-2 3	310-3	310-4	310-5	310-6						
Peak Force	N 4	09.3 6	600.0	790.0	980.0	1170.0						
	lb 9	02.0 1	35.1	177.2	220.3	263.2						
Continuous Force	N S	1.6 1	33.9	176.2	219.3	262.0		COLUMN ST	R.			
	lb 2	20.6	30.1	39.6	49.3	58.9			AND COMPLEX		-	
Peak Power	W 1	885 2	2693	3500	4308	5116					17	
Continuous Power	W	4	135	179	215	256						
ACCURACY					S	FANDAF	RD		LASE	R ALIGNN	IENT OF	PTION
Straightness restrained	on flat si	urface in	(µm)		±0.00012	7 in/in (±	127µr	n/m)	±.0	00013 in/ir	n (±13µm	/m)
Flatness restrained on f	flat surfac	e in (µm)		±0.00	3 + .00025	54 in/in (=	±76 +	254µm/m)				
Note: Straightness/Flatness	specificat	ons based	l on syste	em mou	nted to surf	ace of flatr	ness ±(0.0005in/ft				
PHYSICAL					- 2	- 3		-4		- 5	-	6
Carriage Assembly		lbs	(kg)	4.6	6 (2.1)	6.7 (3.	0)	8.1 (3.7))	9.5 (4.3)	11.0	(5.0)
Base Assembly												
T3DB Aluminum (0.5	00'' thick	:) Ibs/ft	(kg/m)	16.9) (25.1)	16.9 (25	5.1)	16.9 (25.	1) 1	6.9 (25.1	16.9	(25.1)
Carriage Assembly		in ((mm)	4.20	(106.7)	6.60 (16	7.6)	9.00 (228.	.6) 11	.40 (289.6)	13.80	(350.5)
Coil Bar Length		in ((mm)	7.20	(182.9)	9.60 (24	3.8	12.00 (304	14 (.8)	.40 (365.8)	16.8 (426.7)
LOAD			- :	2	- 3	- 4	1	- 5	- 6			
Vertical (Fv) see note	11	lbs (kg)	120	(54)	150 (68)	180 ((81)	210 (95)	240 (10	8)		
Side (Fs) see note 11		lbs (kg)	80 ((36)	100 (45)	100 ((45)	100 (45)	100 (45	5)		
Moments - Roll (Mr) s 11	ee note	Lb-ft (N-m)	80 (1	107)	100 (134)	100 (1	134)	100 (134)	100 (13	4)		
Moments - Pitch (Mp) note 11	see	Lb-ft (N-m)	160 ((214)	300 (402)	300 (4	402)	300 (402)	300 (40	2)		
Moments - Yaw (My) s note 11	see	Lb-ft (N-m)	160 ((214)	300 (402)	300 (4	402)	300 (402)	300 (40	2)		
 Total travel = OAL - 3.00 Maximum base length is Aluminum base is black a 	ľ (76.2 mm) 144″ (3657 anodized.	– carriage mm).	length.		8. 9.	Standard Base mor 2.400" (9 length.	cable unting I .6, 14.4	track provided holes are equic l, 19.2, 24.0)	is 30mm w distant, 1.20) from each	vide 18mm BF 00" (12.0, 16.8 end dependi	R. 3, 21.6) o ng on base	or e

4. For complete motor specifications, refer to 310 series motor data sheet.

- Optical encoder, RGH series, available in 0.05µm, 0.1µm, 0.5µm, 5. 1.0µm, 5.0µm.
- Cables extend past base by approximately 0.6" when carriage is at 6. negative hard stop.
- Cable Track extends 0.15" higher than carriage mounting surface. Space must be taken into account when mounting load. 7.
- 10. Specification subject to change without notice.
- Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- 12. For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.

Download 2D & 3D files from www.parker.com/emn/T3D

DIMENSIONS

2.389

	- 2	mm	- 3	mm	- 4	mm	- 5	mm	- 6	mm			
CL	4.200	106.68	6.600	167.64	9.00	228.6	11.400	289.56	13.800	350.52			
Α	3.200	81.28	5.600	142.24	8.00	203.80	10.400	264.16	12.800	325.12			
В	—	71.12	2.800	101.60	4.00	101.64	5.200	132.08	6.400	162.56			
Coil	31	10-2	31	0-3	31	0-4	31	0-5	310	D-6			

CARRIAGE SIZE

 $T \cap O$

135			LINE/ E	AR MAG Encode	NETI R	С	LINE	AR OPTICAI (N	L ENCOD IOTE 5)	ER OP1	IONS	
PERFORMANCE			5.0µm		1.0µı	m	5	5.0µm	1	.0µm		
Peak Velocity	in/s (m/	s)	275 (7)	•	100 (2	2.5)	1	96 (5)	1	20 (3)		
Resolution	in (mm)	(0.0002 (5)	0.0	00 04	(1.0)	0.00	0 02 (0.5)	0.000	004 (0.	1)	
Repeatability	in (mm)	±0	.0004 (±1	0) ±0	8 000.	3 (2.0)	±0.00	00 06 (1.5)	±0.00	0 04 (1.	D)	
Accuracy – Magnetic	:	±(30µn	n +50µm/	m) ±(25µ	m +5	0µm/r	n)					
Accuracy – Optical								±(5µn	n +30µm/m	ı)		
Note: For travels less than 1	meter, acc	uracy sł	nould be ca	alculated at	1 mete	er						
MOTOR MODEL	;	310-2	310-3	310-4	310)-5	310-6	-	-			
Peak Force	Ν	409.3	600.0	790.0	980).0 [.]	1170.0	U.S.		-		
	lb	92.0	135.1	177.2	220).3	263.2			-	-	
Continuous Force	Ν	91.6	133.9	176.2	219	9.3	262.0	and the second s			-1	
	lb	20.6	30.1	39.6	49	.3	58.9		THE CA			
Peak Power	W	1885	2693	3500	430	08	5116			5		
Continuous Power	W	4	135	179	21	5	256			-1		
ACCURACY					S	STAN	DARD		LASER A	LIGNM	ENT OF	ͻτιοΝ
Straightness restrained of	on flat su	rface ir	ר (µm)	±0.	00012	27 in/i	in (±127µn	n/m)	±.0000	13 in/in	(±13µm	/m)
Flatness restrained on fla	at surface	e in (µn	n)	±0.003 +	.0002	254 in	/in (±76 +	254µm/m)				
Note: Straightness/Flatness	specificatio	ons base	ed on syste	m mounted	to sur	face o	f flatness ±0).0005in/ft				
PHYSICAL				- 2			- 3	- 4	-	5	-	6
Carriage Assembly		lb	os (kg)	3.0 (1.	.4)	4.4	4 (2.0)	5.5 (2.5)	6.4	(2.9)	7.4	(3.4)
Base Assembly												
T3SB Aluminum (0.50	0'' thick)	lbs/	ft (kg/m)	14.3 (2	1.2)	14.3	3 (21.2)	14.3 (21.2)	14.3	(21.2)	14.3	(21.2)
Carriage Assembly		in	(mm)	4.20 (10	6.6)	6.60	(167.6)	9.00 (228.6)	11.40	(289.6)	13.80	(350.5)
Coil Bar Length		in	(mm)	7.20 (18	82.9)	9.60	(243.8)	12 (304.8)	14.40	(365.8)	16.80	(426.7)
LOAD				- 2	-	3	- 4	- 5	- 6			
Vertical (Fv) see note 1	1	lk	os (kg)	80 (36)	100) (45)	120 (54)	140 (63)	160 (72)			
Side (Fs) see note 11		lk	os (kg)	30 (13)	50	(22)	50 (22)	50 (22)	50 (22)			
Moments - Roll (Mr) se	e note 1	1 L (1	b-ft N-m)	35 (47)	50	(67)	50 (67)	50 (67)	50 (67)			
Moments - Pitch (Mp) s	see note	11 L	b-ft N-m)	75 (100)	150	(201)	150 (201) 150 (201)	150 (201)			
Moments - Yaw (My) se	ee note 1	1 L	b-ft N-m)	75 (100)	150	(201)	150 (201) 150 (201)	150 (201)			

1. Total travel = $OAL - 3.00^{\circ}$ (76.2 mm) – carriage length.

- 2. Maximum base length is 144" (3657 mm).
- 3. Aluminum base is black anodized.
- 4. For complete motor specifications, refer to 310 series motor data sheet.
- Optical encoder, RGH series, available in 0.05μm, 0.1μm, 0.5μm, 1.0μm, 5.0μm.
- Cable Track extends 0.15" higher than carriage mounting surface. Space must be taken into account when mounting load.

- 8. Standard cable track provided is 30mm wide 18mm BR.
- 9. Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6....) or 2.400" (9.6, 14.4, 19.2, 24.0....) from each end depending on base length.
- 10. Specification subject to change without notice.
- Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.

Download 2D & 3D files from www.parker.com/emn/T3S

DIMENSIONS

T3S

TOTAL TRAVEL = OAL - 3.00" (76.2) - CARRIAGE LENGTH OAL = MULTIPLE OF 2.400" (60.96)

	- 2	mm	- 3	mm	- 4	mm	- 5	mm	- 6	mm				
CL	5.00	127.00	6.600	167.64	9.00	228.6	11.400	289.56	13.800	350.52				
Α	4.00	101.60	5.650	142.24	8.00	203.2	10.400	264.16	12.800	325.12				
В	2.00	50.8	2.800	71.12	4.00	101.64	5.200	132.08	6.400	162.56				
Coil	3-	10-2	31	0-3	31	0-4	31	0-5	31	0-6				

CARRIAGE SIZE

ORDERING INFORMATION T3D/T3S

Fill in an order code from each of the numbered fields to create a complete model order code for T3D/T3S.

			1	2	3	4	5	6	7	8	9	10	11	12		
	Order E	Example:	Т	3	D	В	012	3	Ν	S	В	Α	С	3		
1	Series T B	Open Posit Bellows Po for details	ioner sitioner av	ailable	e - cons	sult fac	ctory	10	Cable A B C	e Leng 1 3 7.8	th Meter Meter 5 Meter					
2	Motor C 3	oil Series 310 Motor	Coil						L M Z	3 I 7.5 Co	Meter E 5 Meter onnecto	xtensio Extens r Box C	n Cable ion Cab NLY (no	s (with C bles (with c cables	Connector Box) 1 Connector Bo: 3)	
3	Bearing D S	Rail Config Dual Bearing Single Bearing	uration g Rails ng Rails						*Optior *Optior *7.5 M	ns A, B, C ns L, M: c eter Flying • All	2: cable n cable mea g Lead Ca bases wit	neasured asured fro ables ava th Mager	from las om conne ailable on	t cable ca ection box : der	rrier link at end of base.	
4	Base Ma B	a terial 0.5" Al								 All For be 	bases wi bases w CL = 10	th Optica rith Optic M - (base	I encode al encode e length i	r under 86 er over 86 n meters -)" " the cable length v + 0.3M)	
5	Length o XXX *Truncate inch base	bf Base Length of ba Maximum: 1 Minimum: 9. Increment: 2 Base Lengt Travel + Car base length i a, "XXX" equal	n]) = 5.8	1	Cable A B C G V Z	e Conr P Fly HE Ge HE Nc	Series [ving Lea 015M-C emini 015M-V o cables	zation DC Ids DF12 Co F Conn	onnecto lector	r with IPA	Viv and Aries					
6	Coil Size 2 3 4	2 pole 3 pole 4 pole	Carriage 4.2" (106.6 6.6" (106.6 9.0" (228.6	Lengtl 58mm) 54mm) 50mm)	h				Feedback Connector HD15M-CF12 Connector compatible with Compax 3 F12 Feedba Connector MD14-PF Connector compatible with P Series (PD-xxP) Feedba Connector							
	5 6	5 pole 6 pole	11.4" (289. 13.8" (350.	.56mm) .52mm)				12	 Cable Track None Standard 							
7	Cooling N	No cooling														
8	Winding TypeSSeriesPParallel															
9	Encoder A B Q L M P R	Magnetic 1µ Magnetic 5µ Optical 5µm Optical 1µm Optical 0.5µ Optical 0.1µ Optical 1 V p	ım ım m m ɔ-p sine/co	sine												

X No encoder

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

SPECIFICATIONS

			LINEAF EN	R MAGNE	TIC	LINEAF	R OPTICAL (NO	ENCODER (TE 5)	OPTIONS	
PERFORMANCE			5.0µm	1.	0µm	5.0	μm	1.0µr	n	
Peak Velocity	in/s (m	/s)	275 (7)	100) (2.5)	196	6 (5)	120 (3	3)	
Resolution	in (µm)	0	.0002 (5)	0.000	04 (1.0)	0.000 (02 (0.5)	0.000 004	l (0.1)	
Repeatability	in (µm)	±0.	0004 (±10)) ±0.00	0 8 (2.0)	±0.000	06 (1.5)	±0.000 04	l (1.0)	
Accuracy – Magnetic		±(30µm	+50µm/m) ±(25µm	+50µm/m)				
Accuracy – Optical							±(5µm -	⊦30µm/m)		
Note: For travels less than 1	1 meter, aco	curacy sh	ould be calc	ulated at 1 r	neter					
MOTOR MODEL		410-2	410-3	410-4	410-5	410-6				
Peak Force	Ν	1041.4	1523.6	2006.3	2967.2	3928.1		-	er an	
	lb	234.1	342.5	451.0	667.0	883.0				Ro-
Continuous Force	Ν	233.1	340.8	448.9	663.7	878.6	Car.		1919	
	lb	52.4	76.6	100.9	149.2	197.5		and all		
Peak Power	W	2835	4050	5265	7695	10125				
Continuous Power	W	142	203	263	385	506				
ACCURACY					STAND	ARD	L	ASER ALIG	NMENT OF	PTION
Straightness restrained	on flat su	irface in	[µm]	±0.00	0127 in/in	(±127µm/r	n)	±.000013 i	n∕in (±13µm	/m)
Flatness restrained on t	flat surfac	e in [µm] ±0	0.003 + .00	00254 in/i	n (±76 + 25	i4µm/m)			
Note: Straightness/Flatness	specificati	ons base	d on system	mounted to	surface of	flatness ±0.00	005in/ft			
PHYSICAL				- 2	-	3	-4	- 6	-	8
Carriage Assembly										
T4DB Aluminum (0.5	00'' thick) lbs	s (kg)	9.0 (4.1)	14.9	(6.8)	18.1 (8.2)	24.1 (11.0	0) 30.0	(13.6)
Base Assembly										
T4DB Aluminum (0.5	00'' thick) Ibs/f	t (kg/m)	29.4 (43.8) 29.4	(43.8)	29.4 (43.8)	29.4 (43.8	3) 29.4	(43.8)
Carriage Assembly		in	(mm)	4.8 (121.9) 8.15 (207.0) 1	1.50 (292.1)	18.20 (462	.3) 24.90	(632.5
Coil Bar Length		in	(mm)	10.00 (254	l) 13.36	6 (339)	16.72 (424)	23.44 (59	5) 30.16	5 (766)
LOAD					- 2	- 3	- 4	- 5	- 6	
Vertical (Fv) see note 1	1		lbs (kg) 2	200 (90)	250 (113)	300 (136)	400 (181)	400 (181)	
Side (Fs) see note 11			lbs (kg)	150 (68)	150 (68)	150 (68)	150 (68)	150 (68)	
Moments - Roll (Mr) se	e note 1	l	Lb-ft (I	N-m) 1	00 (133)	150 (200)	150 (200)	150 (200)	150 (200)	
Moments - Pitch (Mp)	see note	11	Lb-ft (I	N-m) 2	00 (266)	400 (532)	400 (532)	400 (532)	400 (532)	
Moments - Yaw (My) s	ee note 1	1	Lb-ft (I	N-m) 2	200 (266)	400 (532)	400 (532)	400 (532)	400 (532)	

1. Total travel = OAL - 5.5" (139.7 mm) - carriage length.

2. Maximum base length is 137.76" (3499 mm).

- 3. Aluminum base is black anodized.
- 4. For complete motor specifications, refer to 410 series motor data sheet.
- 5. Optical encoder, RGH series, available in 0.05μm, 0.1μm, 0.5μm, 1.0μm, 5.0μm.
- 6. Cables extend past base by approximately $0.6^{\prime\prime}$ when carriage is at negative hard stop.
- 7. Cable Track extends 0.050" below carriage mounting surface. Space must be taken into account when mounting load.

- 8. Standard cable track provided is 40mm wide 18mm BR.
- Base mounting holes are equidistant, 1.68" (12.0, 16.8, 21.6...) or 3.36" (9.6, 14.4, 19.2, 24.0....) from each end depending on base length.
- 10. Specification subject to change without notice.
- Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- 12. For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.

Download 2D & 3D files from www.parker.com/emn/T4D

0.375 THICK CARRIAGE SPACER PLATE (optional)

8.400

- 9.000 (228.60)

10.745 (272.92) w/ std size 73 cable track

(9.525)

0.375

0.500 2-1

3.075 (78.105)

DIMENSIONS

3.025

- 0.300

Moving Carriage Assembly

Stationary Base Assembly

OAL = MULTIPLE OF 3.360" (85.34)

				•						
	- 2	mm	- 3	mm	- 4	mm	- 6	mm	- 8	mm
CL	4.80	121.92	8.150	207.01	11.50	292.10	18.200	462.28	24.900	632.46
Α	3.800	96.52	7.150	181.61	10.500	266.70	17.200	436.88	23.900	607.66
В	—	-	3.575	90.805	5.250	133.35	8.600	218.44	11.950	303.53
Coil	41	0-2	41	0-3	41	0-4	41	0-5	41	D-6

CARRIAGE SIZE

14S			LINEAR EN		NETIC R	LINEA	AR OPTICA	L ENCODE NOTE 5)	ER OPT	IONS	
PERFORMANCE		5.	0µm		1.0µm	5.	.0μm	1.	0µm		
Peak Velocity	in/s (m/	s) 27	'5 (7)	1	00 (2.5)	19	96 (5)	12	20 (3)		
Resolution	in (µm)	0.00	002 (5)	0.00	00 04 (1.0)	0.000	0 02 (0.5)	0.000	004 (0.1)	
Repeatability	in (µm)	±0.00	04 (±10)	±0.	000 8 (2.0)	±0.00	0 06 (1.5)	±0.00	0 04 (1.0)	
Accuracy – Magnetic	:	±(30µm +	50µm/m)	±(25µr	m +50µm/r	n)					
Accuracy – Optical							±(5µr	m +30µm/m))		
Note: For travels less than 1 r	neter, acc	uracy shoul	d be calcu	lated at	1 meter						
MOTOR MODEL		410-2	410-3	410-4	410-6	410-8		-			
Peak Force	Ν	1041.4	1523.6	2006.3	3 2967.2	3928.1	100				
	lb	234.1	342.5	451.0	667.0	883.0	13		1	-	
Continuous Force	Ν	233.1	340.8	448.9	663.7	878.6					
	lb	52.4	76.6	100.9	149.2	197.5					100
Peak Power	W	2835	4050	5265	7695	10125					
Continuous Power	W	142	203	263	385	506					
ACCURACY					STAN	DARD		LASER A	LIGNME		TION
Straightness restrained o	on flat su	rface in (µ	m)	±0.0)00127 in/i	n (±127µm	ı/m)	±.0000	13 in/in ((±13µm/	m)
Flatness restrained on fla	at surface	e in (µm)	±0	.003 + .	.000254 in	/in (±76 + 2	254µm/m)				
Note: Straightness/Flatness s	pecificatio	ons based o	n system r	nounted	to surface o	f flatness ±0.	.0005in/ft				
PHYSICAL				- 2		- 3	-4	- (6	- 8	8
Carriage Assembly											
T4SB Aluminum (0.500	0" thick)	lbs (l	kg)	6.5 (3.0	D) 10.	3 (4.7)	13.0 (5.9)	17.8	(8.1)	22.7 (*	10.3)
Base Assembly											
T4SB Aluminum (0.500	0" thick)	lbs/ft (⊧	(g/m) 2	26.7 (39	0.8) 26.7	7 (39.8)	26.7 (39.8)) 26.7 (39.8)	26.7 (39.8)
Carriage Assembly		in (m	m) 4	1.8 (121	.9) 8.15	(207.0)	11.50 (292.)	1) 18.20 (462.3)	24.90 (6	632.5)
Coil Bar Length		in (m	m) 1	0.00 (2	54) 13.3	86 (339)	16.72 (424)) 23.44	(595)	30.16	(766)
LOAD				- 2	- 3	- 4	- 6	- 8			
Vertical (Fv) see note 11	1	lbs	(kg) 15	68) (68)	175 (79)	175 (79)	200 (90)	200 (90)			
Side (Fs) see note 11		lbs	(kg) 7	5 (34)	75 (34)	75 (34)	75 (34)	75 (34)			
Moments - Roll (Mr) see	e note 1 [.]	l Lb- (N-r	ft 50 n)	0 (66)	100 (133)	100 (133)	100 (133)	100 (133)			
Moments - Pitch (Mp) s	ee note	11 Lb-	ft 10	0 (133)	200 (266)	200 (266)	200 (266)	200 (266)			

1. Total travel = OAL - 5.5" (139.7 mm) - carriage length.

- 2. Maximum base length is 137.76" (3499 mm).
- Aluminum base is black anodized. 3.

Moments - Yaw (My) see note 11

For complete motor specifications, refer to 410 series motor data sheet. 4.

(N-m) Lb-ft

(N-m)

- 5. Optical encoder, RGH series, available in 0.05µm, 0.1µm, 0.5µm, 1.0µm, 5.0µm.
- 6. Cables extend past base by approximately 0.6" when carriage is at negative hard stop.
- Cable Track extends 0.050" below carriage mounting surface. Space must be taken into account when mounting load. 7. Parker Hannifin Corporation • Electromechanical & Drives Division •

- 8. Standard cable track provided is 40mm wide 18mm BR.
- Base mounting holes are equidistant, 1.68" (12.0, 16.8, 21.6...) or 3.36" (9.6, 14.4, 19.2, 24.0...) from each end depending on base length. 9.
- 10. Specification subject to change without notice.

100 (133) 200 (266) 200 (266) 200 (266) 200 (266)

- 11. Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.
- 12. For high load, high speed applications, customer-supplied deceleration shocks are required (not included with product).
- 13. The repeatability for the home switch is estimated to be +/- 10-20 microns. However, repeatability of the home switch does not dictate the system or encoder repeatability.
 Irwin, Pennsylvania 800-358-9070 www.parker.com/emn

Download 2D & 3D files from www.parker.com/emn/T4S

DIMENSIONS

Linear Motor Driven Tables

Dimensions shown in inches. Moving Carriage Assembly

Stationary Base Assembly

.750 20.65) .750 .5.25) 0.500		MOUNTI 1/4 -20 T	NG HOLES AP THRU	
0 0	0.500	(12.7)	1	
00 1	D)			
		R		

				-						
	- 2	mm	- 3	mm	- 4	mm	- 6	mm	- 8	mm
CL	4.800	121.92	8.150	207.01	11.50	292.10	18.200	462.28	24.900	632.46
Α	3.800	96.52	7.150	181.61	10.500	266.70	17.200	436.88	23.900	607.66
В	—	—	3.575	90.805	5.250	133.35	8.600	218.44	11.950	303.53
Coil	41	0-2	41	0-3	41	0-4	41	0-6	41	0-8

CARRIAGE SIZE

0

¢.

0

ORDERING INFORMATION T4D/T4S

Fill in an order code from each of the numbered fields to create a complete model order code for T4D/T4S.

			1	2	3	4	5	6	7	8	9	10	1	(12)		
	Order E	Example:	Т	4	D	В	012	3	Ν	S	В	Α	В	4		
1	Series T B	Open Pos Bellows F for details	sitioner Positioner av	/ailable	e - con	sult fac	ctory	10	Cat A B C	ole Lei	ngth 1 Meter 3 Meter 7.5 Mete	er				
2	Motor C 4	oil Series 410 Moto	r Coil						L M Z		3 Meter 7.5 Mete Connec	Extens er Exter tor Box	ion Cab nsion Ca ONI Y (oles (wit ables (v íno cab	th Connector B with Connector ples)	
3	Bearing D S	Rail Confi Dual Beari Single Bea	guration ng Rails aring Rails						*Opti *Opti *7.5	ons A, E ons L, N Meter Fly	3, C: cable 1: cable m /ing Lead	e measur neasured Cables a	ed from la from con available o	ast cable inection l	e carrier link box at end of base	
4	Base Ma B	aterial 0.5" Al								• ,	All bases For bases be CL =	with Opt with Opt with Op 10M - (bi	ical enco tical enco ase lengtl	der unde der over der over	er 86" r 86" the cable leng ers + 0.3M)	
5	Length o XXX	of Base Length of Maximum: Minimum: Increment: Base Leng Travel + Ca base length	mm]) =	1	Cat A B C G V Z	ole Co	nnecto P-Series Flying Le HD15M Gemini HD15M No cable	orization of DC eads -CF12 of -VF Co	o n Connec nnector	tor						
	inch base *Consult	e, "XXX" equi factory for lo	als "016" onger lengths).			5.0		Notes - HD15M-VF Connector compatible with IPA, Vix and Feedback Connector							
6	Coil Size 2 3	e 2 pole 3 pole	Carriage 4.8" (121.9 8.15" (207	Lengtl 2mm) .01mm)	n				HD15M-CF12 Connector compatible with Compax 3 F12 Fe Connector MD14-PF Connector compatible with P Series (PD-xxP) Fee Connector						ax 3 F12 Feedbac 'D-xxP) Feedback	
	4 6 8	4 pole 6 pole 8 pole	11.5" (292 18.2" (462 24.9" (632	.10mm) .28mm) .46mm)				(12)	Cat 0 4	ole Tra	i ck None Standar	d				
7	Cooling N	No cooling)													
8	Winding S P	Type Series Parallel														
9	Encoder A B Q L	r Magnetic Magnetic & Optical 5µ Optical 1µ	1μm 5μm m m													

- M Optical 0.5µm
- P Optical 0.1µm
- **R** Optical 1 V p-p sine/cosine
- X No encoder

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

Cable Connector Configuration

HD15 15 Pin HD	-SUB Plug	HD15N 15 Pin HD	I-CF12 -SUB Plug
Pin #	Function	Pin #	Function
1	Z+	1	SENSE-
2	Z-	2	SENSE+
3	GND	3	HALL1
4	NO CONN	4	+5V
5	+5V	5	+5V
6	GND	6	HALL2
7	A-	7	A-/SIN-
8	A+	8	A+/SIN+
9	HALL1	9	HALL3
10	TEMP	10	TEMP
11	B-	11	B-/COS-
12	B+	12	B+/COS+
13	HALL2	13	Z+
14	HALL3	14	Z-
15	NO CONN	15	GND
HD15M-VF Con with IPA, Vix an Con	nector compatible d Aries Feedback nector	HD15M-CF compatible wit Feedback	12 Connector h Compax 3 F1: Connector

Miniature Positioners

Linear Motor and Screw Driven Stages

Miniaturization of fiber optics, photonics, electronics and biomedical processes has driven the need for smaller and more efficient positioners. Parker offers numerous miniature stage solutions.

Miniature Positioning Stages Common Features

- Miniature profile stages as small as 25 X 80 mm
- Travel lengths to 500 mm
- Acceleration to 5 g; velocity to 3 m/sec
- Encoder resolution to 0.01 microns
- Internal cable management or non-moving cables
- Square rail or cross roller bearing systems
- Compatible mounting for multi-axis systems
- Cleanroom prep, low ESD coating and vacuum prep options
- Submicron precision options
- Thorough testing and certification

mSR Miniature Square Rail Positioner

The most accurate standard positioner ever made by Parker. Compact, with an all-encompassing design ideal for a variety of applications. **Page 342.**

MX80S Ballscrew & Leadscrew Driven Stages

The MX80S offers features like high stiffness, extremely smooth linear translation, and anti-cage creep design. The unique Master Reference Surface allows aligning the process to the actual travel path within microns. Page 370.

MX45S Linear Positioning Stages

Ultra-miniature, high performance positioners for OEMs requiring linear positioning in space restricted applications. **Page 380.**

MX80L Linear Motor Driven Stages

Exceptional straightness and flatness of travel for positioning light loads within a small workspace. Page 362.

MX80M Free Travel and Micrometer Driven Stages

The MX80M is available in free travel or micrometer driven units, with innovative tooling features that make mounting and precision alignment quicker and easier. **Page 377.**

mSR Miniature Square Rail Positioner

Optimize your design and its footprint.

- Two miniature form factors: the mSR 80 measuring 80 x 25 mm, or the mSR 100 measuring 100 x 35 mm.
- Dual precision square rail bearings
- Six different linear encoder options
- Two different linear motor technologies
- Standard travel options ranging from 25 mm to 500 mm of stroke

1800

10

- Integrated and adjustable home and limit sensing
- Common tapped mounting holes and dowel locating holes
- Complete error mapping on each precision grade version

 with linear slope correction value provided
- CE and RoHS compliance
- A standard magnetic counterbalance (mSR 80 - 25 mm stroke)

For instrument builders who need smooth motion in a small package, the mSR is a linear positioner that provides sub-micron level precision in two different form factors (80 and 100).

Maximum Payload (N)

Maximum Acceleration (m/sec²)

The mSR series is a precision machined, square rail bearing guided linear positioner which is driven with one of two different linear servo motor technologies, and utilizes selectable levels of linear encoder technology that are configured to match the application need.

The mSR was developed to complement the successful MX80L positioner, and allows OEM's developing equipment a number of added layers of value, in an extremely compact package, which is easy to apply, and can be tailor-fitted to match the need regardless if one is interested in the reliability of a cost-competitive mechanically driven alternative, or a high precision positioner delivering best of breed performance – all in the same footprint.

Because of its compact, allencompassing design, the mSR is an ideal positioning solution for applications in the life sciences. Typical applications range from imaging systems performing scanning operations to identify biological markers, to high-throughput processing of micro plates, to applications in cellular therapeutics requiring cell selection and high precision placement to supplement regenerative medicine techniques. Know that the mSR has been designed with typical instrument regulations and certifications in mind as all versions meet CE and RoHS requirements.

Likewise, the mSR is also ideal in application in electronics manufacturing due to its low profile and precision performance. Typical applications could range from semiconductor metrology, to wafer scribing.

The Best of Both Worlds

The mSR design has been optimized around two different linear motor technologies to best suit packaging restraints and application needs. Each of these motors has been optimized to deliver best in class performance and response.

mSR80 Ironcore

Ironcore Technology Benefits

- High force per size
- Lower cost
- Excellent heat dissipation

The mSR80 uses the same ironcore linear motor technology used on the MX80L, but it allows for a wider variety of encoder technologies to be applied in a similar foot print, delivering higher performance at a lower relative cost. The mSR80 has been designed to minimize the overall packaging while still achieving MX80L level thrust.

mSR100 Ironless

Ironless Technology Benefits

- No attractive forces between stator and magnet track – yielding smoother phase transitions
- No cogging
- Lower forcer weight

The mSR100 makes use of Parker's latest ironless linear motor, the ML18. As a result the mSR100 is ideal for applications requiring a higher load than the mSR 80, extremely smooth motion, or minimal velocity ripple. The mSR100 also allows for strokes up to 500 mm, as well as a BiSS-C absolute encoder for applications requiring constant positional information.

Within the same form factor, OEMs have two options:

- The precision grade mSR is the most accurate **standard** positioner ever made by Parker, achieving a repeatability of 100 nm and an accuracy of 5.0 microns over 50 millimeters of stroke.
- The more cost competitive standard version takes advantage of magnetic encoder technology, which is ideal for applications which do not require the same level of precision, to compete with similar ballscrew driven stages.

These positioners are ideal for a variety of applications, ranging from imaging systems in digital pathology equipment to metrology instruments in semiconductor or electronics manufacturing.

Maximize Instrument Performance — Not Its Size

The mSR (miniature square rail) positioner offers instrument builders optimized packaging of a linear motor, guidance and encoder, as well as limits and home senors in one complete solution.

Best of Breed Encoder Technology

The mSR positioner offers instrument builder's a plethora of different encoding technologies and resolutions to select from.

Standard incremental optical resolutions range from one micron all the way down to ten nanometers of resolution. This optical encoder offers exceptionally low sub-divisional errors, allowing for very tight control over velocity ripple.

The analog (sine/cosine) encoder option is an ideal way to reach high resolution when paired with controls using interpolating technology to achieve high precision and high speed.

A one micron magnetic option is ideal for cost sensitive applications requiring more basic positioning, and lastly, the mSR 100 offers a BiSS-C encoder option to give absolute feedback for applications requiring constant positional information.

mSR Series Specifications

	Units	mSR80	mSR100
Size (W x H)	mm	80 x 25	100 x 35
Travel (Max)	mm	150	500
Normal Load (Max)	kg	8	12
Thrust (Max) Continuous Peak	Ν	8 24	16.7 50
Acceleration (Max – no load)	G	3	3
Speed (Max – no load) ¹	mm/s	2000	3000
Rated Bus Voltage	Volts DC	48	48
Repeatability ²	μm	±0.1	±0.2
Accuracy ^{2, 3}	μm	5	5
Straightness & Flatness ²	μm	±4	±4
Feedback Compatibility1 μm Optical (incremental)0.1 μm Optical (incremental)0.01 μm Optical (incremental)Analog Sine/Cosine1 μm Magnetic (incremental)0.05 μm BiSS-C (absolute)		• • • •	• • •

At 48 Volt DC bus

 $^{\rm 2}$ Precision grade version stage mounted to granite surface, 0.01 micron optical encoder, 50 mm stroke

³ Measurements taken at 35 mm above the center of the carriage, with linear slope correction

Laser Grade Precision

Every precision grade mSR is thoroughly tested with Parker's laser interferometer to ensure that it meets product specification. Parker also provides test data, with a linear slope corrected value noted, yielding higher stage accuracy with controller compensation.

mSR Application Solutions

Electronics Manufacturing

The mSR is an ideal positioning system for high throughput electronics manufacturing equipment, as it design combines high performance linear motor technology with a variety of high resolution feedback devices for quick, precise placement of miniature components. The mSR also provides an extremely robust solution for electronics inspection systems, as its direct drive linear motor technology has been designed to stand the test of time.

Life Sciences - Digital Pathology

Miniature packaging, high precision performance, and quick settling times make the mSR an optimum solution for imaging instruments used in digital pathology. With limited wear components the mSR is a durable stage that will minimize the risk of machine downtime.

Life Sciences - Cellular Therapeutics

With the emergence of cellular therapeutics, the mSR provides a high precision, miniature means of picking and placing cells for cell therapy instruments. These instruments require highly repeatable positioning to pick cells of interest and incubate them for future cell based therapies.

Semiconductor Handling and Metrology

Given the combination of its superior geometric performance and miniature packaging, the mSR series positioner is ideal for semiconductor handling and metrology applications. Regardless of whether you examining features on the micro or nano-scale – the mSR can be adapted to meet the need with its wide array of encoder options. The mSR also offers a stroke scalable mechanical solution with standard designs up to 500 mm.

FEATURES

(1) Center Driven Ironcore Linear Motor

The mSR80 offers both a 4 and 8 pole ironcore linear motor based upon the application thrust requirements. Each of these motors have been optimized to operate on 48 Volts DC.

(2) An Optional Magnetic Counterbalance

The mSR80 with 25 mm stroke has an optional magnetic counterbalance that can be used for Z axis applications. The magnetic counter balance is a more robust solution when compared to spring or pneumatic driven alternatives.

3 High Flex Cabling

The mSR uses high flex cabling as standard to ensure maximum life of the stage regardless of whether it's integrated into a multi or single axis system.

(4) Integrated and Adjustable Home and Limit Sensing Home and limit sensors have been integrated into the mSR80 encoder read head, and signals are passed through the same cable, minimizing the amount of cables requiring cable management (5) Five Different Linear Encoder Technologies The mSR80 provides maximum versatility with three different optical encoder resolutions (1, 0.1, and 0.01 micron), an analog sine/cosine option as well as an economical 1 micron magnetic option.

(6) Tapped Holes and Dowel Pinning

The mSR has tapped holes in both the top and base for ease of mounting and dowel pins to ensure repeatable mounting when configuring XY systems made with mSR's.

(7) Dual Precision Square Rails

Two precision aligned square rail bearings support the payload and provide superior straightness and flatness.

CE and RoHS Compliance The mSR conforms to both CE and RoHS directives as standard.

The mSR series of miniature, dual square rail guided, linear motor positioners have been engineered to deliver a combination of modularity, flexibility, and performance in an extremely compact package.

				٦	Fravel (mm)	
Specification		Units	25	35	50	100	150
Max. Load		kg (lb)	4 (9)	4 (9)	8 (18)	8 (18)	8 (18)
Peak Thrust		N (lb)	12 (2.7)	12 (2.7)	24 (5.4)	24 (5.4)	24 (5.4)
Continuous Thrust		N (lb)	4 (0.9)	4 (0.9)	8 (1.8)	8 (1.8)	8 (1.8)
Duty Cycle (Acceleration a	and Load Dependent)	%			100		
Acceleration (Unloaded)		G's			3		
Studialstadda 9 Flatadda	Standard Grade		±6	±6	±8	±10	±15
Straightness & Flatness	Precision Grade	μπ	±3	±3	±4	±5	±10
Carriage Mass		kg	0.2365	0.2365	0.3065	0.4115	0.519
Stage Mass		kg	0.525	0.5815	0.7395	1.0665	1.403
Magnetic Encoder – 1 Mie	cron Resolution						
Max. Speed		mm/s	1100	1500	2000	2000	2000
Bi-Directional Repeatability	ty	μm			±5.0		
Positional Accuracy		μm	40	40	60	80	80
Optical Encoder – 1 Micro	on Resolution						
Max. Speed		mm/s	1100	1500	2000	2000	2000
Bi-Directional Repeatabili	ty	μm			±2.0		
Positional Accuracy		μm	9	9	9	11	13
Positional Accuracy (Slope	e Corrected)	μm	5	6	6	6	7
Optical Encoder – 0.1 Mic	ron Resolution						
Max. Speed		mm/s	300	300	300	300	300
Bi-Directional Repeatabili	ty	μm			±0.3		
Positional Accuracy		μm	8	8	8	10	12
Positional Accuracy (Slop	e Corrected)	μm	4	5	5	5	6
Optical Encoder – 0.01 M	icron Resolution						
Max. Speed		mm/s	30	30	30	30	30
Bi-Directional Repeatabilit	ty	μm			±0.1		
Positional Accuracy		μm	8	8	8	10	12
Positional Accuracy (Slop	e Corrected)	um	4	5	5	5	6

mSR80 Force/Speed Performance

DIMENSIONS

Dimensions – mm (in)

Travel (mm)	Α	В	С	D	Qty. E	F	Qty. G	Qty. H
25	—	—	110 (4.33)	80	4	—	4	6
35	_	_	120 (4.72)	80	4	-	4	6
50	70 (2.76)	_	165 (6.50)	110 (4.33)	8	—	8	6
100	70 (2.76)	125 (4.92)	265 (10.43)	160 (6.30)	12	70 (2.76)	8	10
150	100 (3.94)	175 (6.89)	365 (14.37)	210 (8.27)	12	100 (3.94)	8	14

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

OPTIONS & ACCESSORIES

mSR Motor Information

		mS	R80	mSF	R100
Motor Specifications	Units	4 Pole (CS Option)	8 Pole (CD Option)	3 Pole (LS Option)	5 Pole (LD Option)
Magnetic Pitch	mm	13	13	40	40
Continuous Force ¹	N	4	8	11	16.7
Peak Force	N	12	24	33	50
Continuous Current ¹	A(rms)	0.8	1.6	1.2	2.18
Peak Current ^{2, 3}	A(rms)	2.4	4.8	3.5	6.5
Voltage Constant ^{2,3}	Volts/m/s	4.5	4.5	7.7	6.3
Force Constant ²	N/A(rms)	5.51	5.51	9.4	7.65
Resistance ²	Ohms	8.8	4.3	6.3	2.82
Inductance ⁴	mH	2.4	1.6	1	0.5
Max Bus Voltage	VDC	48	48	48	48
Rated/Max Winding Temperature	Degrees C	25/95	25/95	25/125	25/125
Thermal Resistance (winding to case)	C/Watt	3.68	1.32	1.6	0.92
Thermal Resistance (case to ambient)	C/Watt	3.16	2.08	3.9	2.64
Winding Thermal Time Constant	Minutes	0.5	0.5	1.3	0.8
Motor Thermal Time Constant	Minutes	0.8	0.8	15	10

1 @ 25° C ambient

² Measured line to line

³ Value is measured peak of sine

⁴ ±30% Line-to-Line, induction bridge measurement @ 1 Khz

Motor and Hall Wiring

Function	Color	Pin #
Motor Phase U	Red	1
Motor Phase V	Brown	2
Motor Phase W	Orange	3
PE Ground	Green/Yellow	4
Hall Power (+5 Volts DC)	Black	5
Hall Ground	White	6
Hall 1	Yellow	7
Hall 2	Blue	8
Hall 3	Green	9
. .	5	

POSITIVE

Optical Encoder

Function	Signal	Pin #
Power	5 Volts DC	8
Power	Ground	2, 9
	A+	14
Incremental Signals	A-	6
incremental Signals	B+	13
	B-	5
Deference Mark	Z+	12
Reference Mark	Z-	4
Limito	Positive Limit	11
Linits	Negative Limit	10
Setup	(Used in installation)	1
Error Output	NPN	3

Sine Cosine Encoder

Function	Signal	Pin #
Deurer	5 Volts DC	4, 5
Power	0 Volts DC	12, 13
	Cosine +	9
Incremental Signala	Cosine -	1
incremental Signals	Sine +	10
	Sine -	2
Deference Mark	Z+	3
Reference Mark	Z-	11
Limito	Positive Limit	7
LIIIIIIS	Negative Limit	8
Setup	(Used in installation)	6
Remote Calibration	NPN	14

Magnetic Encoder

5 Volts DC 8 Ground 9 A + 14 A - 6 Signals B + 13 B - 5
Ground 9 A + 14 Incremental A - 6 Signals B + 13 B - 5
A + 14 Incremental A - 6 Signals B + 13 B - 5
Incremental A - 6 Signals B + 13 B - 5
Signals B + 13 B - 5
В- 5
Peference Mark Z+ 12
Z- 4
Positive Limit 11
Negative Limit 10
Home NPN 2
Error Output NPN 3

BiSS-C Absolute Encoder (mSR100 only)

Function	Signal	Color
	5 Volts DC	Brown
Power	Cround	Green
	Ground	White
	MA+	Violet
Serial	MA-	Yellow
Communications	SLO+	Grey
	SLO-	Pink
Shield	Innersheild	-
Silleiu	Outer	Case

Drive/Control Solutions

Drivel Solutions

The Intelligent Parker Amplifier or IPA, is an versatile servo drive/ controller based on the ACR control platform.

The IPA provides a dual port Ethernet interface which gives the machine builder the flexibility needed to create cost effective motion control solutions.

The IPA operates as a fully programmable stand-alone motion controller with on-board I/O and virtual axis capability or can be integrated into a PLC or PC-based machine control solution. Software tools are included to optimize motion performance and efficiently monitor and manage the application.

EtherNet/IP gives IPA users a popular connectivity option to PLCs for easy integration of servo motion in larger machine control application. The IPA is an EtherNet/IP adapter device supporting both I/O and Explicit Messaging. Add-On Instructions are available for seamless integration with Logix controllers.

The P-Series drives operate with a variety of machine control architectures and offer sophisticated servo functionality. Accurate and easy to use inertia detection leads to fast set-up of tuning parameters and minimal settling time.

Advanced filtering and vibration suppression features can be used to increase throughput and improve positioning performance. For high speed, real-time network applications, the P-Series is available with, EtherCAT, the fastest growing, most flexible industrial Ethernet protocol. Ideal for use with the Parker Automation Controller, the P-Series also follows the open standards for EtherCAT.

The Pulse version can be configured for step and direction control input and includes analog inputs for torque or velocity control. Select Indexer mode to create up to 64 position table entries triggered via inputs or over a RS422 interface.

Cable Interconnect Part **Encoder Type** Drive Number Digital IPA 006-2690-01 Analog IPA 006-2692-01 Digital P Series 006-2691-01 **Digital/Analog** Motor Power and Hall Flying Lead 006-2678-01 Digital 006-2679-01 **Digital Encoder Flying Lead** Analog Encoder Flying Lead 006-2680-01 Analog

Parker Drives and Cable Accessory Part Numbers

Multi-axis Systems

The mSR series was designed to be highly modular, such that it can easily be configured into multiaxis systems made out of other mSR or MX80L positioners as the mSR80 uses the same bolt pattern. Since the entire mSR series was designed with this common hole pattern in mind, X-Y systems can be developed without the need for an additional transition plate.

mSR100 X-Y standard orientation

mSR100 X-Y carriage-to-carriage direct mount orientation

The mSR100 was designed such that it can be configured into two different X-Y orientations: one reflecting a standard X-Y design and the other with the carriages mounted directly to one another. If you choose to develop your machine with the carriage-tocarriage approach, the Y axis cable carrier is eliminated. The mSR100 is also populated with mounting holes to mount an mSR80 directly to it so that X-Y, X-Z or X-Y-Z systems can be created with any combination of the mSR80 and mSR100. Pictured here is the mSR80 with a standard Z bracket.

mSR100 X with mSR80 Z including magnetic counterbalance

Z-Axis Brackets

mSR80 & mSR100	Part Number
25, 35, and 50 mm	002-2238-01
100 & 150 mm	002-2240-01

ORDERING INFORMATION mSR80

Fill in an order code from each of the numbered fields to create a complete part number

			1	2	3	4	5	6	7	8	9	10	12	
	(Order Example:	MSR	080	L	050	Ρ	CD	E3	H1	L1	CM01	X 0	
1	Series	3	6	Motor						10	Ca	ble Opti	ons	
	MSR	Series		CS	Ironco mm t	ore, sing ravels o	lle (2 hly)	5 and	35		CN	101 No 1 m	cable r neter	nanagement,
2	Size (\ 080	vidth in mm) 80 mm wide profile		CD	Ironco and 1	ore, dou 50 mm	ble ({ trave	50, 10 els on	00, Ily)		CN	103 No 3 m	cable r neter	nanagement,
			(7)	Encod	ler					11	Otł	ner Opti	ons	
3	Drive	Train	0	E1	1µm	optical i	ncrer	nenta	al*		X0	No	counte	r balance
	L	Linear Motor Drive		E2	0.1µr	n optica	l incr	emer	ntal*		X1	Ma	gnetic (counterbalance
				E3	0.01µ	im optic	al				N/O	(0.5	5 N)	
4	Stroke	e Length (mm)			increr	nental*					X2	1VIA (2 (gnetic () NI)	counterbalance
	025	25 mm		SC	Sine/(Cosine*					Х3	(Z.C	anetic (counterbalance
	035	35 mm		M1	1µm	magneti nontal**	С					(3.0) N)	Journerbalarice
	050	50 mm		*Availab	le on pr	ecision a	rade (only			X4	Ma	anetic (counterbalance
	100	100 mm		**Availal	ble on s	tandard g	grade	only				(3.5	5 N)	
	150	150 mm									X5	Ma	gnetic (counterbalance
			8	Home	Senso	r					VG	(4.3 Mo	3 IN) anotio (oountorbalana
5	Grade			H1	Home	Senso	r (M1	Opti	ion),		70	(6.3	3 N)	
	Ρ	Precision			Index	Mark (E	:1, E	2, E3	,		*Ava	ailable on	25 mm	stroke only
	S	Standard					/13)							
			(9)	Limit §	Sensor									

L1 End-of-travel limit sensors

FEATURES

Center Driven Ironless Linear Motor

The mSR100 offers both a 3 and 5 pole ironless linear motor (mL18) — space based upon the application thrust requirements. Each of these motors have been optimized to operate on 48 Volts DC.

(2) Dual Precision Square Rails

 $(\mathbf{1})$

Two precision aligned square rail bearings to support the payload and provide superior straightness and flatness.

(3) Integrated Home and Limit Sensing

Home and limit sensors have been integrated into the mSR100 encoder read head, and signals are passed through the same cable, minimizing the amount of cables requiring cable management.

(4) High Flex Cabling

The mSR uses high flex cabling as standard to ensure maximum life of the stage regardless of whether it's integrated into a multi or single axis system. **Tapped Holes and Dowel Pinning** The mSR has tapped holes in both the top and

base for ease of mounting, and dowel pins to ensure repeatable mounting when configuring XY systems made with mSR's.

(6) \$

(5)

Six Different Linear Encoder Technologies The mSR100 provides maximum versatility with three different optical encoder resolutions (1, 0.1, and 0.01 micron), an analog sine/cosine option as well as an economical 1 micron magnetic option. The mSR100 also offers a BiSS-C, 0.05 micron absolute encoder option for application that

CE and RoHS Compliance

require constant positional feedback.

The mSR conforms to both CE and RoHS directives as standard.

SPECIFICATIONS

The mSR series of miniature, dual square rail guided, linear motor positioners have been engineered to deliver a combination of modularity, flexibility, and performance in an extremely compact package.

		Ī	Fravel (mm)									
Specification		Units	25 (LS)	50 (LS)	50 (LD)	100 (LS)	100 (LD)	150 (LS)	150 (LD)	200 (LS)	200 (LD)	250 (LS)	250 (LD)
Maximum Loa	ad	kg (lb)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)	12 (26.5)
Peak Thrust		N (lb)	33 (7.4)	33 (7.4)	50 (11.2)	33 (7.4)	50 (11.2)	33 (7.4)	50 (11.2)	33 (7.4)	50 (11.2)	33 (7.4)	50 (11.2)
Continuous T	hrust	N (lb)	11 (2.5)	11 (2.5)	16.7 (3.75)	11 (2.5)	16.7 (3.75)	11 (2.5)	16.7 (3.75)	11 (2.5)	16.7 (3.75)	11 (2.5)	16.7 (3.75)
Duty Cycle (Ac Load Dependent)	celeration &	%					10	00					
Acceleration	(Unloaded	l) G's					3	3					
Straightness	Standard Grade	um	±5	±5	±5	±8	±8	±8	±8	±8	±8	±10	±10
& Flatness	Precision Grade	μπ	±3	±3	±3	±4	±4	±4	±4	±4	±4	±5	±5
Carriage Mas	S	kg	0.34	0.34	0.46	0.34	0.46	0.34	0.46	0.34	0.46	0.34	0.46
Stage Mass		kg	1.06	1.21	1.57	1.45	1.80	1.68	2.03	1.91	2.35	2.23	2.59
		-	Travel (mm)									
Specification		Units	Travel (300 (LS)	mm) 300 (LD)	350 (LS)	350 (LD) 40) (L\$	0 4 S) (L	00 .D)	450 (LS)	450 (LD)	500 (LS)	500 (LD)
Specification Maximum Lo	ad	Units kg (lb)	Travel (300 (LS) 12 (26.5)	mm) 300 (LD) 12 (26.5)	350 (LS) (26.5)	350 (LD 12 (26.9) 40) (Ls 5) (26	0 4 5) (L 2 1 .5) (20	00 .D) 2 5.5) (á	450 (LS) 12 26.5)	450 (LD) 12 (26.5)	500 (LS) 12 (26.5)	500 (LD) 12 (26.5)
Specification Maximum Lo Peak Thrust	ad	Units kg (lb) N (lb)	Travel (300 (LS) 12 (26.5) 33 (7.4)	mm) 300 (LD) 12 (26.5) 50 (11.2)	350 (LS) 12 (26.5) 33 (7.4)	350 (LD 12 (26.3 50 (11.3) 40) (L 5) (26 2) (7.	0 4 5) (L 2 1 .5) (20 3 5 4) (1	00 - .D) - .5) (2 5.5) (2 50 1.2) (450 (LS) 12 26.5) 33 (7.4)	450 (LD) 12 (26.5) 50 (11.2)	500 (LS) (26.5) 33 (7.4)	500 (LD) 12 (26.5) 50 (11.2)
Specification Maximum Lo Peak Thrust Continuous T	ad ⁻ hrust	Units kg (lb) N (lb) N (lb)	Travel (300 (LS) (26.5) 33 (7.4) 11 (2.5)	mm) 300 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75)	350 (LS) 12 (26.5) 33 (7.4) 11 (2.5)	350 (LD (26.3 50 (11.3 16.3 (3.7)	$\begin{array}{c} $	$\begin{array}{cccc} 0 & 4\\ 5 & (L)\\ 2 & 1\\ .5) & (20)\\ 3 & 5\\ 4) & (1)\\ 1 & 10\\ 5) & (3) \end{array}$	00 D) (2 5.5) (2 5.7 (2 5.7 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	450 (LS) 12 26.5) 33 (7.4) 11 (2.5)	450 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75)	500 (LS) (26.5) (7.4) (7.4) (2.5)	500 (LD) 12 (26.5) (11.2) 16.7 (3.75)
Specification Maximum Lo Peak Thrust Continuous T Duty Cycle (Ad Load Dependent)	ad hrust	Units kg (lb) N (lb) N (lb) %	Travel (300 (LS) (26.5) 33 (7.4) 11 (2.5)	mm) 300 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75)	350 (LS) (26.5) 33 (7.4) 11 (2.5)	350 (LD (26.) 50 (11.) 16. (3.7)	0 40 0) (L3) 5) (26) 33 (2.0) 2) (7.1) 5) (2.0)	0 4 5) (L 2 1 5.5) (20 3 5 4) (11 1 10 100 100	00 (2 5.5) (2 5.5) (2 50 1.2) (5.7 75) (450 (LS) 12 26.5) 33 (7.4) 11 (2.5)	450 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75)	500 (LS) (26.5) (7.4) 11 (2.5)	500 (LD) (26.5) (11.2) 16.7 (3.75)
Specification Maximum Lo Peak Thrust Continuous T Duty Cycle (Ad Load Dependent) Acceleration	ad [•] hrust cceleration & (Unloadec	Units kg (lb) N (lb) % (lb) %	Travel (300 (LS) (26.5) 33 (7.4) 11 (2.5)	mm) 300 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75)	350 (LS) 12 (26.5) 33 (7.4) 11 (2.5)	350 (LD (26.3 50 (11.3 16.3 (3.7)	0 40)) (L3 (26 33 2) (7. 7 1° 5) (28	0 4 5) (L 2 1 5.5) (20 3 5 4) (11 1 10 5) (3. 100 3	00 (2 0) (2	450 (LS) 12 26.5) 33 (7.4) 11 (2.5)	450 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75)	500 (LS) (26.5) 33 (7.4) 11 (2.5)	500 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75)
Specification Maximum Lo Peak Thrust Continuous T Duty Cycle (Ad Load Dependent) Acceleration Straightness & Elatness	ad ^T hrust cceleration & (Unloadec Standard Grade Pracision	Units kg (lb) N (lb) % (lb) % (l) G's	Travel (300 (LS) 12 (26.5) 33 (7.4) 11 (2.5) ±10	mm) 300 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75) ±10	350 (LS) (26.5) 33 (7.4) 11 (2.5) ±12	350 (LD (26.3 50 (11.2 16.7 (3.7) ±12	$\begin{array}{c} 1 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 (2 3.5) (2 50 1.2) (5.7 75) (16	450 (LS) 12 26.5) 33 (7.4) 11 (2.5) ±20	450 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75) ±20	500 (LS) (26.5) (26.5) (7.4) (2.5) ±20	500 (LD) 2(26.5) (11.2) 16.7 (3.75) ±20
Specification Maximum Lo Peak Thrust Continuous T Duty Cycle (Ac Load Dependent) Acceleration Straightness & Flatness	ad Thrust Coceleration & (Unloaded Standard Grade Precision Grade	Units kg (Ib) N (Ib) % U) G's	Travel (300 (LS) 12 (26.5) 33 (7.4) 11 (2.5) ±10 ±5	mm) 300 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75) ±10 ±5	350 (LS) 12 (26.5) 33 (7.4) 11 (2.5) ±12 ±12 ±6	350 (LD 226.3 50 (11.3 16.7 (3.7) ±12 ±6	$\begin{array}{c} 0 & 40 \\ 0 & 12 \\ 5 & 26 \\ 2 & 3 \\ 2 & 7 & 17 \\ 5 & 7 & 17 \\ 5 & 2 \\ 2 & \pm 1 \\ \pm 4 \end{array}$	$\begin{array}{c} 0 & 4 \\ \overline{s} & (L \\ 2 & 1 \\ 5,5 & (20 \\ 3 & 5 \\ 4) & (1) \\ 1 & 10 \\ 5,5 & (3) \\ 100 \\ 3 \\ 6 & \pm \\ 3 & \pm \\ 3 & \pm \end{array}$	00 D) (2 (2 (2 (3 (5) (2 (4) (4) (4) (4) (4) (4) (4) (4)	450 (LS) 12 26.5) 33 7.4) 11 (2.5) ±20 ±10	450 (LD) (26.5) 50 (11.2) 16.7 (3.75) ±20 ±10	500 (LS) (26.5) 33 (7.4) 11 (2.5) ±20 ±12	500 (LD) 2(26.5) 50 (11.2) 16.7 (3.75) 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Specification Maximum Lo Peak Thrust Continuous T Duty Cycle (A Load Dependent) Acceleration Straightness & Flatness Carriage Mas	ad Thrust cceleration & (Unloadec Standard Grade Precision Grade S	Units kg (lb) N (lb) % (lb) % (lb) % (l) G's µm kg	Travel (300 (LS) (26.5) 33 (7.4) 11 (2.5) ±10 ±5 0.34	mm) 300 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75) ±10 ±5 0.46	350 (LS) 12 (26.5) 33 (7.4) 11 (2.5) ±12 ±6 0.34	350 (LD 12 (26.3 50 (11.3 (3.7) ±12 (3.7) ±12 ±6	$\begin{array}{c} 0 & 40 \\ (Ls) & (26) \\ (26) \\ (26) \\ (26) \\ (27) \\ $	$\begin{array}{c} 0 & 4 \\ 5 & (L \\ 2 & 1 \\ 5 & (2 \\ 3 & 5 \\ 4 & (11 \\ 1 & 10 \\ 5 & (3) \\ 100 \\ 3 \\ 6 & \pm \\ 3 & 4 \\ 34 & 0. \end{array}$	00 D) (2 (2 (2 (2) (2) (2) (2) (2)	450 (LS) 12 26.5) 33 (7.4) 11 (2.5) ±20 ±10 0.34	450 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75) ±20 ±10 0.46	500 (LS) (26.5) 33 (7.4) 11 (2.5) 4 ±20 ±12 0.34	500 (LD) 12 (26.5) 50 (11.2) 16.7 (3.75) 4 2 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2

mSR100 Force/Speed Performance

mSR100 Specifications (Travel & Encoder Dependent)

	Travel (mm)											
Specification	Units	25 (LS)	50 (LS)	50 (LD)	100 (LS)	100 (LD)	150 (LS)	150 (LD)	200 (LS)	200 (LD)	250 (LS)	250 (LD)
Magnetic Encoder –	1 Mici	ron Re	solutio	n								
Max. Speed	mm/s	1100	1500	3000	3000	3000	3000	3000	3000	3000	3000	3000
Bi-directional Repeatability	μm						±5.0					
Positional Accuracy	μm	40	40	40	80	80	80	80	100	100	100	100
Optical Encoder – 1	Micro	n Reso	lution									
Max. Speed	mm/s	1100	1500	3000	3000	3000	3000	3000	3000	3000	3000	3000
Bi-directional Repeatability	μm						±2.0					
Positional Accuracy	μm	10	10	10	10	10	10	10	12	14	14	14
Positional Accuracy (Slope Corrected)	μm	6	6	6	6	6	7	7	7	7	8	8
Optical Encoder – 0.1 Micron Resolution												
Max. Speed	mm/s	300	300	300	300	300	300	300	300	300	300	300
Bi-directional Repeatability	μm						±0.4					
Positional Accuracy	μm	9	9	9	9	9	9	9	11	11	13	13
Positional Accuracy (Slope Corrected)	μm	5	5	5	5	5	6	6	6	6	7	7
Optical Encoder – 0.	01 Mic	ron Re	esoluti	on								
Max. Speed	mm/s	30	30	30	30	30	30	30	30	30	30	30
Bi-directional Repeatability	μm						±0.2					
Positional Accuracy	μm	8	8	8	8	8	8	8	10	10	12	12
Positional Accuracy (Slope Corrected)	μm	4	4	4	4	4	5	5	5	5	6	6
BiSS-C Absolute Encoder – 0.05 Micron Resolution												
Max. Speed	mm/s	1100	1500	3000	3000	3000	3000	3000	3000	3000	3000	3000
Bi-directional Repeatability	μm						±0.4					
Positional Accuracy	μm	9	9	9	9	9	9	9	11	11	13	13
Positional Accuracy (Slope Corrected)	μm	5	5	5	5	5	6	6	6	6	7	7

mSR100 Specifications (Travel & Encoder Dependent)

		Travel (mm)									
Specification	Units	300 (LS)	300 (LD)	350 (LS)	350 (LD)	400 (LS)	400 (LD)	450 (LS)	450 (LD)	500 (LS)	500 (LD)
Magnetic Encoder -	- 1 Micı	ron Res	solution	l							
Max. Speed	mm/s	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Bi-directional Repeatability	μm					±5	5.0				
Positional Accuracy	μm	100	100	100	100	100	100	100	100	100	100
Optical Encoder – 1	Micror	n Resol	ution								
Max. Speed	mm/s	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Bi-directional Repeatability	μm					±2	2.0				
Positional Accuracy	μm	16	16	18	18	20	20	22	22	24	24
Positional Accuracy (Slope Corrected)	μm	8	8	9	9	9	9	10	10	10	10
Optical Encoder – 0	.1 Micr	on Res	olution								
Max. Speed	mm/s	300	300	300	300	300	300	300	300	300	300
Bi-directional Repeatability	μm					±C).4				
Positional Accuracy	μm	15	15	17	17	19	19	21	21	23	23
Positional Accuracy (Slope Corrected)	μm	7	7	8	8	8	8	9	9	9	9
Optical Encoder – 0	.01 Mic	ron Re	solutio	n							
Max. Speed	mm/s	30	30	30	30	30	30	30	30	30	30
Bi-directional Repeatability	μm					±C).2				
Positional Accuracy	μm	14	14	16	16	18	18	20	20	22	22
Positional Accuracy (Slope Corrected)	μm	6	6	7	7	7	7	8	8	8	8
BiSS-C Absolute En	coder ·	- 0.05 1	Micron	Resolut	ion						
Max. Speed	mm/s	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Bi-directional Repeatability	μm					±C).4				
Positional Accuracy	μm	15	15	17	17	19	19	21	21	23	23
Positional Accuracy (Slope Corrected)	μm	7	7	8	8	8	8	9	9	9	9

DIMENSIONS

LS Option	LD Option	А	В	Qty. C
25	—	145 (5.71)	100 (3.94)	8
50	-	170 (6.69)	125 (4.92)	8
100	50	220 (8.66)	150 (5.91)	8
150	100	270 (10.63)	200 (7.87)	8
200	150	320 (12.60)	125 (4.92)	8
250	200	370 (14.57)	150 (5.91)	12
300	250	420 (16.54)	200 (7.87)	12
350	300	470 (18.50)	125 (4.92)	12
400	350	520 (20.47)	150 (5.91)	12
450	400	570 (22.44)	200 (7.87)	16
500	450	620 (24.41)	125 (4.92)	16
_	500	670 (26.38)	150 (5.91)	16

OPTIONS & ACCESSORIES

mSR Motor Information

		mSR80		mSF	R100
Motor Specifications	Units	4 Pole (CS Option)	8 Pole (CD Option)	3 Pole (LS Option)	5 Pole (LD Option)
Magnetic Pitch	mm	13	13	40	40
Continuous Force ¹	Ν	4	8	11	16.7
Peak Force	N	12	24	33	50
Continuous Current ¹	A(rms)	0.8	1.6	1.2	2.18
Peak Current ^{2,3}	A(rms)	2.4	4.8	3.5	6.5
Voltage Constant ^{2,3}	Volts/m/s	4.5	4.5	7.7	6.3
Force Constant ²	N/A(rms)	5.51	5.51	9.4	7.65
Resistance ²	Ohms	8.8	4.3	6.3	2.82
Inductance ⁴	mH	2.4	1.6	1	0.5
Max Bus Voltage	VDC	48	48	48	48
Rated/Max Winding Temperature	Degrees C	25/95	25/95	25/125	25/125
Thermal Resistance (winding to case)	C/Watt	3.68	1.32	1.6	0.92
Thermal Resistance (case to ambient)	C/Watt	3.16	2.08	3.9	2.64
Winding Thermal Time Constant	Minutes	0.5	0.5	1.3	0.8
Motor Thermal Time Constant	Minutes	0.8	0.8	15	10

1 @ 25° C ambient

² Measured line to line

³ Value is measured peak of sine

⁴ ±30% Line-to-Line, induction bridge measurement @ 1 Khz

Motor and Hall Wiring

Function	Color	Pin #
Motor Phase U	Red	1
Motor Phase V	Brown	2
Motor Phase W	Orange	3
PE Ground	Green/Yellow	4
Hall Power (+5 Volts DC)	Black	5
Hall Ground	White	6
Hall 1	Yellow	7
Hall 2	Blue	8
Hall 3	Green	9
POS		
Drive/Control Solutions

Drivel Solutions

The Intelligent Parker Amplifier or IPA, is an versatile servo drive/ controller based on the ACR control platform.

The IPA provides a dual port Ethernet interface which gives the machine builder the flexibility needed to create cost effective motion control solutions.

The IPA operates as a fully programmable stand-alone motion controller with on-board I/O and virtual axis capability or can be integrated into a PLC or PC-based machine control solution. Software tools are included to optimize motion performance and efficiently monitor and manage the application.

EtherNet/IP gives IPA users a popular connectivity option to PLCs for easy integration of servo motion in larger machine control application. The IPA is an EtherNet/IP adapter device supporting both I/O and Explicit Messaging. Add-On Instructions are available for seamless integration with Logix controllers.

The P-Series drives operate with a variety of machine control architectures and offer sophisticated servo functionality. Accurate and easy to use inertia detection leads to fast set-up of tuning parameters and minimal settling time.

Advanced filtering and vibration suppression features can be used to increase throughput and improve positioning performance. For high speed, real-time network applications, the P-Series is available with, EtherCAT, the fastest growing, most flexible industrial Ethernet protocol. Ideal for use with the Parker Automation Controller, the P-Series also follows the open standards for EtherCAT.

The Pulse version can be configured for step and direction control input and includes analog inputs for torque or velocity control. Select Indexer mode to create up to 64 position table entries triggered via inputs or over a RS422 interface.

Parker Drives and Cable Accessory Part Numbers

Encoder Type	Drive	Number
Digital	IPA	006-2690-01
Analog	IPA	006-2692-01
Digital	P Series	006-2691-01
Digital/Analog	Motor Power and Hall Flying Lead	006-2678-01
Digital	Digital Encoder Flying Lead	006-2679-01
Analog	Analog Encoder Flying Lead	006-2680-01

Optical Encoder

Function	Signal	Pin #
Dowor	5 Volts DC	8
Power	Signal 5 Volts DC Ground A+ A- B+ B- Z+ Z- Positive Limit Negative Limit Negative Limit Negative Limit	2, 9
	A+	14
Incromental Signals	A-	6
incremental Signals	B+	13
	Signal 5 Volts DC Ground A+ A- B+ B- Z+ Z- Positive Limit Negative Limit (Used in installation NPN	5
Deference Mark	Z+	12
	Z-	4
Limito	Positive Limit	11
Limits	Negative Limit	10
Setup	(Used in installation)	1
Error Output	NPN	3

Sine Cosine Encoder

Function	Signal	Pin #
Dower	5 Volts DC	4, 5
Power	Signal 5 Volts DC 0 Volts DC Cosine + Cosine - Sine + Sine - Z+ Z- Positive Limit Negative Limit Negative Limit Negative Limit	12, 13
	Cosine +	9
Incremental Signale	Cosine -	1
incremental Signals	Signal5 Volts DC0 Volts DC0 Volts DCGosine +Cosine -Sine +Sine -Z+Z+Positive LimitNegative LimitVised in installation)rationNPN	10
	Sine -	2
Deference Mark	Z+	3
Reference Mark	Z-	11
Limito	Positive Limit	7
Limits	Signal 5 Volts DC 0 Volts DC Cosine + Cosine - Sine + Sine - Z- Positive Limit Negative Limit Negative Limit Negative Limit Negative Limit	8
Setup	(Used in installation)	6
Remote Calibration	NPN	14

Magnetic Encoder

Function	Signal	Pin #
Power	5 Volts DC	8
FOWEI	Ground	9
	A +	14
Incremental	A -	6
Signals	B +	13
	В -	5
Poforonoo Mark	Z+	12
	Z-	4
Limito	Positive Limit	11
Limits	Negative Limit	10
Home	NPN	2
Error Output	NPN	3

BiSS-C Absolute Encoder (mSR100 only)

Function	Signal	Color
	5 Volts DC	Brown
Power	Cround	Green
	Ground	White
	MA+	Violet
Serial	MA-	Yellow
Communications	SLO+	Grey
	SLO-	Pink
Shield	Innersheild	-
Shield	Outer	Case

Multi-axis Systems

The mSR series was designed to be highly modular, such that it can easily be configured into multiaxis systems made out of other mSR or MX80L positioners as the mSR80 uses the same bolt pattern. Since the entire mSR series was designed with this common hole pattern in mind, X-Y systems can be developed without the need for an additional transition plate.

mSR100 X-Y standard orientation

mSR100 X-Y carriage-to-carriage direct mount orientation

The mSR100 was designed such that it can be configured into two different X-Y orientations: one reflecting a standard X-Y design and the other with the carriages mounted directly to one another. If you choose to develop your machine with the carriage-tocarriage approach, the Y axis cable carrier is eliminated. The mSR100 is also populated with mounting holes to mount an mSR80 directly to it so that X-Y, X-Z or X-Y-Z systems can be created with any combination of the mSR80 and mSR100. Pictured here is the mSR80 with a standard Z bracket.

mSR100 X with mSR80 Z including magnetic counterbalance

Z-Axis Brackets

mSR80 & mSR100	Part Number
25, 35, and 50 mm	002-2238-01
100 & 150 mm	002-2240-01

ORDERING INFORMATION mSR100

S

Standard (Magnetic Encoder only)

Fill in an order code from each of the numbered fields to create a complete part number

		1	2	3)	4	5	6	7	8	9	10	11	
Order Exa	ample:	MSR	100	L		050	Ρ	LS	E3	H1	L1	CM03	X0	
1 Series			(6	Mot	or						10	Cable	Options
MSR	Series				LS	Irc	nles	s, sin	gle				CM03	No cable i
					LD	Irc	nles	s, doi	uble	(50 to	500			3 meter
2 Size (v	vidth in mm)					m	m str	oke d	only)				CIM13	Single cap 3 meter
100	100 mm wide p	rofile			F								CM23	Double cal
			((7)	Enc	oaer		1 :						3 meter
3 Drive	Train				E1	1 L		cai in	icrem	ienta	I 			*Cable leng
L	Linear Motor Dr	ive			E2	0.		oticai	incre	emen	tai			not take int
					E3	0.0	υιμι	optica	ai inc	reme	ntai			reduction ir
4 Stroke	e Length (mm)				SC	SI	ne/Co	osine						cable mana
025	25 mm				M1	٦Ļ	i maę	gnetic		emer	ntal	-		
050	50 mm				R1	0.	05µ I	BISS-	-C Ak	osolu	te	(12)	Other	Options
100	100 mm			_		_							X0	No options
150	150 mm		(8)	Hon	ne Sei	nsor							
200	200 mm				HO	No	o hor	ne se	ensor	(BiS	S-C			
250	250 mm				H1	AL Ha	ome	ie Of Sens	iiy) or (N	1 Or	tion)			
300	300 mm					Ind	dex N	/ark	(E1, I	E2, E	3,			
350	350 mm					ar	d SC	C Opt	ions)					
400	400 mm			_	_									
450	450 mm		(9	Lim	it Sen	sor				_			
500	500 mm				L0	No Ał	o limi osolu	t sen: te Or	sor (E hlv)	BiSS-	C			
					L1	Er	nd-of	-trave	el limi	t sen	sors			
5 Grade						(N	lagne	etic, C	Optic	al and	b			
Р	Precision (Optic Cosine, and Bis Absolute only)	al, Sine/ SS-C				Si	ne/C	osine	only)				

MX80L Linear Servo Motor Driven Stages

High performance in a small package

- Miniature size
- Fast settling
- Submicron precision
- High velocity (2 m/sec.)
- Multi-axis platform

Attributes

- Low profile miniature size (25 mm high X 80 mm wide)
- Linear servo motor drive
- Six linear encoder resolutions (0.01 μm to 5.0 μm)
- 25, 50, 100, 150 and 200 mm travels
- Cross Roller bearing (zero cage creep design)
- Precision or standard grade
- Cleanroom and low ESD options
- Fully adjustable home and limit sensors
- Dowel holes for repeatable mounting of payload
- Master reference surface to travel path
- "Plug-in" intelligent drive
- Pneumatic z-axis counterbalance
- No moving cables

High Performance in a Small Package

Miniaturization of fiber optics, photonics, electronics and biomedical processes has driven the need for smaller and more efficient positioners. Parker's MX80 miniature stage, the smallest linear servomotor driven positioner in the industry, is loaded with high-performance features for both rapid linear translation and precise positioning of lighter loads in small work envelopes.

Designed for today's 24/7 production demands, the MX80 has redefined "high-throughput automation" in the world of miniature positioners. While the MX80 is small in size, it is large on performance and reliability. All key components are "built-in" – residing within the body of the stage to provide a clean looking, reliable, unobstructed package.

At the heart of the MX80 is an innovative non-contact linear servo motor (patent pending). This direct drive motor has been optimized for force, speed, and acceleration, to deliver outstanding performance and response. A high-precision non-contact linear encoder provides submicron resolution, repeatability and accuracy. Selectable resolutions range from 10 nanometers to 5 microns. Precision ground cross roller bearing sets with a "zero cage creep" feature provide extremely smooth, precise linear translation. Digital Hall effect travel limit and home sensors are conveniently designed into the unit for easy adjustment over the entire travel of the stage. Although there are no moving cables, a meter of highflex cabling is included and wired directly into the units. This highflex cabling addresses cable flexing concerns associated with the second or third axis in multi-axis system.

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

MX80L

MX80L Table

Duty	Max	Max	Max	Peak	Repeatability
Cycle	Acceleration	Load	Travel	Force	(+/-)
100%	5G	8KG	200mm	24N	0.4um

on resolution, repeatability iracy. concerns associated with the secor or third axis in multi-axis system.

FEATURES

(1) Cross Roller Bearings

provide high stiffness and extremely smooth linear translation. A rack and pinion anti-cage creep design within the bearing races prevents cage creep even at 5g acceleration, or with cantilevered loads.

(2) Linear Servo Motor

features a patent pending ironcore design that provides high thrust density for linear acceleration to 5g's and velocities to 2 meters/second. The noncontact design offers long life and clean operation.

(3) Master Reference Surface

is a feature unique to the MX80 that enables customers to align their process to the actual travel path within microns.

(4) Home/Limit Sensors

are magnetic sensors completely housed within the body of the stage, and fully adjustable over the entire travel range.

5 Optical Linear Encoders

are available in six standard resolutions (10 nm, 20 nm, 0.1 μ m, 0.5 μ m, 1.0 μ m, 5.0 mm) and is fully integrated within the body of the stage. The non-contact design offers long life and clean operation.

Zero Cage Creep Feature

High acceleration and smooth translation are both desired attributes in a linear-motor stage. The cross roller bearing system found in the MX80 provides extremely smooth linear translation, and with an anti-cage creep design, operates very well in high acceleration applications. This design employs a rack and pinion feature within the bearing races to eliminate bearing creep. As a result, the MX80 performs well, even at 5g acceleration.

Tooling Features

Innovative tooling features make mounting and alignment much quicker and easier.

- A hardened steel master reference surface is provided along the side of the stage to allow fixturing or other tooling elements to be precisely aligned with the actual travel path.
- Two dowel pin holes are provided on the carriage top and base for repeatable mounting of positioner or tooling.

SPECIFICATIONS

Download 2D & 3D files from www.parker.com/emn/MX80L

SPECIFICATIONS

The MX80L is a high performance linear servo motor stage designed to meet today's 24/7 production demands requiring rapid-fire positioning of light loads within a small work envelope.

		M	X80LP Pre	cision Gra	de		MX80L	S Standard	d Grade	
Travel (mm)		25	50	100	150	25	50	100	150	200
Normal Load Capacity	kg (lb)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)
Maximum Acceleration	g-force	4	4	4	3	5	5	5	4	3
Maximum Velocity 5.0 μm 1.0 μm 0.5 μm 0.1 μm 0.02 μm 0.01 μm	mm/sec ²	1100 1100 1100 300 60 30	1500 1500 1500 300 60 30	2000 2000 1500 300 60 30	2000 2000 1500 300 60 30	1100 1100 1100 300 60 30	1500 1500 1500 300 60 30	2000 2000 1500 300 60 30	2000 2000 1500 300 60 30	2000 2000 1500 300 60 30
Peak Force	N (lb)	12 (2.7)	12 (2.7)	24 (5.4)	24 (5.4)	12 (2.7)	12 (2.7)	24 (5.4)	24 (5.4)	24 (5.4)
Continuous Force	N (lb)	4 (0.9)	4 (0.9)	8 (1.8)	8 (1.8)	4 (0.9)	4 (0.9)	8 (1.8)	8 (1.8)	8 (1.8)
Duty Cycle	%	100	100	100	100	100	100	100	100	100
Straightness & Flatness	μm	4	4	5	6	6	6	10	12	14
Positional Accuracy* 5.0 μm 1.0 μm 0.5 μm 0.1 μm 0.02 μm 0.01 μm	μm	13 5 4 3 3 3	14 6 5 4 4 4	15 7 6 5 5 5	15 7 6 5 5 5	25 15 12 12 12 12 12	30 20 15 15 15 15	35 25 20 20 20 20 20	35 25 20 20 20 20 20	35 25 20 20 20 20 20
Bi-directional Repeatability* 5.0 µm 1.0 µm 0.5 µm 0.1 µm 0.02 µm 0.01 µm	μm	± 10.0 ± 2.0 ± 1.0 ± 0.5 ± 0.4 ± 0.4	±10.0 ±2.0 ±1.0 ±0.5 ±0.4 ±0.4	± 10.0 ± 2.0 ± 1.0 ± 0.5 ± 0.4 ± 0.4	±10.0 ±2.0 ±1.0 ±0.5 ±0.4 ±0.4	±10.0 ±2.0 ±1.0 ±0.7 ±0.5 ±0.5				
Unit Mass	g	590	590	1027	1345	475	475	875	1125	1370
Carriage Mass (unloaded)	g	282	282	509	676	213	213	405	537	695

* Notes:

(1) Measured at the carriage center, 35 mm above the mounting surface @ 20 C with no load. Unit bolted to granite surface, flat to within 1

(1) Total accuracy and bi-directional repeatability over full travel (peak to peak).

micron/300 mm. (2) Total accuracy and bi-directional repeatability

over full travel (peak to peak).

(3) Precision grade with slope correction value

provided. Consult factory if better accuracy is

required.

MX80LP Precision Series

Precision grade models are designed for highperformance applications requiring the highest degree of positioning accuracy. They offer a steel body design with precisely ground mounting surfaces & bearing ways. They include higher resolution linear encoders, and are slope corrected, laser tested and certified for optimum precision.

- 4 g acceleration
- Repeatability to ±0.4 μm
- Straightness 4 µ
 Steel body
- Steel body construction
- Precision ground mounting and bearing surfaces
- Electroless nickel protective finish

Life – Load (Normal Load)

MX80LS Standard Series

Standard grade units offer a lower cost alternative for applications requiring high throughput performance with less demanding positioning requirements. They are constructed of high alloy aluminum, providing a lighter weight design which can accelerate to 5 g's.

- 5 g acceleration
- Repeatability to ±0.8 µm
- Straightness 6 µ
- Steel body construction
- Light weight aluminum body
- Low luster black anodize finish

Download 2D & 3D files from www.parker.com/emn/MX80L

DIMENSIONS

OPTIONS & ACCESSORIES

Simple Configuration Digital Drive Options

All digital drives ordered in the MX80 part number configuration come set up with a motor file including electrical parameters to set continuous and peak currents, current loop compensation values, and default gain settings. Users will have the ability to override these parameters for special application requirements.

Tuning is easy and intuitive for users and is available via a variety of methods. The motor and loading information must be known by the drive to determine the baseline tuning gains. These are simple parameter entries the user can complete with the help of standard Parker supplied front-end software tools. Seamless integration of drives and controls ensures performance matched functionality of the completed motion system.

Servo & Microstepping Drives/Controllers

Parker servo and microstepping drives are the perfect drive solution to be paired with the MX80 family. We are happy to assist with the selection of a suitable drive.

For complete details on drive product features and specifications, please refer to the "Drives & Controllers" section of this catalog.

Encoder Options

Order Codes: E2 E3 E4 E5 E8 E9

A non-contact linear optical encoder provides a quadrature output and offers resolution ranging from 10 nanometer to 5 micron. On the MX80L, the encoder is internal to the stage body. There is no increase to the footprint of the unit and no additional external cabling is required.

Home and Limit Sensor Options

Order Codes: H1 H2 H3 L1 L2 L3

Magnetic home and limit sensors are completely housed within the body of the stage. An innovative design adds functionality without sacrificing geometry. Sensor triggers can be easily adjusted over the travel. The output format is an open collector type capable of sinking up to 50 mA, and be set as N.O. or N.C.

"Plug & Play" Cable Options

User convenience is high on the list of cable attributes found in the MX80. The high-flex cabling and connectors are reliable, durable and offer easy hook-up for "plug and run" installation.

- High-flex cables
- CE compliant connectors and shielding
- CE compliant ferrite beads
- Color coded jackets and labeling
- Connectors simplify installation

Cable Connector Configuration

HD15	5M-VF	HD1	5F-VL
15 Pin HD	-SUB Plug	15 Pin HD	-SUB Rcpt
Pin #	Function	Pin #	Function
1	Z+	1	GND
2	Z-	2	NO CONN-
3	GND	3	NO CONN
4	NO CONN	4	NO CONN
5	+5V	5	NO CONN
6	GND	6	+LIMIT
7	A-	7	-LIMIT
8	A+	8	HOME
9	HALL1	9	NO CONN
10	TEMP	10	NO CONN-
11	B-	11	NO CONN
12	B+	12	NO CONN
13	HALL2	13	NO CONN
14	HALL3	14	NO CONN
15	NO CONN	15	NO CONN
HD15M-VE Con	nector compatible	HD15M-VL Con	nector compatible

with IPA, Vix and Aries Feedback Connector HD15M-VL Connector compatible with Vix Limit/Home Connector

Cleanroom Option Order Codes: R2 R20

Both precision and standard grade products can be prepared for cleanroom compatibility.

Preparation involves material changes, element modification and cleanroom compatible lubricants. MX80L and MX80S stages with this option are class 10 cleanroom compatible. When applying an XY or XYZ combination in a cleanroom environment, moving wires need to be considered – please consult a Parker application engineer.

Low ESD Coating Option Order Codes: R10 R20

An optional low ESD electroless nickel or Armoloy coating is offered for improved electrically conductivity, providing a low

resistance to ground path for electric discharge.

Environmental Protection Option

Both precision and standard grade units have a hard coat protective finish. The precision units have a hard coat (Rc 78) satin chrome finish, and the standard units have a low luster black anodized finish.

System Orthogonality Option

Order Codes: S2 S3 S4 S5 S6

In any multi-axis positioning system, the perpendicular alignment of the axes must be clearly specified. "Degree of orthogonality" defines the

perpendicular alignment of axis one to another. The MX80 offers two choices for orthogonality. As standard, perpendicularity is held to within 60 arc seconds. For more exacting applications the MX80 can be optioned for 15 arc seconds orthogonality.

Z-axis Counterbalance Option

Order Codes: X2

A pneumatic Z-axis counterbalance is offered to prevent a sudden load drop if power to the motor is interrupted. A controlled vertical force is applied to the stage top to negate the effect of gravity and achieve equilibrium. A precisely regulated clean air supply of 0 to

60 psi is required for operation. (See Pneumatic Accessory Package.)

Pneumatic Accessory Package

This accessory is offered for use with the pneumatic counterbalance option. It consists of a pre-filter, a pressure regulator, a coalescing filter, and a

precision regulator to precisely regulate air pressure and remove oil, water or debris down to 3 microns.

Part Number: 002-2236-01

Z-Axis Bracket Accessory

Lightweight aluminum Z-brackets are available for easy construction of vertical axis combinations.

Standard Model	Part Numbers
25 & 50 mm	002-2238-01

100 & 15 0mm: 002-2240-01

Low ESD Model Part Numbers:

5 & 50 mm: 002-2239-01 100 & 150 mm: 002-2241-01

ORDERING INFORMATION MX80L

Notes - HD15M-VF Connector compatible with IPA, Vix and Aries Feedback

HD15M-VL Connector compatible with Vix Limit/Home Connector

Connector

Fill in an order code from each of the numbered fields to create a complete model order code.

		1 2	3	4	5	6	7	8	9	10	1	(12)	13	(14)
	Order Example:	MX80L T02	2 M	Ρ	– D11	H3	L2	CM05	Z 3	E8	R1	A25	X1	S1
1	Series MX80L					9	Z Ch Z1 Z3	None Cente	.ocati er Posit	on tion				
3	Tot 25 To2 50 To3 100 To4 150 Mounting Metric					10	Digit E1 E2 E3 E4 E5 E7	t al Linea None 1.0 μι 0.5 μι 0.1 μι 5.0 μι Sine d	m Reso m Reso m Reso m Reso m Reso putput	coder (olution olution olution olution encode	Option er	1		
4	Grade S Standard P Precision (not	available with T	05 Travel	option)	Ũ	E8 E9 Envi	0.02 0.01	um Re: um Re: I tal	solution solution	n (20 na n (10 na	anomete anomete	r) r)	
5	Drive Type D1 Free Travel (N D11 4 Pole (25 & 5 D13 8 Pole (100, 1	lo Motor) 50 mm travel onl 150 & 200 mm tr	y) avel only)			R1 R2 R10 R20	Stanc Clean Low E Low E	lard Fir Iroom I ESD Fii ESD Fii	nish (bla Prep nish nish & (ack and Cleanro	odized) oom Prep)	
6	Home SensorH1None-Free TraH2N.C. CurrentH3N.O. Current	avel (only) Sinking Sinking				12	Digit A1 Othe X1 X2	al Drive No Di Pr Optio None 7-axis	e rive ns S Pneu	matic (Counter	Balance	5*	
0	Limit SensorL1None-Free TransmissionL2N.C. Current 3L3N.O. Current 3	avel (only) Sinking Sinking				14	Axis S1 S2*	* Not a Design None X-axis	available ator (single s base	e with T(e-axis) unit (ca	5 Trave	12 o'clo	ock)	
8	CableOptionsCM03No Cables – FCM041m High-Flex ConnectorsCM053m High-Flex ConnectorsCM061m High-Flex out limit cableCM073m High-Flex out limit cable	Free Travel Cables w/ HD1 Cables w/ HD1 Cables w/ HD1 Cables w/ HD1	5M-VF & 5M-VF & 5M-VF Co 5M-VF Co	HD15N HD15N onnecta	Л-VL Л-VL or, w/ or, w/		S3* S4* S5* S6* *Cons	Y-axis Y-axis Y-axis Y-axis sult factor	s 60 ard s 60 ard s 15 ard s 15 ard s 15 ard y for m	c-sec (c c-sec (c c-sec (c c-sec (c c-sec (c nulti-axis	cables (cables (cables (cables (pinning	@ 3 o'cla @ 9 o'cla @ 3 o'cla @ 9 o'cla g options	ock) ock) ock) ock) and qu	otation

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

MX80S Ballscrew and Leadscrew Driven Stages

Reliable, low profile miniature positioner

- Cross roller bearing (zero cage creep option)
- Stepper or servo motor drive
- Digital limit/home system
- Optional linear encoder
- Cleanroom prep. option
- Low ESD option for electrically sensitive applications

- Miniature Size Low Profile (35 mm high X 80 mm wide)
- Normal or cleanroom environments
- 25, 50, 100, 150 mm travels
- Multi-axis platform
- Ballscrew or leadscrew drive options

MX80S Table

Duty	Max	Max	Max	Peak	Repeatability
Cycle	Acceleration	Load	Travel	Force	(+/-)
100%	2G	8KG	150mm	123N	1.5µm

The MX80S miniature positioner is the screw driven member of Parker's MX80 family. Like its counterparts, the MX80L linear motor driven stage and MX80M manual stage, the MX80S is designed for applications requiring reliable linear positioning in space restricted applications. It is the complementary product that bridges the product spectrum between the high dynamic linear motor performance of the MX80L, and the manual precision of the MX80M.

The MX80S can be supplied with a high-efficiency leadscrew drive capable of reaching 200 mm per second velocity, or a precision ground ballscrew drive offering axial thrust to 123 N.

The leadscrew drive employs a PTFE coated leadscrew with a preloaded nut to produce extremely smooth linear translation. A choice of three leads provides improved opportunity for matching desired velocity/ resolution requirements.

The 2.0 mm lead ballscrew stage offers high performance 24/7 operation with a thrust load capacity of 123 N (28 lb) and velocity to 100 mm/second at 100% duty cycle.

MX80S

Leadscrew drive

Ballscrew drive

1 Cross Roller Bearings

provide high stiffness and extremely smooth linear translation. A rack and pinion anticage creep design within the bearing races prevents cage creep even at 5 g acceleration, or with cantilevered loads.

(2)

Ballscrew or leadscrew drive

The 2.0 mm lead ballscrew driven stage offers high performance 24/7 operation with a thrust load capacity of 123 N (28 lb.) and velocity to 100 mm/second at 100% duty cycle. Leadscrew driven stages are available with 1 mm, 2 mm, or 10 mm leads. The PTFE coated leadscrew provides extremely smooth linear translation at velocities up to 200 mm/second.

3 Home/Limit Sensors

are magnetic sensors completely housed within the body of the stage, and fully adjustable over the entire travel range.

Master Reference Surface

is a feature unique to the MX80 that enables customers to align their process to the actual travel path within microns.

(4)

SPECIFICATIONS

SPECIFICATIONS

The MX80S low profile miniature positioner offers reliable linear positioning for space restricted applications. Various screw and drives options are available to best suit the application's needs.

		I	MX80S Lead	screw Driv	е		MX80S Ball	screw Drive	•
Travel (mm)		25	50	100	150	25	50	100	150
Normal Load Capacity	kg (lb)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)	8 (18)
Thrust Load Capacity	N (lb)	44 (10)	44 (10)	44 (10)	44 (10)	123 (28)	123 (28)	123 (28)	123 (28)
Maximum Velocity 1.0 mm lead 2.0 mm lead 10.0 mm lead	mm/sec	20 40 200	20 40 200	20 40 200	20 40 200	 100 	 100 	 100 	 100
Breakaway Torque	Nm	0.029	0.029	0.033	0.033	0.050	0.050	0.050	0.050
Running Torque 1.0 mm lead 2.0 mm lead 10.0 mm lead	Nm	0.028 0.028 0.028	0.028 0.028 0.028	0.032 0.032 0.032	0.032 0.032 0.032	0.047 —	0.047 —	0.047 —	0.047 —
Duty Cycle	%	50	50	50	50	100	100	100	100
Straightness & Flatness*	μm	8	12	16	20	8	12	16	20
Positional Accuracy* 1.0 mm lead 2.0 mm lead 10.0 mm lead	μm	30 30 35	45 45 50	75 75 80	100 100 105	 10 	 15 	 18 	 20
Bi-directional Repeatability* 1.0 mm lead 2.0 mm lead 10.0 mm lead	μm	±5.0 ±5.0 ±10.0	±5.0 ±5.0 ±10.0	±5.0 ±5.0 ±10.0	±5.0 ±5.0 ±10.0	_ ±1.5 _	 ±1.5 	 ±1.5 	 ±1.5
Inertia (without motor & coupling) 1.0 mm lead 2.0 mm lead 10.0 mm lead	10 ⁻⁷ kg-m²	1.47 1.62 6.34	1.47 1.62 6.34	2.42 2.68 11.30	3.06 3.42 14.90	 4.19 	 4.19 	 6.08 	_ 7.68 _
Screw Speed (max)	rps	20	20	20	20	50	50	50	50
Leadscrew Efficiency 1.0 mm lead 2.0 mm lead 10.0 mm lead	%	40 59 78	40 59 78	40 59 78	40 59 78	 90 	 90 	 90 	 90
Screw Diameter	mm	6.35	6.35	6.35	6.35	8.00	8.00	8.00	8.00
Bearing Coefficient of Friction		0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Unit Mass Table only With 2-stack stepper	g	597 748	597 748	1003 1154	1268 1419	694 845	694 845	1114 1265	1392 1513
Carriage Mass (unloaded)	g	194	194	353	471	291	291	464	595

* Notes:

(1) Measured at the carriage center, 35 mm above the mounting surface @ 20 C with no load. Unit bolted to granite surface, flat to within 1 micron/300 mm. (2) Total accuracy and bi-directional repeatability over

full travel (peak to peak).

(1) Measured at the carriage center, 35 mm above the mounting surface @ 20 C with no load. Unit bolted to granite surface, flat to within 1 micron/300 mm.

(2) Total accuracy and bi-directional repeatability over full travel (peak to peak).

(3) Repeatability valid with M21 servo motor.

Miniature Positioners

DIMENSIONS

OPTIONS & ACCESSORIES

Simple Configuration Digital Drive Options

All digital drives ordered in the MX80 part number configuration come set up with a motor file including electrical parameters to set continuous and peak currents, current loop compensation values, and default gain settings. Users will have the ability to override these parameters for special application requirements.

Tuning is easy and intuitive for users and is available via a variety of methods. The motor and loading information must be known by the drive to determine the baseline tuning gains. These are simple parameter entries the user can complete with the help of standard Parker supplied front-end software tools. Seamless integration of drives and controls ensures performance matched functionality of the completed motion system.

Servo & Microstepping

Drives/Controllers

Parker servo and microstepping drives are the perfect drive solution to be paired with the MX80 family. We are happy to assist with the selection of a suitable drive.

E-AC and E-DC Microstepping Drive

Order Codes: A31

Parker's E-Series microstepping drives are a lowcost, high-performance and high-reliability drive in a small package which can be paired with the MX80 family. To better suit any MX80 application, the E-Series is available in both alternating and direct current options. The E-AC drive provides up to 3.5 Amps of current to the motor and accepts 120VAC direct-online power only. The E-DC drive is designed for a 48VDC input power requirement and provides current up to 4.8 Amps peak of current to the motor.

Encoder Options

Order Codes: E2 E3 E4 E5 E7

A non-contact linear optical encoder provides a quadrature output and offers resolution ranging from 10 nanometer to 5 micron. On the MX80L, the encoder is internal to the stage body. There is no increase to the footprint of the unit and no additional external cabling is required.

Plug & Play" Cable Options

Order Codes: CM02 CM03 CM06 CM07 CM08 CM09 CM10 CM11 CM12 CM13 CM15 CM17

"User convenience" is high on the list of cable attributes found in the MX80. The high-flex cabling and connectors are reliable, durable and offer easy hook-up for "plug and run" installation.

- High-flex cables
- CE compliant connectors and shielding
- CE compliant ferrite beads
- Color coded jackets and labeling
- Connectors simplify installation

Cable Connector Configuration

HD15	M-VF	HD15F-VL				
15 Pin HD	-SUB Plug	15 PIN HD-SUB RCpt				
Pin #	Function	Pin #	Function			
1	Z+	1	GND			
2	Z-	2	NO CONN-			
3	GND	3	NO CONN			
4	NO CONN	4	NO CONN			
5	+5V	5	NO CONN			
6	GND	6	+LIMIT			
7	A-	7	-LIMIT			
8	A+	8	HOME			
9	HALL1	9	NO CONN			
10	TEMP	10	NO CONN-			
11	B-	11	NO CONN			
12	B+	12	NO CONN			
13	HALL2	13	NO CONN			
14	HALL3	14	NO CONN			
15	NO CONN	15	NO CONN			
HD15M-VF Con with IPA. Vix an	nector compatible d Aries Feedback	HD15M-VL Cor with Vix Limit/	nector compatible Home Connector			

Home and Limit Sensor Options Order Codes: H2L2 H2L3 H3L2 H3L3

Connector

Magnetic home and limit sensors are completely housed within the body of the stage. An innovative design adds functionality without sacrificing geometry. Sensor triggers can be easily adjusted over the travel. The output format is an open collector type capable of sinking up to 50 mA, and be set as N.O. or N.C.

For complete details on drive product features and specifications, please refer to the "Drives, Motors, Gearheads, & Controllers" section of this catalog.

Cleanroom Option

Order Codes: R2 R20

Both precision and standard grade products can be prepared for cleanroom compatibility. Preparation involves material changes, element modification and cleanroom compatible

lubricants. MX80L and MX80S stages with this option are class 10 cleanroom compatible. When applying an XY or XYZ combination in a cleanroom environment, moving wires need to be considered – please consult a Parker application engineer.

Low ESD Coating Option

Order Codes: R10 R20

An optional low ESD electroless nickel or Armoloy coating is offered for improved electrically conductivity, providing a low resistance to ground path for electric discharge.

Environmental Protection Option

Both precision and standard grade units have a hard coat protective finish. The precision units have a hard coat (Rc 78) satin chrome finish, and the standard units have a low luster black anodized finish.

System Orthogonality Option

Order Codes: S2 S3 S4 S5 S6

In any multi-axis positioning system, the perpendicular alignment of the axes must be clearly specified. "Degree of orthogonality" defines the perpendicular alignment of

axis one to another. The MX80s offer two choices for orthogonality. As standard, perpendicularity is held to within 60 arc seconds. For more exacting applications the MX80 can be optioned for 15 arc seconds orthogonality.

Z-Axis Bracket Accessory

Lightweight aluminum Z-brackets are available for easy construction of vertical axis combinations.

Standard Model Part Numbers:						
25 & 50 mm:	002-2238-01					
100 & 150 mm:	002-2240-01					

Low ESD Model Part Numbers: 5 & 50 mm; 002-2239-01

100 & 150 mm: 002-2239-01

ORDERING INFORMATION MX80S

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	1	(12)	(13)	(14)	(15)
Orc	der Examp	le: M	X80S	T04	Μ	Ρ	К	– D1	M1	H3L3	CM12	2 E1	Z1	R1	A11	X1	S1
1	Series MX80S									CM10 CM11) St Le St	epper N ads (1r epper N	Motor (F n) - E-D Motor (F	Flying Le Drive Flying Le	eads) & eads) &	Limits F Limits F	Tying Tying
2	Travel – m T01 T02 T03 1	m 25 50 00								CM12 CM13	2 Le 2 St 2 Le 3 St 4 Le	ads (3r epper N ads (1r epper N ads (3r	n) - E-D Motor (F n) - E-D Motor (F n) - E-D)rive Flying Le)rive Flying Le)rive	eads) No eads) No	o Limits o Limits	Flying Flying
3	Mounting M N	letric								CM15 CM17	Se Co Se	rvo Moto nnector: rvo Moto	or & Limi s (3m) or & No L	ts with ⊦ _imits wi	HD15M-V th HD15M	F & HD1 M-VF Co	5M-VL nnector
4	Grade S S P P * Must order B	tandard recision* E3 or E4 [Digital (Option to	o meet c	atalog s	pecifica	ation.		Notes - Connec HD15N A4-MT Contro Vix and	- HD15M ctor 1-VL Cor R Motor Iler I E-Drive	-VF Con inector c Connect Accept {	nector co compatible or compa Stepper N	ompatible e with Viz atible with	e with Vix x Limit/Hc h ACR7xT h Flying L	Feedback ome Conr ⁻ Multi-Ax eads	k nector ris
5	Bearing Ty K A	r pe CS Cros	s Rolle	ər					10	Digita	al Opti	on					
6	Drive Type D1 1 D2 2 D3 1 D6 2	mm Lea mm Lea 0 mm Lea mm Bal	adscre adscre eadscr lscrew	W ⁽¹⁾ W ⁽¹⁾ eW ^(1,3)						E1 E2 E3 E4 E5	1.(0.(0.) 5.() µm R 5 µm R 1 µm R) µm R	esolutio esolutio esolutio esolutio	n n n n			
	(1) Standard ((3) Not availat	prade only ble with 1-	/ (2) Pr - or 2-s	ecision tack ste	grade or epper mo	niy otor.			(11)	⊑/ Z Ch	annel	Locati	on				
7	Motor M0 N M1 N	o motor, EMA 16	flange	e, coup e, no m	oling lotor, co	oupling			0	Z1 Z3	No Ce	one enter Po	osition				
	M14 S M15 S M16 S M21 S	tepper, 1 tepper, 2 tepper, 3 ervo, 1 s	i stack 2 stack 3 stack stack,	k, NEM k, NEM k, NEM NEMA	A 11 A 11 A 11 16				12	Envir R1 R2	Cla Cla Cla	ntal andard eanrooi mm bal	Finish (m Prep	black a (Only a	nodized vailable	l) if Drive	Type D6
8	Home/Lim H1L1 N	it Switc one	ch*						13	Digit	اے) al Driv	e	ISCIEW)	IS SEIEC	sted)		
	H2L2 N H2L3 N	.C. Hom	ne/N.C ne/N.C	. Limit . Limit						A31	E-	DC Ste	pper Dr	rive			
	H3L2 N H3L3 N *NC = Norma	I.O. Horr I.O. Horr Ily Closed	ne/N.C ne/N.C I; NO =). Limit). Limit = Norma	ally Open				14)	Axis S1 S2*	Desigi Na X-	nator one (sin axis ba	gle-axis se unit (s) (cables	@ 12 o'	clock)	
9	Cable Opt CM01 N CM02 I	i ons (Hi Ione imits (on	i gh-fl e	ex) Ivina L	eads (1)	m)				S3* S4* S5*	Y-; Y-; Y-;	axis 60 axis 60 axis 15	arc-sec arc-sec arc-sec	c (cable c (cable c (cable	es @ 3 o es @ 9 o es @ 3 o	'clock) 'clock) 'clock)	
	СМ03 L СМ06 S	imits (on tepper N D15M-V	ly) w/F lotor (F L Coni	Tying L Tying L Nector (eads (3) eads) & (1m)	m) Limits v	with			S6* *Cons	Y-a ult facto	axis 15 ory for m	arc-sec nulti-axis	c (cable s pinning	es @ 9 o g options	'clock) s and qu	otation
	CM07 CM08 S CM09 S	tepper N D15M-V tepper M tepper M	lotor (F L Coni lotor (F lotor (F	Flying L nector (Iying Le Iying Le	eads) & (3m) ads) No ads) No	Limits Limits Limits	vith (1m) (3m)		15	Requ X1	iired D	esigna	ator				

Cable Options continued next column

MX80M Free Travel and Micrometer Driven Stages

Manual stage with precision control

The MX80M stages are offered as free travel or micrometer driven units with 25 mm or 50 mm travel. They include innovative tooling features to make mounting and precision alignment quicker and easier. A hardened steel master reference surface is provided along the side of the stage to allow fixturing or other tooling elements to be precisely aligned with the actual travel path. Dowel pin holes are provided on the carriage top for repeatable mounting or tooling. Also available are custom features such as a steel body design, vacuum prepped units, and anti cage creep bearings for high-dynamic applications up to 150 mm travel.

- Optional cleanroom prep.
- Optional low ESD coating
- Dowel holes in top & base
- Interchangeable mounting with motorized MX80 models
- Positive position lock

MX80M Center Drive with Micrometer

MX80M Side Drive with Micrometer

SPECIFICATIONS

Completing the MX80 family, the MX80M is a manual stage with a black anodized aluminum body. The stage can be ordered with or without various micrometer options to best fit the needs of the customer and their application.

		MX80M F	ree Travel	MX80LM Micrometer Driven		
Travel (mm)		25	50	25	50	
Normal Load Capacity	kg (lb)	20 (44)	20 (44)	20 (44)	20 (44)	
Axial Force ⁽¹⁾ F _a F _b	kg	Ξ	Ξ	4.5 0.6	4.5 1.0	
Straight Line Accuracy (per 25 mm travel)	μm	2	2	2	2	
Micrometer Resolution 0.001 in 0.01 mm		Ξ	Ξ	Yes Yes	Yes Yes	
Digital Micrometer 0.00005 in 0.001 mm			_	Yes Yes	Yes Yes	

⁽¹⁾ Fa (force acting against micrometer)

Fb (force acting against spring)

Download 2D & 3D files from www.parker.com/emn/MX80M

Digital Micrometer (side drive shown)

Standard Micrometer (center drive shown)

rive Orientation	Travel	A (mm)			
Center	25 50	225.6 273.5	Center	25 50	182.2 231.4
Side	25 50	160.6 209.5	Side	25 50	117.2 167.4

ORDERING INFORMATION MX80M

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9
		Order Example:	MX80M	1 T02	M –	S	C2	D22	R1	X4	S1
1	Series MX80M				6	Driv	ve Typ	De			
						D1		None			
2	Travel –	mm				D20)	Metric N	/licrome	eter	
	T01	25				D21		English	Microm	neter	
	T02	50				D22	2	Digital N	/licrome	eter	
3	Mountir	na			(7)	Env	vironn	nental			
0	M	Metric			0	R1		Standar	d Finish	ר (black	anodized)
						R2		Cleanro	om Pre	p.	,
(4)	Grade					R10)	Low ES	D Finisł	n	
0	S	Standard				R20)	Low ES	D Finisł	n & Clea	anroom Prep
(5)	Style				8	Loc	k Op	tions			
٢	C1	Free Travel				X1	-	No Loci	<		
	C2	Center Drive				X4		With Lo	ck		
	C3	Side Drive									
					9	Axi	s Des	ignator	•		
						S1		None (s	ingle-a	kis)	
						S2*		X-axis b	ase un	it (micro	ometer @ 12 o'clock)
						S3*		Y-axis 6	0 arc-s	ec (mic	rometer @ 3 o'clock)
						S4*		Y-axis 6	0 arc-s	ec (mic	rometer @ 9 o'clock)
						S5*		Y-axis 1	5 arc-s	ec (mic	rometer @ 3 o'clock)
						S6*		Y-axis 1	5 arc-s	ec (mic	rometer @ 9 o'clock)
						*Co	nsult fa	actory for	multi-a	xis pinni	ng options and quotation

MX45S Linear Positioning Stages

Single- and multi-axis, ultra-miniature, high-performance positioners

- Ultra compact profile (25 mm high X 45 mm wide x 65, 75 or 90 mm long)
- 5, 15 and 25 mm travels
- Ballscrew or leadscrew drive options
- Anti-cage creep crossed roller bearings
- Up to 40 N axial thrust
- 30 mm/s max velocity
 - Stepper motor driven
 - Optional digital limit/home sensor pack
 - Optional rotary or linear encoders
 - Multi-axis platforms
 - Ideal for normal or cleanroom environments

MX45S

The MX45S is a 45 mm wide miniature screw driven positioner based on the award winning MX80 family. Like its predecessor, the MX45S is designed for OEMs requiring reliable linear positioning in space restricted applications. Designed with anti-cage creep crossed roller bearings, the MX45S allows users to position up to 7 Kg of normal load on the stage's three standard travel

MX45S Table

Duty	Max	Max	Max	Positional	Repeatability
Cycle	Acceleration	Load	Travel	Accuracy	(+/-)
100%	2G	7KG	25mm	6µm	1.0µm

lengths (5 mm, 15 mm & 25 mm).

The MX45S can be supplied with a high efficiency leadscrew or a high precision ground ballscrew, both of which are capable of producing 40 N of thrust and reaching linear velocities of 20 mm/s and 30 mm/s respectively.

The leadscrew drive employs a PTFEcoated screw with a preloaded nut to deliver extremely smooth and quiet linear motion. A choice of two leads allows the user to match the desired mix of velocity and resolution in order to best match the application's requirements.

The ballscrew drive is available in a 1 mm lead offering the user 3 μ m bi-directional repeatability and 24/7 operation (100% duty cycle).

FEATURES

Motor Mount

NEMA 8 stepper motor mounts directly to stage housing

(2) Dowel Pin Holes

Ensure precise repeatable mounting

(3) Optical Linear Encoders

Optional field installed feature is available in three standard resolutions (1.0 $\mu m,$ 0.1 μm and sine output)

(4) Ballscrew or Leadscrew Drive

The 1.0 mm lead ballscrew driven stage offers high performance 24/7 operation with a thrust load capacity of 40 N (9 lb.) and velocity to 30 mm/s. The leadscrew driven stages are available with 0.5 or 1.0 mm leads. The PTFE coated leadscrew provides extremely smooth linear translation at velocities of 20 mm/s

Crossed Roller Bearings

provide high stiffness and extremely smooth linear translation. A rack and pinion anti-cage creep design within the bearing races prevents cage creep even at 5 g acceleration, or with cantilevered loads

Home/Limit Sensor Pack

This optional field installable feature consists of three NPN or PNP switches, each of which is fully adjustable over the entire range of travel

SPECIFICATIONS

The MX45S screw driven positioner is perfect for applications requiring Z-axis focal adjustment, optics alignment, or short indexing of slides. It is the ideal automation solution to replace manual slides and stages.

SPECIFICATIONS

Performance

		MX45S	Leadscre	w Drive	MX45S	Ballscre	w Drive
Travel ¹	mm	5	15	25	5	15	25
Normal Load Capacity	kg (lb)	5.0 (11.0)	5.0 (11.0)	7.0 (15.4)	5.0 (11.0)	5.0 (11.0)	7.0 (15.4)
Thrust Load Capacity	N (lb)		40 (9)			40 (9)	
Maximum Velocity ² 0.5 mm lead 1.0 mm lead	mm/sec		10 20			— 30	
Acceleration/Deceleration	g		2			2	
Running Torque	mNm (oz-in)		11.0 (1.5)			11.0 (1.5)	
Duty Cycle	%		50			100	
Straightness & Flatness ³	μm	3	5	8	3	5	8
Positional Accuracy ⁴ With 2000 Count Rotary Encoder With 1 or 0.1 μm linear Encoder	μm	10 6	18 10	30 12	8 6	12 10	15 12
Bi-directional Repeatability ^{4,5} With 2000 Count Rotary Encoder With 1 μm Linear Encoder With 0.1 μm Linear Encoder	μm		±8 ±4 ±2			±3 ±2 ±1	
Input Inertia (without motor) 0.5 mm lead 1 mm lead	10 ⁸ Kg-m ²	2.37 2.58	2.76 2.96	3.14 3.35	 1.41	 1.6	 1.79
Maximum Screw Speed	rps		20			30	
Screw Efficiency 0.5 mm lead 1 mm lead	%		30 47			_ 90	
Screw Diameter	mm		4.7			4.0	
Bearing Coefficient of Friction			0.003			0.003	
Unit Mass							
Stage Only		177	200	238	182	205	243
Carriage Only		70	82	100	73	84	104
Additional Mass of Motors & Option	s a						
NEMA 8 Stepper ⁶	9		95			95	
Linear Encoder Option ⁷			16			16	
Limit option Sensor Board 7			5			5	
Limit Option Tripper Assembly ⁷		12	13	15	12	13	15

Notes:

¹ Travel is in the direction of the motor mount only

² See speed/force curve for performance with Parker motor.

³ Measured at the carriage center, 35 mm above the mounting surface @ 20° C with no load. Unit bolted to granite surface, flat within 1 µmn/300 mm.
 ⁴ Total accuracy and bi-directional repeatability over full travel (peak to peak) (with 0.5 or 1 mm leadscrew)

⁵ Repeatability valid with NEMA 8 stepper motor and encoder noted.

⁶ Includes rotary encoder (part of base)

7 Part of base

MX45S Speed-Force Performance

Performance Loading with 2540 km Life Rating

Normal Load Capacity 5 mm travel 15 mm travel 25 mm travel	kg (lb)	5.0 (11.0) 5.0 (11.0) 7.0 (15.4)
Pitch & Yaw Moment Loading 25mm Lever Arm 50mm Lever Arm 75mm Lever Arm 100mm Lever Arm	kg (lb)	1.0 (2.2) 0.6 (1.3) 0.5 (1.1) 0.4 (0.9)
Roll Moment Loading 25mm Lever Arm 50mm Lever Arm 75mm Lever Arm 100mm Lever Arm	kg (lb)	2.0 (4.4) 1.2 (2.7) 0.9 (2.0) 0.7 (1.5)

DIMENSIONS

Download 2D & 3D files from www.parker.com/emn

Dimensions – mm (in)

Note: For T01, T02 and T03, the carriage is shown at end of travel, available stroke towards motor mount only.

MX45S Option Dimensions

Encoder and Limit/Home (T01, T02, T03)

Dimensions - mm (in)

Motor Mounting (T01, T02, T03)

OPTIONS & ACCESSORIES

Encoder Options

Rotary Encoder

When using stepper motors, positional feedback is readily available with the optional rotary encoder. 400- and 500line rotary encoders provide position verification and position maintenance. Each encoder comes standard with a 1 meter high-flex cable.

Rotary Encoder Connections

Function	Wire Color					
Ground	White					
A+	Green					
A-	Yellow					
+5 VDC	Brown					
B+	Blue					
В-	Red					
Not used	Pink					
Not used	Gray					

Linear Encoder Digital Outputs

		Interface
Function	Signal	Pin
Power	5 V	7.8
Power	0 V	2.9
	A+	14
Incremental	A–	6
	B+	13
	B-	5
Reference	Z+	12
Mark	Z–	4
Limito	Р	11
Linits	Q	10
Set-Up	Х	1
Alarm	E-	3
Shield	Inner	_
Silleiu	Outer	Case

Linear Encoder

A non-contact linear optical encoder provides quadrature output and offers resolutions of 1.0 um, 0.1 um and sine output. On the MX45S, the encoder is mounted externally to the stage body, an addition which can be added later if application requirements change. Each encoder comes standard with a 1 meter high-flex cable.

Rotary Encoder Cable (6-pin differential)

Part Number	Description
06-2398-1.0	1 m high-flex with flying leads
06-2398-1.0	1 m high-flex with flying leads

Linear Encoder Analog Outputs

(

Function	Signal	Readhead Color	Interface Pin
Bower	5 V	Brown	4, 5
Power	0 V	White	12, 13
Cooino	V_1 +	Red	9
Incremental	V ₁ -	Blue	1
Sino	V_{2} +	Yellow	10
Sille	V ₂ -	Green	2
Reference Mark	V_0^+	Violet	3
	V ₀ -	Gray	11
l imite	Vp	Pink	7
Linits	Vq	Black	8
Set-Up	V_{x}	Clear	6
Remote CAL	CAL	Orange	14
Shield	Inner	Green/Yellow	· _
Gilleiu	Outer	Outer Screen	Case

Stepper Motor

The MX45S is available with a standard 1.8 degree NEMA 8 stepper motor capable of providing 4 oz-in of holding torque. Each motor comes standard with a 1 m high-flex cable.

Motor Cable Connections

Function	Color
A +	Red
A –	Black
B +	White
В –	Green

Home/Limit Options

The MX45S features an innovative, compact, fully adjustable and field-installed home/limit sensor pack. The output format is either NPN or PNP and is available as either N.O. or N.C. The sensor pack is powered with +5 to +24 VDC and is capable of sinking or sourcing up to 50 mA per switch.

Limit/Home Cable Connections

Pin Number	Function	Color
1	+ V	Red
2	Ground	Black
3	+ Limit	Orange
4	Home	Green
5	– Limit	Blue

OPTIONS & ACCESSORIES

P2[™] Microstepping Drive

The P2[™] Series stepper drive is an OEM-friendly miniature motion drive capable of up to 2 Amps in a 1" x 1" x 3.3" square package.

- Adjustable run current via potentiometer
- Auto standby adjustable current to reduce heat generation and power consumption
- Stepper resolution to 3200 steps per rev
- RoHS compliant
- DIN rail mountable
- Accepts single or differential step and direction inputs

Visit our website at www.parkermotion.com for complete details on these MX45S system compatible products.

E-DC Microstepping

Drive

The DC-input E-DC is a highperforming, low-cost packaged microstepping drive.

- Anti-resonance circuitry suppresses mid-range instability
- Recommended motor inductance range of 0.5 mH to 80 mH
- Selectable resolution up to 50,800 steps/rev
- Auto standby reduces motor current (and heating)
- Current waveforms to optimize smoothness
- Optically isolated step and direction inputs
- Short-circuit and overtemperature protection

Complete your system by integrating one or more of Parker's other miniature linear products.

- MX80 Series 80 mm wide, available in 5 different drive trains
- mSR Series linear motor stage, available in two different linear motor technologies
- LCR Series miniature belt and screw driven actuators

For complete information, go to: www.parker.com/emn

Multi-Axis Bracket Kit Options

MX45S to MX45S Mounting Bracket Kits To build multi-axis MX45S systems, mounting bracket kits are available to build the two and three-axis configurations shown below with the appropriate order code. Note that only Y-axis travel is a selection criteria; X- and Z-axis travel is not. Order Codes: K20 K21 K22 K23 K24 K24

K33

K35

Bracket	Part Number						
Kit	T01*	T02*	T03*				
K20	002-2956-200	002-2956-201	002-2956-202				
K21	002-2956-200	002-2956-201	002-2956-202				
K22	-	002-2956-220	-				
K23	—	002-2956-220	_				
K24	—	002-2956-240	—				
K31	002-2956-310	002-2956-311	002-2956-312				
K32	002-2956-310	002-2956-311	002-2956-312				
K33	002-2956-330	002-2956-331	002-2956-332				
K34	002-2956-310	002-2956-311	002-2956-312				
K35	002-2956-310	002-2956-311	002-2956-312				
K36	002-2956-330	002-2956-331	002-2956-332				

K32

Z-Axis Bracket

K36

H

Z-Axis Bracket* – H x W x D (mm)

Bracket Kit	T01, T02, T03				
K22, K23	85 x 45 x 55				
K24, K33, K36	104 x 45 x 55				
K31, K32, K34, K35	85 x 55 x 45				
*Not compatible with N11 motor mounts					

*T01, T02 and T03 designates Y axis travel only

K31

X-Y Axis Bracket – Dimension "D" (mm)

K34

Bracket Kit	T01	T02	т03
K20, K21, K31, K32, K33, K34, K35, K36	60	70	85

MX45S to	MX80	Mounting	Brackets
----------	------	----------	----------

MX45S positioners can also be used as a Y- or Z-axis in conjunction with MX80 positioners.

Kit	Configuration	Part Number	H x W x D (mm)
	MX45ST01 to MX80	002-2958-01	5 x 80 x 80
X-Y	MX45ST02 to MX80	002-2958-02	5 x 80 x 80
	MX45ST03 to MX80	002-2958-03	5 x 80 x 92.5
X-Z*	MX45S (all) to MX80	002-2958-04	87.5 x 80 x 80

*Not compatible with N11 motor mounts

ORDERING INFORMATION MX45S

Fill in an order code from each of the numbered fields to create a complete model order code. Note that for multiaxis systems, an order code is required for each axis in the system.

		1	2	3	4	5	6	7	8	9	10
Or	der Example:	MX45S	T01	S	Κ	D1	N00	E000	L0	K00	S
1	Series MX45S					ER22 ER23 EL20	Rotar Rotar Linea	y Encode y Encode r Encode	er, 500-l er, 500-l r ⁽²⁾ (1 µr	_ine ⁽¹⁾ (AC _ine ⁽¹⁾ (6K m resolut	R connector) (connector) ion)
(2)	Travel T01 5 mm T02 15 mm T03 25 mm					EL40 EL70 * Consu ⁽¹⁾ Encoor D-sub c	Lineai Lineai ult factory der equipp der equipp connector;	FENCODE For other en bed with 1 i bed with 1 i ; Z-channe	r ⁽²⁾ (0.1 r ⁽²⁾ (sine ncoder o meter hig meter hig I in cente	µm resol e output) ptions Jh-flex cabl Jh-flex cabl r position	ution) e e, 15-pin
3	GradeSStandard (spPPrecision (sp	ecify leadscrew ecify ballscrew	v option option,	, item 5) item 5)	8	Note - I Connec Home	HD15M-Vi stor e/Limit §	F Connecto Switch O	or compa options	tible with \ (see Op	/ix Feedback
4	Bearing Type* K Anti-Creep S * Consult factory for other	System (ACS) C r bearing options	rossed	Roller	-	Acces L0 L2	None None N.O. I cable	Home/N. to flying I	C. Limit leads C. Limit	s, NPN,	1 meter
5	Drive TypeD10.5 mm LeadD21 mm LeadsD31 mm Ballsc	dscrew ⁽¹⁾ crew ⁽¹⁾ rew ⁽²⁾				L4 *NC = N not ava	cable Normally C ilable with	to flying Closed; NC T01; use c	leads) = Norm one of the	ally Open. e limits as f	Home switch nome for T01.
	⁽¹⁾ With standard grade or	nly ⁽²⁾ With precisio	n grade c	only	9	Acces K00	axis Kii ssories) No kit	(single-a	s (see (Jptions	č.
6	Motor Options (see accessories) N00 No motor, no	o motor mount,	no cou	r oller pler		K20 K21	<u>110 AII</u>				
	N08No motor, NiN11No motor, NEM10NEMA 8 stepM11NEMA 8 step	EMA 8 motor m EMA 11 motor m oper motor ⁽²⁾ oper motor ⁽³⁾	iount & o	coupler coupler (1)		K23 K24 K31	Refer illustr Optio	to syste ations in ns	m kit co Multi-A	onfigurat Axis Brac	ion ket Kit
	 Not available with T03 f axis bracket kits or Z-axis With 1 meter cable, flyin With 1 meter cable with 	travel option on K2 bracket kits (K22 ng leads n P2 [™] drive connec	20 and K2 thru K36) ctor	22 X-Y		K32 K33 K34	Note: hardv	all approving a la ap	opriate cluded	mounting with the	g bracket kit number
7	Encoder Options (s E000 No Encoder	ee Options &	Access	ories)*		K36					
	ER10Rotary EncodeER11Rotary EncodeConnector)ER12Rotary EncodeRotary EncodeER13Rotary EncodeER20Rotary EncodeER21Rotary EncodeConnector)Connector)	der, 400-Line ⁽¹⁾ der, 400-Line (H der, 400-Line ⁽¹⁾ der, 400-Line ⁽¹⁾ der, 500-Line (H	(flying le ID15M- (ACR cc (6K con (flying le ID15M-	eads) VF onnector) nector) eads) VF	0	Axis [S X Y Z	Designa None X-axis Y-axis Z-axis	tor (single-a for multi for multi for multi	xis) -axis sy -axis sy -axis sy	vstem vstem vstem	

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

Electric Cylinders

Electric cylinders are often in high-force, thrust style applications, but with the advent of linear motor driven cylinders, high-speed diverting applications area also available. Electric cylinders are commonly used in push-to-force, holding, reach and retract, and fluid power conversion applications. Parker offers a full range of cylinder products, each with a multitude of configurable options to suit almost any application. Pair these cylinders with Parker motor, drive, and control technologies to provide a complete solution.

ETH Series High-Force Electric Cylinders

The ETH design offers unrivaled power density due to larger screw and bearing designs in smaller packages. User-friendly and offered in a diversified range of configurations. **Page 391.**

XFC Extreme Force Electric Thrust Cylinder

This industrially hardened cylinder product utilizes an all-steel contruction and achieves far greater thrust capacities than typical electric cylinders. Maximum thrust up to 356,000N (80,000lbs). Page 441.

The ETH Series

High Force Ballscrew Driven Electric Cylinders

- Unrivaled power density high forces and small frame sizes
- Sensor cables can be concealed in the profile
- Optimized for safe handling and simple cleaning
- Long service life
- Reduced maintenance costs with lubricating hole in the cylinder flange
- Pneumatic ISO flange norm (DIN ISO 15552:2005-12) conformity
- Anti-rotation device integrated
- Reduced noise emission
- Complete system from a single source: parker offers matching controllers, motors and gearheads for all ETH cylinders
- High mechanical efficiency up to 90%
- Strokes up to 2000 mm
- High traction/thrust force up to 114,000 N (25,628 lbs)
- Repeatability up to ±0.03 mm
- Speeds up to 1.7 m/s
- Toothed belt drive (for parallel motor mounting)
- 5 to 32 mm screw leads offering fine resolution or high speed options
- Three ISO cylinder profile sizes with 30, 40, 60, 90 and 110 mm diameter thrust rods

NEW frame sizes available! ETH cylinders are now available in five sizes with 32 up to 125 mm profiles. Both in-line and parallel motor configurations provide stroke lengths up to 2000 mm and speeds to 1.7 m/sec.

- Predefined standardized motor and gearhead flanges for simplified selection. The motors are available directly from Parker (all from one source).
- Three protection classes available:
 - IP54 with galvanized steel hardware
 - IP54 with stainless steel hardware
 - IP65 epoxy coated cylinder

ETH032	ETH050	ETH080	ETH10		ETH125	
Series		ETH032	ETH050	ETH080	ETH100	ETH125
Maximum Travel (mr	n)	1,000	1,200	1,600	2,000	2,000
Maximum Payload (I	N)	3,700	9,300	25,100	56,000	114,000
Maximum Accelerat	ion (m/sec²)	12	15	15	10	10

The Parker ETH series is the next generation version of the well known, widely used ET Series.

The ETH design offers unrivaled power density due to larger screw and bearing designs in smaller packages. The result is a product that offers increased force output from a given frame size or increased product life at the same force output. The ETH is a user-friendly design offered in a diversified range of configurations in order to meet specific application requirements. Motor and cylinder design versatility and flexibility make the ETH Series the most user-friendly design.

For applications where overall length requirements restrict the actuator's footprint, the parallel motor configurations are the best solution. The parallel mount configuration is offered with multiple motor options, motor locations and motor orientations. This flexibility gives the user multiple smaller package solutions for solving applications that require increased force density in spacerestricted applications.

FEATURES

(1) Support Bearing

The non-motor end of the screw is supported by a hardened polymer bushing which eliminates vibration and minimizes noise for smoother, quieter motion. This also improves precision, increases dynamic performance, and lengthens screw life.

(2) Precision Ballscrew Drive

The ETH drive train features a Class 7 ballscrew (ISO 3408) providing low frictional resistance for smooth motion over the entire speed range. This design also ensures longer product life, excellent efficiency and a lower dB rating. The ballscrew drive provides higher speeds and force capabilities than comparably-sized alternative drive mechanisms.

(3) Unique Anti-rotation Guide

The ETH features a unique piston rod anti-rotation device. This high quality, maintenance free polymer bushing offers robust guidance that prevents the piston rod from twisting as the rod extends and retracts.

(4) Screw Support Bearing

A set of double stacked

angular contact bearings allows high thrust forces in both extend and retract directions. This design provides high force density and minimizes backlash when changing the direction of motion.

(Continued next page)

Piston Rod Support Bearing

The piston rod is supported by an extra long rod bushing. This bushing braces the rod in all directions allowing for smooth travel with high side loading capabilities.

Combination Lip and Wiper Seal

The lip and wiper seal keeps contaminants out and lubricating grease in for increased actuator life. For harsh environments, the ETH is available in a robust IP65 version for maximum protection.

(7)

(8)

(9)

(5)

(6)

Lubrication Port

The ETH comes standard with an integrated lubrication port located in the rear endcap of the cylinder, making scheduled maintenance quick, simple and easy. An optional lubrication bore is available in the middle of the cylinder body for applications where the integrated lubrication port is inaccessible.

Extruded Cylinder Body

The extrusion of the ETH was designed to reduce the number of negative geometry slots and grooves for a cleaner, and more environmentally friendly design. In addition to that, the ETH ships standard with sensor groove covers to help eliminate areas where debris can be trapped.

Home/End of Travel Sensors

The ETH was designed to use Parker's Global Series sensors which mount into the dovetail grooves that run the entire length of the cylinder body. The sensors mount flush to the extrusion body, having no effect on the overall product width. The sensor cables can be concealed with dovetail groove covers giving the actuator a clean, aesthetically appealing appearance. The Global Series sensors are compatible with other Parker products, including pneumatics, helping reduce inventory and spare part complexity.

ETH Solutions for Critical Conditions

If you have harsh environmental conditions or critical design specifications, please contact us. We offer many non-standard design options not covered in this brochure that will help match the ETH to your specific application requirements, such as:

- Oil-splash lubrication
- Customized mountings and rod ends
- Mounting of customer motors
- Hardened cylinder protection for aggressive environmental conditions
- Overlong, polished or chrome-plated thrust rods
- Rod bellows

D) Permanent magnets

All ETH cylinders are equipped with several permanent magnets integrated into the screw nut which actuate the home/end of travel sensors.

1) High Force Timing Belt

The parallel mount configuration utilizes a robust toothed timing belt, offering slip-free motion with minimal belt wear. The 1:1 ratio design was designed to transmit higher torques, allowing greater thrust forces at higher speeds. Contact the factory for additional timing belt ratios.

Belt Tensioning

A patent-pending belt tensioning station makes the parallel belt tensioning process quick and easy. This unique design allows for precise and repeatable tensioning, allowing for faster installation time and reduced down time.

(14)

(12)

Overhung Load Adaptor

For all parallel mounting options which do not include a gearhead, an Overhung Load Adaptor (OLA) is included as part of the actuator assembly. The OLA simplifies the motor mounting process and protects the bearings of the motor from the radial forces induced by the parallel belt tensioning.

Over-stroke Bumpers

Polyurethane over-stroke bumpers are designed in at both ends of the cylinder to protect the internal components from damage as a result of unintended crashes.

Typical ETH Applications

The ETH closes the gap between electromechanical and hydraulic cylinder performance, making it suitable for higher force applications where increased reliability is required in the production process. Taking the costs of the hydraulic system components into consideration,

in most cases an electromechanical system such as the ETH electric cylinder offers the more economical solution. Combined with a wide choice of accessories, it offers many possibilities in the following areas of application:

- Test equipment and laboratory
- Valve and flap actuation
- Pressing
- Packaging machinery
- Food and beverage process automation
- Material handling and feed systems including: wood and plastic working, vertical actuators for machine tool loading, textile tensioning/gripping, automotive component transport/feeding

SPECIFICATIONS

Performance by Cylinder Size and Screw Lead*

Cylinder Size		ETH032	2		ETH050)	ETH080			
Screw Lead Designation		M05	M10	M16	M05	M10	M20 ¹⁾	M05	M10	M32
Screw Lead	mm	5	10	16	5	10	20	5	10	32
Screw Diameter	mm		16			20			32	
Available Strokes**	mm	5	0 – 100	0	5	50 – 120	0	50 – 1600		
Max. Speed at Designated Stroke: 50 – 400 mm 600 mm 800 mm 1000 mm 1200 mm 1400 mm 1600 mm	mm/s	333 286 196 146 - -	667 540 373 277 – –	1067 855 592 440 – –	333 333 238 177 139 - -	667 666 462 345 270 –	1333 1318 917 684 536 –	267 267 264 207 168 140	533 533 533 501 394 320 267	1707 1707 1707 1561 1233 1006 841
Max. Acceleration	m/s²	4	8	12	4	8	15	4	8	15
Max. Axial Traction/Thrust Force – In-Line Parallel n < 100 (@ "n" rpm 100 < n < 300 Motor Speed) n > 300	N	3600 3600	3700 3280 2620 1820	2400 2050 1640 1140	9300 9300 7870 5480	7000 4920 3930 2740	4400 2460 1960 1370	17,800 17,800	25,100 11,620 11,620 10,720	10,600 3630 3630 3350
Axial Force – 2500 km Service Life	N	1130	1700	1610	2910	3250	2740	3140	7500	6050
Max. Transmissible Torque – In-Line Parallel n < 100 (@ "n" rpm 100 < n < 300 Motor Speed) n > 300	Nm Nm	3.2 3.5 3.5 3.5	6.5 6.4 5.2 3.6	6.8 6.4 5.2 3.6	8.2 9.1 7.7 5.4	12.4 9.3 7.7 5.4	15.6 9.3 7.7 5.4	15.7 17.5 17.5 17.5	44.4 22.8 22.8 21.1	60.0 22.8 22.8 21.1
Force Constant*** – In-Line Parallel	N/Nm	1131 1018	565 509	353 318	1131 1018	565 509	283 254	1131 1018	565 509	177 159
Max Torque – No Load	Nm	0.77	0.85	0.94	0.85	1.28	1.70	1.87	2.13	2.38
Weight – (including cylinder rod) Base Unit with Zero Stroke Additional Stroke	kg kg/m	1.2 4.8	1.2 4.8	1.3 4.8	2.2 8.6	2.3 8.6	2.5 8.6	6.9 18.7	7.6 18.7	8.7 18.7
Weight – (cylinder rod only) Base Unit with Zero Stroke Additional Stroke	kg kg/m		0.06 0.99			0.15 1.85			0.59 4.93	
Moments of Inertia In-line – without stroke Parallel – without stroke In-line/Parallel – per meter stroke	kgmm² kgmm²/m	7.1 8.3 41.3	7.6 8.8 37.6	12.9 14.1 41.5	25.3 30.3 97.7	25.7 30.6 92.4	33.1 38.0 106.4	166.2 215.2 527.7	164.5 213.6 470.0	252.9 301.9 585.4
Accuracy: Repeatability (ISO230-2) In-line Parallel	mm					±0.03 ±0.05				
Efficiency – (incl. friction torques) In-line Parallel	%					90 81				
Temperature Operating Ambient Storage	°C				- -	10 +7 10 +4 20 +4	70 10 10			
Humidity	%			0	95 %	(non-co	ondensir	ng)		
Elevation (Max.)	m					3000				

* Technical data based on normal conditions and only for single cylinder and load mode. For compound loads, please verify in accordance with normal physical laws and technical standards whether individual ratings should be reduced. Please contact Parker with any questions.

** Refer to Ordering Information for standard strokes available for specified model size and type.

***Efficiency factors are included in force constants

¹⁾ ATEX on request

ETH Series Performance by Cylinder Size and Screw Lead*

Cylinder Size			ETH1	00	ETH125			
Screw Lead Designation	tion		M 10	M20	M10 ¹⁾	M20 ¹⁾		
Screw Lead		mm	10	20	10	20		
Screw Diameter		mm	50		63	;		
Available Strokes**		mm	200 – 2	2000	200 – 2	2000		
Max. Speed at Desig 200 – 400 mm 500 mm 600 mm 1000 mm 1200 mm 1400 mm 1600 mm 2000 mm	nated Stroke:	mm/s	400 400 333 241 185 148 122 102 76	800 747 622 457 354 284 235 198 148	417 417 395 290 224 180 148 125 94	833 807 684 514 405 329 275 234 170		
Max. Acceleration		m/s²	8	10	8	10		
Max. Axial Traction/T In-Line Parallel (@ "n" rpm Motor Speed)	hrust Force – n < 100 100 < n < 300 n > 300	N N	54,800 54,800	56,000 50,800 43,200 35,600	88,700 76,300	114,000 81,400 73,700 61.000		
Axial Force – 2500 km	n Service Life	N	18.410	27,100	27,100	49,600		
Max. Transmissible T	orque –							
In-Line		Nm	100	200	150	400		
Parallel (@ "n" rpm Motor Speed)	n < 100 100 < n < 300 n > 300	Nm	108	200 170 140	150	320 290 240		
Force Constant*** -	In-Line Parallel	N/Nm	565 509	283 254	565 509	283 254		
Max Torque – No Loa	d	Nm						
Weight – (including cy Base Unit with Additional Strol	/linder rod) Zero Stroke ke	kg kg/m	Please consult factory.					
Weight – (cylinder rod Base Unit with Additional Strol	l only) Zero Stroke ke	kg kg/m						
Moments of Inertia In-line – without s Parallel – without In-line/Parallel – p	troke stroke er meter stroke ⊦	kgmm² ‹gmm²/m	2240 5860 4270	2620 6240 4710	12,960 17,050 10,070	13,400 17,990 10,490		
Accuracy: Repeatabi In-line Parallel	lity (ISO230-2)	mm		±0. ±0.	03 05			
Efficiency – (incl. frict In-line Parallel	tion torques)	%		9	0 1			
Temperature Operating Ambient Storage		°C		-10 -10 -20	. +70 . +40 . +40			
Humidity		%		0 95 % (nor	n-condensing)			
Elevation (Max.)		m		30	00			

 * Technical data based on normal conditions and only for single cylinder and load mode. For compound loads, please verify in accordance with normal physical laws and technical standards whether individual ratings should be reduced. Please contact Parker with any questions.
 ** Refer to Ordering Information (page 52) for standard strokes available for specified model size and type.

***Efficiency factors are included in force constants

1) ATEX on request

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

Sizing/Selection Design Considerations

Step	Sizing/Selection Design Consideration	Recommendation
1	Basic Operating Parameters	Check the basic conditions for the use of the ETH in your application. Use the performance chart and the speed-thrust graphs to confirm the ETH can meet your application's basic performance (e.g. force, velocity, acceleration) mechanical and environmental conditions
2	Required Space	Check the space available in your application and choose the appropriate motor mounting option: inline or parallel. Basic cylinder dimensions, along with dimensions for motor mounting options, can be found in the Dimensions section.
3	Maximum Velocity	Select the screw lead required to reach the application's maximum velocity
4	Maximum Acceleration	Verify that the maximum acceleration does not exceed the cylinder's limits
5	Axial Forces	Calculate the axial forces required in the individual segments of the application.
6	Maximum Force Required	Determine the maximum required axial force that the electric cylinder must provide.
7	Select Stroke	 Determine the usable stroke and safety travels required for the application, then: Select the desired stroke from the list of standard strokes Or, if standard stroke will not work choose a desired stroke in steps of one mm. Please do not exceed the maximum permissible stroke given for each frame size.
8	Buckling Risk	Check that the maximum required axial force does not exceed the rod buckling limitations.
9	Service Life	Calculate the service life using the equivalent axial forces, the operational environment (application factor), and the load-life curves.
10	Lateral Forces/Side Loads	Determine the lateral forces present in the application and compare them to the permissible lateral forces for the cylinder.
11	Relubrication	Determine the lubricating cycle (maintenance schedule) and check that it is suitable.
12	Motor/Gearhead Selection	Calculate the required torque needed to the generate the required force of the ETH.
13	Motor Mounting Flange	Select a suitable motor mounting flange
14	Mounting Type	Select the mounting method of the electric cylinder
15	Cylinder Rod End	Select the desired rod end for load mounting
16	Model number	Develop model number

ETH Cylinders Connection with Compax3 Drives/Controllers

Xpress Motion Packages

Mounting Code	Motor Part Number	Gearhead Part Number ¹	Recommended Compax3 Servo Drive(s)	Motor Cable	Feedback Cable	
XPC	BE233FJ-KPSN	—		D 141 yr		
XPD	CM233FJ-115027	_	C3SU63V2F12IXX1XXIVIXX	P-TAT-XX		
XPG	BE344LJ-KPSN	-				
XPH	BE344LJ-KPSB	-	033100V2F121XX1XXIVIXX			
XPL	MPP1003D1E-KPSN	-				
XPM	MPP1003D1E-KPSB	-				
XPN	MPP1003D1E-KPSN	PV34/PV90-003	03313072172128 12881788			
XPP	MPP1003D1E-KPSB	PV34/PV90-004				
XPQ	MPP1003R1E-KPSN	-				
XPR	MPP1003R1E-KPSB	-	CS3S063V2F12IxxTxxMxx ²	D 2D1 yy	F-2C1-xx	
XPS	MPP1003R1E-KPSN	PV34/PV90-003	or C3S075V4F12IxxTxxMxx			
XPT	MPP1003R1E-KPSB	PV34/PV90-004		F-301-XX		
XPU	MPP1154B1E-KPSN	-				
XPV	MPP1154B1E-KPSB	-				
XPW	MPP1154B1E-KPSN	PV115-003	033130V2F121XX1XXIVIXX			
XPX	MPP1154B1E-KPSB	PV115-004				
XPY	MPP1154P1E-KPSN	-				
XPZ	MPP1154P1E-KPSB	-	CS3S063V2F12IxxTxxMxx ²			
XP1	MPP1154P1E-KPSN	PV115-003	or C3S075V4F12IxxTxxMxx			
XP2	MPP1154P1E-KPSB	PV115-004				

¹ PV34 will be used for all inline motor mounting configurations. PV90 will be used when the motor is mounted in parallel.

² Motors are rated for 460 volts AC. This combination, with the 230 volt drive, will result in motor running at 1/2 its rated speed

ETH032 Speed-Thrust with Motors (170 VDC)

* Maximum thrust assumes a cylinder mounting orientation with a fixed mounting position and a guided load. For limitations on column buckling, please see page 43.

ETH032 Speed-Thrust with Motors (340 VDC)

* Maximum thrust assumes a cylinder mounting orientation with a fixed mounting position and a guided load. For limitations on column buckling, please see page 43.

ETH050 Speed-Thrust with Motors (170 VDC)

* Maximum thrust assumes a cylinder mounting orientation with a fixed mounting position and a guided load. For limitations on column buckling, please see page 43.

ETH050 Speed-Thrust with Motors (340 VDC)

* Maximum thrust assumes a cylinder mounting orientation with a fixed mounting position and a guided load. For limitations on column buckling, please see page 43.

ETH050 Speed-Thrust with Motors (680 VDC)

* Maximum thrust assumes a cylinder mounting orientation with a fixed mounting position and a guided load. For limitations on column buckling, please see page 43.

ETH080 Speed-Thrust with Motors (340 & 680 VDC)

* Maximum thrust assumes a cylinder mounting orientation with a fixed mounting position and a guided load. For limitations on column buckling, please see page 43.

Design Considerations - Calculating Axial Force

Use the equations below to calculate the thrust required to extend and retract the piston rod.

Once the individual segments are calculated, the maximum required axial force can be determined. This maximum axial force is used to determine the size of the cylinder and to check that the buckling load limit is not exceeded (see Permissible Axial Force, next page). Note that the axial forces calculated for each segment are later used as the calculation basis for the service life (see Design Considerations – Service Life).

Calculation of Axial Forces:

Determine the axial forces occurring during each individual segment of the application cycle. (Index "j" for the individual segments of the application cycle.)

Cylinder Rod Extending:

$$\mathsf{F}_{\mathsf{x},\mathsf{a},\mathsf{j}} = \left[\mathsf{F}_{\mathsf{x},\mathsf{ext}} + (\mathsf{m}_{\mathsf{ext}} + \mathsf{m}_{\mathsf{Kse}} + \mathsf{m}_{\mathsf{Ks},\mathsf{0}} + \mathsf{m}_{\mathsf{Ks},\mathsf{Hub}} \bullet \mathsf{Hub}) \bullet (\mathsf{a}_{\mathsf{K},\mathsf{j}} + \mathsf{sin}\alpha \bullet 9,81\frac{\mathsf{m}}{\mathsf{s}^2})\right]$$

Cylinder Rod Retracting:

 $\mathbf{F}_{x,e,j} = \left[- \mathbf{F}_{x,ext} + (\mathbf{m}_{ext} + \mathbf{m}_{Kse} + \mathbf{m}_{Ks,0} + \mathbf{m}_{Ks,Stroke} \bullet \text{ Stroke} \bullet \bullet (\mathbf{a}_{K,j} + \sin\alpha \bullet 9,81\frac{\mathrm{m}}{\mathrm{s}^2}) \right]$ The values Fx,a,j and Fx,e,j are always positive.

Formula Abbreviations

F _{x,a,j}	Axial forces during extension (N)
F _{x,e,j}	Axial forces during retraction (N)
F _{x,ext}	External axial force (N)
F _{G,ext}	Weight force caused by an additional mass (N)
F _{G,Kse}	Weight force caused by the cylinder rod end (N)
F _{G,Ks}	Weight force caused by the cylinder rod (N)
m _{ext}	Additional mass (kg)
m _{Kse}	Mass of the cylinder rod end (kg) (see "Rod End Options" in Options & Accessories)
m _{Ks,0}	Mass of the cylinder rod at zero stroke in kg (see Speed-Thrust with Motors)
m _{Ks,stroke}	Mass of the cylinder rod per mm of stroke (kg)
Stroke	Selected stroke (m)
a _{K,j}	Acceleration at the cylinder rod (m/s ²)
α	Alignment angle (°)
F _{x,max}	Maximum permissible axial force (N)

Index "j" for the individual segments of the application cycle

Design Considerations — Permissible Axial Force

The risk of buckling is dependent on the stroke and mounting method. Use the charts below for the applicable mounting method and cylinder size to verify that the application's maximum axial force (calculations on previous page), is possible with the planned mounting method at the desired stroke. Please note that the retraction forces do not pose a buckling risk.

Method 1

- Cylinders fixed with mounting flanges, foot mounting or
- mounting plates 2 Thrust rod with axial guiding

Method 2

- 1 Cylinders fixed with mounting flanges, foot mounting or mounting plates
- 3 Thrust rod without axial guiding

Method 3

- (4) Cylinders mounted via center trunnion or rear clevis
- 2 Thrust rod with axial guiding

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

Electric Cylinders

Design Considerations — Stroke, Usable Stroke and Safety Travel

Stroke:

The stroke to be indicated in the order code is the mechanically maximal possible stroke, which is the stroke between the internal end stops.

Usable Stroke:

The usable stroke is the distance needed for the application. It is always shorter than the stroke.

Safety Travel (S1 & S2)

The safety travels are required to slow down the cylinder after it has passed a limit switch, Emergency stop in order to avoid contact with the mechanical limit stops.

Depending on the screw lead and the maximum speed, the following diagram recommends a minimum safety travel, which is sufficient for most applications according to experience.

With demanding applications (great masses and high dynamic), the safety travel has to be calculated and enlarged accordingly (dimensioning on demand).

The safety travel shown in the diagram is for one direction only. The diagram value must be multiplied by two for the total safety travel for both extend and retract directions.

Design Considerations — Service Life

Nominal Service Life¹

The nominal service life of the electric cylinder can be determined with the aid of the known forces.

The nominal service life is calculated as follows:

The forces calculated for each individual segment of the application cycle must be summarized into an equivalent axial force F_m (see "Calculating Required Axial Force" in previous section).

$$F_{m} = \sqrt[3]{\frac{1}{s_{ges}}} (F_{x,1}^{3} \bullet S_{1} + F_{x,2}^{3} \bullet S_{2} + F_{x,3}^{3} \bullet S_{3} + ...)$$

(Index "j" for the individual segments of the application cycle. For example, the first segment would be F^{s}_{X1} where j=1, the second segment would be F^{s}_{X2} where j=2, etc.)

Nominal Service Life Prerequisites

- Bearing and screw temperature between 20°C and 40°C
- No impairment of the lubrication, for example by external particles
- Relubrication in accordance with the specifications
- The given values for thrust force, speed and acceleration must be adhered to at any rate
- No approaching the mechanical end stops (external or internal), no other abrupt loads, as the given maximum force of the cylinder may never be exceeded
- The given lateral forces applied to the cylinder rod must always be respected
- No high exploitation of several power features at a time (for example maximum speed or thrust force)
- No regulating oscillation at standstill

¹ Nominal service life is the service life reached by 90 % of a sufficient number of similar electric cylinders until the first signs of material fatigue occur.

Formula Abbreviations

fw

application factor (km)

Factor F_w" table at right)

Application factor (see "Application

Application Factor f_w **

Actual Service Life

The actual service life can only be approximated due to a variety of different effects. The nominal service life L calculation does, for instance, not take insufficient lubrication, impacts and vibrations into consideration. These effects can however be estimated with the aid of the application factor f_w.

The actual service life is calculated as follows:

If you need the service life as the number of possible cycles, just divide the service life in kilometers by twice the stroke traveled.

Standstill times are not taken into consideration when determining the equivalent axial force (Fm), as sj=0.

CAUTION: always consider the stroke as well as the return stroke.

Fm	Equivalent axial force (N)			Shocks/	Vibrations	
$F_x F_j$	Resulting axial force in N (see formula 1	Movement Cycle	None	Light	Medium	Heavy
	& 2, Calculating Axial Force)	More than 2.5 screw rotations	1.0	1.2	1.4	1.7
s _j s _{total}	Travel given a defined force Fx,a,j (mm) Total travel (mm)	1.0 to 2.5 screw rotations* (short stroke applications)	1.8	2.1	2.5	3.0
L	Nominal service life in km (see Service Life graphs)	* After max. 10000 movement cycles, a lubrica intervals table).	tion run mus	st be perfor	med (see lubr	ication run
Lfur	Service life as a function of the	** Boundary Conditions for Applicat	tion Facto	or f _w :		

Externally guided electric cylinders

- Accelerations <10 m/s²
- Application factor <1.5
- For other conditions, please contact Parker

Lubrication Run Lengths for Short Stroke Applications

	I	ETH032	2	I	ETH050)	I	ETH080	ט	ETH	1100	ETH	1125
Run Length	M05	M10	M16	M05	M10	M20	M05	M10	M32	M10	M20	M10	M20
mm	>45	>54	>58	>40	>46	>58	>47	>65	>95	>102	>140	>122	>210

Design Considerations — Service Life

Values are based on following recommended lubrication intervals.

(See Relubrication for details in Sizing & Selection.

Design Considerations - Permissible Side Load

The electric cylinder features a generously dimensioned cylinder rod and screw nut bearing in the form of high-quality plastic sliding bushings to absorb the lateral force.

Please note that electric cylinders with a longer stroke permit a higher lateral force at the same extension length. It may therefore be useful to choose a longer stroke than required for the application in order to increase the permissible lateral force.

If the permissible lateral forces are exceeded or if the maximum axial force occurs at the same time, the optional outrigger bearing (option R) must be used.

Design Considerations - Relubrication

Central lubrication (standard)
 Optional lubrication (possible on all 4 sides):
 L_P: Length of profile

Option 1: Integrated lubrication Port (standard)

Relubrication is simple with the easy access port. Users simply perform a controlled retract of the cylinder approaching the endstop under slow speed and grease the cylinder.

The standard easy access port is always at the 3 o'clock position.

Option 2...5: Lubrication Hole (optional)

Lubrication Intervals*

Lubrication intervals depend on the operating conditions (nominal size, pitch, speed, acceleration, loads, etc.) and the ambient conditions (e.g. temperature). Ambient influences such as high loads, impacts and vibrations shorten the lubrication intervals.

Under normal operating conditions, the given lubrication

intervals apply. If the total travel per year is shorter than the given intervals, the cylinder must be relubricated at least once per year. In the event of small loads and if the application is impact and vibration free, the lubrication intervals can be extended.

The lubricant used is Klüber and is available worldwide.

If a space constraint does not allow easy access to the standard lubrication port, other options in the part number configuration allow for a port at the center of the extrusion.

Free access to this bore even after integration of the cylinder into a system can be ensured by choosing the corresponding profile orientation (see Ordering Information). The bore is located exactly in the middle of the aluminum profile.

Normal Operating Conditions:

- Medium screw velocity 2000 rpm
- Operating factor f_w=1.0
- No impacts and vibrations

	ETH032			ETH050		ETH080			
M05	M10	M16	M05	M10	M20	M05	M10	M32	
300 km	600 km	960 km	300 km	600 km	1200 km	300 km	600 km	1500 km	

Design Considerations — Motor and Gearhead Selection

Drive Torque Calculation

The torques to be produced by the motor result from the acceleration, the load and the friction torque. The drive torques must be calculated for all segments of the application cycle (represented by index "j"). Index "j" for the individual segments of the application cycle. Calculation of the **acceleration torque** with respect to the rotary moments of inertia:

$$\mathsf{M}_{B,j} = \left((J_{i/p,0} + J_{i/p,Hub} \bullet Hub) \bullet \frac{1}{\eta_{\text{ETH}}} \right) \bullet \frac{1}{i_G^2 \bullet \eta_G} + J_G + J_M + J_M \bullet 10^{-3} \bullet \frac{6,28 \bullet a_{K,j}}{P_h}$$
(use only with gearbead)

The acceleration forces due to the translatory moved masses are taken into consideration in the calculation of the axial forces (see Design Considerations — Calculating Axial Force.)

The load torques result from the occurring axial forces:

$$M_{L,j} = \frac{F_{x,a/e,j}}{\text{Thrust force factor}} \bullet \frac{1}{i_G \bullet \eta_G}$$
(use only with gearhead)

The motor must therefore generate the following **drive torques**:

$$M_{M,i} = M_{B,i} + M_{L,i}$$

The peak torque of the motor must exceed the maximum occurring drive torque.

The **effective torque** can be deduced from the drive torques for all segments of the application cycle:

$$M_{eff} = \sqrt[2]{\frac{1}{t_{ges}} \bullet (M_{M1}^2 \bullet t_1 + M_{M2}^2 \bullet t_2 + ...)}$$

The nominal torque of the motor must exceed the calculated effective torque. Refer to the Motor Mounting Configuration charts (see Dimensions), to verify that the motor is mechanically compatible to the corresponding electric cylinder.

Formula Abbreviations

M _{B,j}	Variable acceleration torque in Nm
J _{i/p,0}	Red. rot. mass moment of inertia at zero stroke for inline/parallel motor configuration in kgmm ² (see graphs in Speed/Thrust with Motors)
J _{i∕p, stroke}	Red. rot. mass moment of inertia per mm of stroke for inline/parallel motor configuration in kgmm ² (see graphs in Speed/Thrust with Motors)
Stroke	Selected stroke in mm
η ετн	Efficiency of the electric cylinder (0.9 – inline drive configuration; 0.81 – parallel motor)
i _G	Gearhead ratio
ղ G	Efficiency of the gearhead (see gearhead manufacturer specifications)
J _M	Motor mass moment of inertia in kgmm ² (see motor manufacturer specifications)
J _G	Gearhead mass moment of inertia in kgmm ² (see gearhead manufacturer specifications)
a _{K,j}	Acceleration at the cylinder rod in m/s ²
Ph	Screw pitch in mm
M _{L,i}	Load torque in Nm
F _{x,a/e,j}	Loads in x direction in N (see Design Considerations — Calculating Axial Force)
M _{M,i}	Drive torque in Nm
M _{eff}	Effective value – motor in Nm
t _{total}	Total cycle time in s
t _j	Amount of time in the cycle in s

DIMENSIONS

ETH Motor Mounting Configurations

Download 2D & 3D files from www.parker.com/emn

Inline Dimensions (mm)

Cyl Siz	linder e	ETH032			ETH050			ETH080			ETH100		ETH125		
Sci	rew	MOF		MAG	MOE		M00	MOF		M00				M00	
Lea	aa	IVIU5	MITU	NI 10	CON	MITU	W20	IVIU5	MITU	IVI32	MIU	WI20	MIU	WI20	
С	IP54	93.5	103.0	106.5	99.5	105.5	117.5	141.5	159.5	189.5	(2)	(2)	(2)	(2)	
·	IP65	94.5	103.5	107.5	100.5	106.5	118.5	142.5	160.5	190.5	(2)	<u> </u>	(2)	(2)	
G1	IP54	133.0	142.0	146.0	154.0	160.0	172.0	197.0	215.0	245.0	323.0	361.0	461.0	549.0	
GI	IP65	180.5	189.5	193.5	198.5	204.5	216.5	259.5	277.5	307.5	349.5	387.5	487.5	575.5	
	Р	66.0	75.0	79.0	67.0	73.0	85.0	89.0	107.0	137.0	162.0	200.0	192.0	280.0	
			14.0			15 5			21.0			(2)		(2)	
A1			14.0			15.5			21.0		_	(2)		(2)	
			60.0			58.5			82.0			(2)		(2)	
4	42		17.0			18.5			32			. (2)	_	. (2)	
A	M		22.0			32.0		40.0		70.0		96.0			
E	BG		16.0			25.0			26.0		32	2.0	44	.0	
E	BH		9.0			12.7			18.5		<u> </u>	. (2)	-	. (2)	
0	D		M6x1.0		l	M8x1.25	5	Ν	/12x1.7	5		. (2)	_	. (2)	
	E		46.5			63.5		95.0			120.0		150.0		
	F		16.0			24.0		30.0			_	. (2)	(2)		
F	F		0.5			0.5		1.0			(C	0		
	IJ	1	V6x1.0 ^{(*}	1)		M8x1.25	5	1	M10x1.5	5	M1	6x2	M20	x2.5	
k	K	Ν	/10x1.2	5		M16x1.5	5	1	M20x1.5	5	M10	x1.5	M20	x2.5	
ŀ	۲V		10.0			17.0			22.0		46	6.0	55	5.0	
Ø	ММ		22.0			28.0			45.0		70	0.0	85	5.0	
٦	G		32.5			46.5			72.0		89	9.0	10	5.0	
K	W		5.0			6.5			10.0		10).0	10).0	
١	/E		12.0			16.0			20.0		20.0		20	0.0	
V	VH		26.0			37.0			46.0		51.0		53.0		
Q	ðВ		30.0			40.0			60.0		90).0	11	110.0	

⁽¹⁾ Thru holes should have a minimum diameter of 7 mm on any component attached to the front threaded screw holes on bolt pattern TG. ⁽²⁾ ETH100 & ETH125 do not have a mounting thread on the underside

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Inline Mounts with Xpress Motors

Flange & Coupling to Accept Xpress Motor

Cylinder Size	Xpress Order Code	Motor (w/Gearhead) Description	Pilot	Bolt Circle	Shaft Ø	Shaft Length	L1	L2	L3
	XPC	BE233FJ-KPSN	38.10	66.68	9.52	20.8	66.0	58.0	145.0
ETU020	XPD	CM233FJ-115027	38.10	66.68	9.52	20.8	66.0	58.0	177.0
E11032	XPG	BE344LJ-KPSN	73.03	98.43	12.70	30.2	65.0	85.0	188.0
	XPH	BE344LJ-KPSB	73.03	98.43	12.70	30.2	65.0	85.0	231.0
	XPC	BE233FJ-KPSN	38.10	66.68	9.52	31.8	65.0	65.0	145.0
	XPD	CM233FJ-115027	38.10	66.68	9.52	31.8	65.0	65.0	177.0
	XPG	BE344LJ-KPSN	73.03	98.43	12.70	30.2	63.0	85.0	188.0
	XPH	BE344LJ-KPSB	73.03	98.43	12.70	30.2	63.0	85.0	231.0
	XPL ³	MPP1003D1E-KPSN	95.00	115.00	19.00	40.0	88.0	98.0	175.0
ETH050	XPM ³	MPP1003D1E-KPSB	95.00	115.00	19.00	40.0	88.0	98.0	223.0
LIII000	XPN	MPP1003D1E-KPSN 1	73.03	98.43	12.70	31.8	63.0	100.0	288.0
	XPP	MPP1003D1E-KPSB 1	73.03	98.43	12.70	31.8	63.0	100.0	336.0
	XPQ ³	MPP1003R1E-KPSN	95.00	145.00	19.00	40.0	88.0	98.0	175.0
	XPR ³	MPP1003R1E-KPSB	95.00	145.00	19.00	40.0	88.0	98.0	223.0
	XPS	MPP1003R1E-KPSN 1	73.03	98.43	12.70	31.8	63.0	100.0	288.0
	ХРТ	MPP1003R1E-KPSB 1	73.03	98.43	12.70	31.8	63.0	100.0	336.0
	XPG	BE344LJ-KPSN	73.03	98.43	12.70	30.2	92.5	98.0	188.0
	XPH	BE344LJ-KPSB	73.03	98.43	12.70	30.2	92.5	98.0	231.0
	XPL	MPP1003D1E-KPSN	95.00	115.00	19.00	40.0	101.5	98.0	175.0
	XPM	MPP1003D1E-KPSB	95.00	115.00	19.00	40.0	101.5	98.0	223.0
	XPN	MPP1003D1E-KPSN 1	73.03	98.43	12.70	31.8	92.5	100.0	288.0
	XPP	MPP1003D1E-KPSB 1	73.03	98.43	12.70	31.8	92.5	100.0	336.0
	XPQ	MPP1003R1E-KPSN	95.00	115.00	19.00	40.0	101.5	98.0	175.0
	XPR	MPP1003R1E-KPSB	95.00	115.00	19.00	40.0	101.5	98.0	223.0
ETH080	XPS	MPP1003R1E-NPSN ¹	73.03	98.43	12.70	31.8	92.5	100.0	288.0
	XPT	MPP1003R1E-NPSB ¹	73.03	98.43	12.70	31.8	92.5	100.0	336.0
	XPU	MPP1154B1E-KPSN	110.00	130.00	24.00	50.0	111.5	113.0	203.0
	XPV	MPP1154B1E-KPSB	110.00	130.00	24.00	50.0	111.5	113.0	252.0
	XPW	MPP1154B1E-KPSN ²	110.00	130.00	24.00	50.0	111.5	115.0	352.5
	XPX	MPP1154B1E-KPSB ²	110.00	130.00	24.00	50.0	111.5	115.0	401.5
	XPY	MPP1154P1E-KPSN ²	110.00	130.00	24.00	50.0	111.5	115.0	203.0
	XPZ	MPP1154P1E-KPSB ²	110.00	130.00	24.00	50.0	111.5	115.0	252.0
	XP1 XP2	MDD1154D1E KDSD 2	110.00	120.00	24.00	50.0	111.5	115.0	352.5
	772	NIFF1134F1E-KPSB5	110.00	130.00	24.00	50.0	C.111	115.0	401.0

¹ With Parker PV34FE-003 gearhead

² With Parker PV115FB-003 gearhead

L1 = Length Coupling Housing + Flange

L2 = Maximum Motor or Gearhead Square Flange L3 = Length Motor + Gearhead

*

³ Requires coupling housing on ETH050 with a square dimension of 80 mm to accommodate a larger coupling.

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Inline Mounts for other Parker Motors Ľ2 Flange & Coupling to Accept Parker Motor L1-Dimensions - mm Kit Cylinder Order Parker Motor Shaft Bolt Circle Shaft Ø Size Description Pilot L2 Code Length L1 КСВ SM23X 38.10 66.68 9.52 20.8 60.0 58.0 KBB BE23X 38.10 9.52 58.0 66.68 31.8 66.0 **KCA** SM16/BE16 20.00 46.69 6.35 25.0 62.0 58.0 **ETH032** KEA LV23/HV23 38.10 66.68 6.35 20.8 60.0 58.0 KBC 73.03 12.70 85.0 BE34X 98.43 30.2 65.0 KEB LV34/HV34 73.03 98.43 12.70 37.1 73.0 85.0 **KCB** SM23X 38.10 66.68 9.52 20.8 57.5 65.0 KBB 65.0 BE23X 38.10 66.68 9.52 31.8 65.0 KBC BE34X 73.03 98.43 12.70 30.2 63.0 85.0 **ETH050** 100.00 KAA MPP92/MPJ92 80.00 16.00 74.0 90.0 40.1 **KEB** LV34/HV34 73.03 12.70 70.0 85.0 98.43 37.1 KAB¹ MPP100/MPJ100 95.00 115.00 19.00 40.1 88.0 98.0 KBC 73.03 12.70 92.5 98.0 BE34X 98.43 30.2 KAA MPP92/MPJ92 80.00 98.0 100.00 16.00 40.1 101.5 **ETH080** KAB MPP100/MPJ100 115.00 19.00 98.0 95.00 40.0 101.5 KAC MPP115/MPJ115 50.0 111.5 113.0 110.00 130.00 24.00

¹Requires coupling housing on ETH050 with a square dimension of 80 mm to accommodate a larger coupling.

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Inline Mounts for Parker Gearheads

Flange & Coupling to Accept Parker Gearhead

Cylinder Size	Kit Order Code	Parker Gearhead Description	Pilot	Bolt Circle	Shaft Ø	Shaft Length	L1	L2
	PAN	PV60FB/PX60	50.00	70.00	16.00	25.0	61.0	62.0
ETH032	PCN	PV23FE/PX23	38.10	66.68	9.52	25.4	60.0	58.0
	PDN	PV34FE/PX34	73.03	98.43	12.70	31.8	65.0	85.0
	PAN	PV60FB/PX60	50.00	70.00	16.00	25.0	60.5	65.0
ETHOSO	PBN ¹	PV90FB/PX90	80.00	100.00	20.00	40.0	93.0	90.0
ETHOSO	PCN	PV23FE/PX23	38.10	66.68	9.52	25.4	57.5	65.0
	PDN	PV34FE/PX34	73.03	98.43	12.70	31.8	63.0	85.0
	PBN	PV90FB/PX90	80.00	100.00	20.00	40.0	101.5	90.0
	PJN	PV115FB/PX115	110.00	130.00	24.00	50.0	111.5	115.0
ETH080	PDN	PV34FE/PX34	73.03	98.43	12.70	31.8	92.5	98.0
	PEN	PV42FE/PX42	55.55	125.70	15.88	38.1	100.0	113.0

¹ Requires coupling housing on ETH050 with a square dimension of 80 mm to accommodate a larger coupling.

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

L1 = Length Coupling Housing + Flange

L2 = Maximum Motor or Gearhead Square Flange

Inline Mounts for Non-Standard Motors Inline Mounting Compatible Motor Dimensions – mm

Maximum Motor Shaft ØModelWith KeyWithout KeyETH0321616ETH0502424ETH0802828

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Couplers

Order	Coupler Size	Compatibility			
Code	(Motor Shaft Ø)	ETH032	ETH050	ETH080	
Α	No Coupler	•	•	•	
В	0.25"	•	•		
С	0.375"	•	•		
D	0.5"	•	•	•	
Е	0.625"	•	•	•	
н	6 mm	•	•		
J	8 mm	•	•		
К	9 mm	•	•		
L	11 mm	•	•		
М	14 mm	•	•	•	
N ¹	16 mm	•	•	•	
P ¹	19 mm		•	•	
Q ¹	20 mm		•	•	
R ¹	22 mm		•	•	
S ¹	24 mm		•	•	

* L1 = Length Coupling Housing + Flange L2 = Maximum Motor or Gearhead Square Flange

Ordering Non-Standard Motor Mounts

Use the appropriate order codes from the charts to build the desired "Flange Only" or "Flange and Coupler" Kit Order Code. Note: all non-standard motor mount kits use three character descriptions beginning with an N, followed by a Coupler and a Flange designator.

(it Order	Code Designators:	Ν		
1	Non-standard motor	mour	nt	

123

- 2 Coupler order code
- 3 Flange order code

Kit Order Code Examples	Kit Order Code
No flange, no coupler	NAA
Flange C (for ETH050), no coupler	NAC
Flange C (for ETH050), 0.5" coupler	NDC

.

¹ Requires coupling housing on ETH050 with a square dimension of 80

mm to accommodate a larger coupling.

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Flanges

								Compa	atibility		
Order	Bolt	Bolt	Pilot	Pilot	Motor Shaft	ETH	1032	ETH	1050	ETH	080
Code	Circle	Hole	Ø	Depth	Length	L1	L2	L1	L2	L1	L2
Α			No Flange	;		0	.0	0	.0	0	.0
В	46.00	M4	30.00	3.5	25.0	60.0	58.0	_	_	—	-
С	63.00	M5	40.00	3.5	20.0	60.0	58.0	57.5	65.0	—	-
D	70.00	M5	50.00	3.5	30.0	67.0	65.0	65.5	65.0	—	-
Е	75.00	M5	60.00	3.5	23.0	60.0	70.0	59.0	70.0	—	—
F	75.00	M5	60.00	3.5	30.0	66.0	70.0	65.5	70.0	—	-
G	90.00	M6	70.00	3.5	40.0	—	—	84.0	96.0	92.5	96.0
н	95.00	M6	50.00	3.5	30.0	76.0	82.0	65.5	82.0	—	-
J	100.00	M6	80.00	3.5	40.0	76.0	89.0	84.0	96.0	94.5	96.0
К	115.00	M8	95.00	3.5	40.0	_	—	84.0	100.0	94.5	100.0
L	130.00	M8	110.00	3.5	50.0	—	—	—	—	104.5	115.0
М	130.00	M8	95.00	3.5	50.0	_	_	_	_	101.5	115.0

Dimensions - mm

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

Electric Cylinders

ETH125

Parallel Dimensions

Cylinder Size

ETH032

ETH080

ETH100

ETH050

Scr	ew Lead	M05	M10	M16	M05	M10	M20	M05	M10	M32	M10	M20	M10	M20
С	IP54	93.5	103.0	106.5	99.5	105.5	117.5	141.5	159.5	189.5	— ⁽²⁾	_ ⁽²⁾	⁽²⁾	— ⁽²⁾
-	IP65	94.5	103.5	107.5	100.5	106.5	118.5	142.5	160.5	190.5	(2)	⁽²⁾	(2)	(2)
G2	IP54	180.5	189.5	193.5	194.0	200.0	212.0	257.0	275.0	305.0	451.0	489.0	624.0	712.0
	IP65	228.5	237.5	241.5	239.0	245.0	257.0	320.0	338.0	368.0	478.0	516.0	651.0	739.0
	Р	66.0	75.0	79.0	67.0	73.0	85.0	89.0	107.0	137.0	162.0	200.0	192.0	280.0
	IP54		14.0			15.5			21.0			. (2)	_	(2)
A1	IP65		60.0			58.5			82.0		_	. (2)	_	(2)
	A2		17.0			18.5			32			. (2)		(2)
	AM		22.0			32.0			40.0		70	0.0	96	6.0
	BG		16.0			25.0			26.0		32	2.0	44	.0
	BH		9.0			12.7		18.5		_	. (2)	_	(2)	
	DD		M6x1.0		1	M8x1.25 M12x1.75 — ⁽²⁾		M12x1.75		. (2)	(2)			
	Е		46.5			63.5		95.0		120.0		150.0		
	F		16.0			24.0 30.0			<u> </u>		(2)			
	FF		0.5			0.5			1.0		(D	()
	JJ	1	M6x1.0 ⁽	1)	l	M8x1.25	5	I	M10x1.5	5	M1	6x2	M20	x2.5
	KK	Ν	И10x1.2	5		M16x1.5	5	l	M20x1.5	5	M4	2x2	M4	8x2
	KV		10.0			17.0			22.0		46	6.0	55	5.0
	ØMM		22.0			28.0			45.0		70	0.0	85	5.0
	TG		32.5			46.5			72.0		89	9.0	10	5.0
	KW		5.0			6.5			10.0		10).0	10	0.0
	N1		126.0			160.0			233.5		34	7.0	45	0.0
FB	IP54		47.5			40.0		60.0		12	8.0	16	3.0	
	IP65	48.0 40.5		40.5 60.5			12	8.5	16	3.5				
	VD		4.0		4.0			4.0		4	.0	5	.0	
	ØBB		30.0			40.0			45.0		90	0.0	11	0.0
	VE		12.0			16.0			20.0		20).0	20	.0
	WH 26.0				37.0			46.0		51	0.1	53	.0	
	ØB		30.0			40.0			60.0		90).0	11	0.0

⁽¹⁾ Thru holes should have a minimum diameter of 7 mm on any component attached to the front threaded

screw holes on bolt pattern TG.

⁽²⁾ ETH100 & ETH125 do not have a mounting thread on the underside. For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

								 ≁P	D6 <mark>► </mark> ◄	- PD4
Paralle	el Moi	ints with Xpres	s Mc	otors					PD5	
				1010					. F D3	
Flange &	Coupling	to Accept Xpress Motor	Dime	nsions -	– mm					↓
	Xpress									
Cylinder	Order	Motor (w/Gearhead)	Dilat	Bolt	ol - 4 0	Shaft		DD 4	DDC	
Size	Code	Description	Pliot	Circle		Length	PD3	PD4	PD5	145.0
	XPC	BE233FJ-KPSN	38.10	66.68	9.52	31.8	67.5	78.5	62.0	145.0
ETH032	XPD	CM233FJ-115027	38.10	66.68	9.52	31.8	67.5	78.5	62.0	1//.0
			73.03	98.43	12.70	30.2	67.5	70.5	80.0	188.0
		BE344LJ-KPSB	73.03	98.43	12.70	30.2	07.5	78.5	80.0	231.0
		BE233FJ-KP5N	38.10	66.68	9.52	31.8	87.5	70.5	62.0	145.0
	XPD XPC		30.10	00.00	9.52	31.0	07.5	70.0 04.0	02.0	100.0
			73.03	90.43	12.70	20.2	07.5	04.0	90.0	100.0
			73.03	90.43	12.70	30.2	07.5	04.0	90.0	231.0
			95.00	115	10.00	40.0	07.5 97.5	92.5	100.0	222.0
ETH050			72.02	09.42	12 70	21.9	97.5	122.0	100.0	175.0
	YDD		73.03	90.43	12.70	31.0	87.5	120.0	100.0	223.0
			73.03	90.43 08.43	12.70	31.8	87.5	92.5	100.0	175.0
	YPR		73.03	08.43	12.70	31.8	87.5	92.5	100.0	223.0
	XPS	MPP1003B1E-KPSN *	73.03	98.43	12.70	31.8	87.5	128.0	100.0	175.0
	XPT	MPP1003B1E-KPSB *	73.03	98 43	12.70	31.8	87.5	128.0	100.0	223.0
	XPG	BE344LJ-KPSN	73.03	98.43	12 70	30.2	130.0	84.0	90.0	188.0
	XPH	BE344LJ-KPSB	73.03	98.43	12.70	30.2	130.0	84.0	90.0	231.0
	XPL	MPP1003D1E-KPSN	95.00	115.00	19.00	40.0	130.0	95.3	100.0	175.0
	ХРМ	MPP1003D1E-KPSB	95.00	115.00	19.00	40.0	130.0	95.3	100.0	223.0
	XPN	MPP1003D1E-KPSN **	73.03	98.43	12.70	31.8	130.0	137.0	100.0	175.0
	XPP	MPP1003D1E-KPSB **	73.03	98.43	12.70	31.8	130.0	137.0	100.0	223.0
	XPQ	MPP1003R1E-KPSN	95.00	115.00	19.00	40.0	130.0	95.3	100.0	175.0
	XPR	MPP1003R1E-KPSB	95.00	115.00	19.00	40.0	130.0	95.3	100.0	223.0
	XPS	MPP1003R1E-KPSN **	73.03	98.43	12.70	31.8	130.0	137.0	100.0	175.0
ETH080	ХРТ	MPP1003R1E-KPSB **	73.03	98.43	12.70	31.8	130.0	137.0	100.0	223.0
	XPU	MPP1154B1E-KPSN	110.00	130.00	24.00	50.0	130.0	127.0	115.0	203.0
	XPV	MPP1154B1E-KPSB	110.00	130.00	24.00	50.0	130.0	127.0	115.0	252.0
	XPW	MPP1154B1E-KPSN ***	110.00	130.00	24.00	50.0	130.0	170.0	115.0	203.0
	ХРХ	MPP1154B1E-KPSB ***	110.00	130.00	24.00	50.0	130.0	170.0	115.0	252.0
	XPY	MPP1154P1E-KPSN	110.00	130.00	24.00	50.0	130.0	127.0	115.0	203.0
	XPZ	MPP1154P1E-KPSB	110.00	130.00	24.00	50.0	130.0	127.0	115.0	252.0
	XP1	MPP1154P1E-KPSN ***	110.00	130.00	24.00	50.0	130.0	170.0	115.0	203.0
	XP2	MPP1154P1E-KPSB ***	110.00	130.00	24.00	50.0	130.0	170.0	115.0	252.0

* With Parker PV34FE-003 gearhead

** With Parker PV90FB-003 gearhead

PD4 = Flange + Gearhead/overhung load adaptor PD5 = Flange + Gearhead/overhung load adaptor PD6 = Motor only

*** With Parker PV115FB-003 gearhead PE For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

*

Electric Cylinders

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Parallel Mounts for Parker Gearheads

Flange & Coupling to Accept Parker	
Motor	

17:1

Cylinder Size	Order Code	Parker Gearhead Description	Pilot	Bolt Circle	Shaft Ø	Shaft Length	PD3	PD4	PD5
ETH032	PAN	PV60FB/PX60	50.00	70.00	16.00	25.0	67.5	12.0	62.0
ETHOSO	PAN	PV60FB/PX60	50.00	70.00	16.00	25.0	87.5	12.0	63.5
EIHUOU	PDN	PV34FE/PX34	73.03	98.43	12.70	31.8	87.5	15.0	90.0
	PBN	PV90FB/PX90	80.00	100.00	20.00	40.0	130.0	18.0	90.0
ETHUOU	PJN	PV115FB/PX115	110.00	130.00	24.00	50.0	130.0	20.0	115.0

Dimensions – mm

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

PD4 = Flange + Gearheadoverhung load adaptor PD5 = Flange + Geahead/overhung load adaptor PD6 = Motor only

Parallel Mounts for Non-Standard Motors

Parallel Mounting Compatible Motor Dimensions - mm

Cylinder		Max. Shaft Ø	Max. Square
Size	With Key	Without Key	Motor Flange
ETH032	—	14 (w/PV60 gearhead)	85
ETH050	_	20 (w/PV90 gearhead} or	100
ETH080	—	24 (w/PV115 gearhead}	150

PD4 PD5 PD5 PD3 PD3

1 2 3

PD4 = Flange + Gearheadoverhung load adaptor PD5 = Flange + Geahead/overhung load adaptor PD6 = Motor only

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Sleeves

Order	Sleeve Size	Compatibility				
Code	(Motor Shaft Ø)	ETH032	ETH050	ETH080		
Α	No Sleeve					
В	0.25"	•				
С	0.375"	•	•			
D	0.5"	•	•			
Е	0.625"	•	•			
н	6 mm	•				
J	8 mm	•				
К	9 mm	•	•			
L	11 mm	•	•			
М	14 mm	•	•	•		
Ν	16 mm		•	•		
Р	19 mm		•	•		
Q	20 mm			•		
R	22 mm			•		
S	24 mm			•		

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

Flanges

Ordering Non-Standard Motor Mounts

Use the appropriate order codes from the charts to build the desired "Flange Only" or "Flange and Sleeve" Kit Order Code. Note: all non-standard motor mount kits use three character descriptions beginning with an N, followed by a Sleeve and a Flange designator.

Kit Order Code Designators:	N	

- 1 Non-standard motor mount
- 2 Sleeves order code
- 3 Flange order code

	Kit
	Order
Kit Order Code Examples	Code
No flange, no sleeve	NAA
Flange C (for ETH050), no sleeve	NAC
Flange C (for ETH050), 0.5" sleeve	NDC

Dimensions - mm

		Bolt	olt Pilot				Compatibility									
Order	Bolt			Pilot	Shaft		ETH032	2	ETH050			ETH080				
Code	Circle	Hole	Ø	Depth	Length	PD3	PD4	PD5	PD3	PD4	PD5	PD3	PD4	PD5		
Α		١	lo Flang	e			0.0			0.0			0.0			
В	46.00	M4	30.00	3.5	25.0	67.5	72.5	62.0	—	_	—	—	—	—		
С	63.00	M5	40.00	3.5	20.0	67.5	72.5	62.0	87.5	72.5	60.0	-	—	—		
D	70.00	M5	50.00	3.5	30.0	67.5	78.5	62.0	87.5	78.5	63.5	—	—	-		
E	75.00	M5	60.00	3.5	23.0	67.5	78.5	62.0	87.5	84.0	90.0	—	—	—		
F	75.00	M5	60.00	3.5	30.0	67.5	72.5	62.0	87.5	84.0	90.0	—	—	-		
G	90.00	M6	70.00	3.5	40.0	—	—	-	87.5	92.5	90.0	130.0	96.0	90.0		
н	95.00	M5	50.00	3.5	30.0	67.5	78.5	82.0	87.5	84.0	90.0	—	—	—		
J	100.00	M6	80.00	3.5	40.0	—	—	—	87.5	92.5	90.0	130.0	96.0	90.0		
К	115.00	M8	95.00	3.5	40.0	—	—	—	87.5	92.5	100.0	130.0	96.0	100.0		
L	130.00	M8	110.00	3.5	50.0	—	—	_	-	_	_	130.0	127.0	115.0		
М	130.00	M8	95.00	3.5	50.0	_	_	_	—	_	—	130.0	116.0	115.0		

For ETH100 and 125 sizes, please consult factory for motor and gearhead mounting options.

How to use Speed Thrust Curves

Option 1: Xpress System Sizing

Parker offers pre-selected motor and motor/gearhead combinations to maximize the power output of each ETH frame size. This option is ideal for customer's working on timesensitive applications and/or those that value the many benefits of a single-source solution.

To select the system solution, use the Speed/Thrust with Motors graphs in Specifications to locate the application's required linear velocity and thrust.

If the point lies within a green shaded region, and it is not to the right of the relevant critical speed line, then the application can be solved with the motor or motor/gearhead combination corresponding to the number in that region while still getting full rated life (2,540 Km).

If the point is in the vellow intermittent zone, then the actuator will experience a reduced life, in

which case another screw lead or a larger profile size is recommended.

If the point falls above the solid blue line, then the application cannot be solved with that actuator profile size and lead combination when using a motor mounted in parallel.

Once a solution is found simply order the ETH with the correct Xpress motor code and pair with the recommended Compax³ drive and motor power and feedback cables from Limit Sensors in **Options & Accessories 31 to complete** the Xpress system.

Example:

For an application needing 1000 N thrust at 400 mm/sec velocity, both the XPG and XPH motor/ gearhead combinations will solve the application. Note: the actuator stroke must be less than approximately 900 mm in order to reach the required speed.

Solution:

Cvlinder: ETH050M10xxXPGxxxxxxx Servo motor: BE344LJ-KPSN Drive: C3S100V2F12IxxTxxMxx Cables: P-3B1-xx and F-2C1-xx

Option 2: Hybrid Speed/Thrust Graphs

Back by popular demand, Parker has recreated the hybrid speed/ thrust graphs for the new ETH Series actuators. These graphs are an ideal way to size an actuator for non-Xpress or third-party motors. These speed/ thrust graphs plot linear velocity, linear thrust, required motor velocity, required motor torque, and critical speed.

To select a motor or motor/gearhead combination, use the graphs on the following pages to locate the application's required linear velocity and thrust on the graph.

Once that point is determined, extend

the lines to the secondary axes to determine the required motor torque and motor speed for the application.

Once the motor requirements are known, simply order the ETH with the proper Parker motor or gearhead mounting kits ETH050M10

options.

For an

velocity, and requiring a minimum life of 2,540 Km, the motor would have to be sized for 2 Nm of torque at 40 rps. Note: the actuator stroke must be less than approximately 900 mm to reach the required speed.

Option 3: Traditional Step-by-step Selection Process

For the most dynamic applications, or to double check critical application elements when using sizing options 1 and 2, the traditional step-by-step process (starting with Sizing/Selection Design Considerations), can be used to size the ETH cylinder.

ETH032 Speed-Thrust

See graphs in Sizing & Selection for information on Speed-thrust with Motors.

Electric Cylinders

ETH050 Speed-Thrust

ETH080 Speed-Thrust

ETH100 Speed-Thrust

ETH125 Speed-Thrust

*Maximum thrust assumes a cylinder mounting orientation with a fixed mounting position and a guided load, for limitations on column buckling, please see page 43.

OPTIONS & ACCESSORIES ETH Cylinder Mounting Options

Order Code

* Use order code when ordering cylinder; use part number for ordering spare replacement parts

* Use order code when ordering cylinder; use part number for ordering spare replacement parts

Optional Bearing Block

Mating mount bracket to rear clevis. Please order separately.

Images shown are for ETH32 and ETH50 units only. See product manuals for other ETH drawings. Dimensional specs in the table for the other units are accurate.

Dimensions - mm

Cylinder Size	Part Number	Mounting Holes	A	в	с	D	E	F	н	H1	ØJ (H13)	ØK (H9)	м	N	R1
ETH032	0112.039	4	55	32	55	26	51.5	38	38	—	9	10	8	8.5	11.0
ETH050	0122.039	4	70	45	70	32	63.5	48	48	—	11	12	12	11	13.0
ETH080	0132.039	8	95	63	150	50	143.0	72	45	40	13	18	16	12.5	16.5
ETH100	0142.039	12	120	95	200	60	215.0					30	25	15	30.0
ETH125	0152.039	16	150	130	350	70	365.0					50	35	20	45.0

Order Code

F

Center Trunnion Mount \square

Factory installed. Cannot be ordered separately.

	Dimensions – mm												
Cylinder Size	UW	ØTD**	R	TL	ТМ	ØAC	S						
ETH032	46.5	12	1	12	50	18	25.5						
ETH050	63.5	16	1	16	75	25	39						
ETH080	95.3	25	2	25	110	35	34.5						
ETH100	120	40	4	40	140	57	57						
ETH125	150	50	10	52	160	90	100						

* Dimension C+ = Dimension + length of desired stroke (see Stroke, Usable Stroke and Safety Travel in Sizing & Selection for calculating stroke) **: ØTD in accordance with ISO tolerance zone h8

Note: For relubrication option "1" (Integrated lubrication port) please see mounting method with option "D" center trunnion always on 6 o'clock!

Rear Eye Mount F

Available with parallel motor configurations only

Cylinder			Dimensions – mm								
Size	Part Number*	EW	ØCD	MR (H9)	FL ±0.2						
ETH032	0112.033	26	10	11	22						
ETH050	0122.033	32	12	13	27						
ETH080	0132.033	50	16	17	36						
ETH100	0142.033	60	30	35	80						
ETH125	0152.033	70	50	45	115						

* Use order code when ordering cylinder; use part number for ordering spare replacement parts

Tapped Bottom Holes (Standard)

Mounting with 4 threaded holes on bottom of the cylinder. Available ETH032 - ETH080 only.

		Dimension C + – mm										
Cylinde	er Size		ETH032			ETH050		ETH080				
Screw	Lead	M05	M10	M16	M05	M10	M20	M05	M10	M32		
C . *	IP54	93.5	103.0	106.5	99.5	105.5	117.5	141.5	159.5	189.5		
C + "	IP65	94.5	103.5	107.5	100.5	106.5	118.5	142.5	160.5	190.5		

* Dimension C+ = Dimension + length of desired stroke (see Stroke, Usable Stroke and Safety Travel in Sizing & Selection for calculating stroke)

Order Code

Cylinder			Dimensions – mm										
Size	Part Number**	TG	UF	ØFB	ТМ	MF	Α						
ETH032	1440.079	62	78	6.6	25	8	12.5						
ETH050	1441.093	84	104	9.0	30	10	15.0						
ETH080	0131.078	120	144	13.5	40	12	20.0						

* Dimension C+ = Dimension + length of desired stroke (see Stroke, Usable Stroke and Safety Travel in Sizing & Selection for calculating stroke) ** Use order code when ordering cylinder; use part number for ordering spare replacement parts (one piece per part number)

Plate is stainless steel

Cylinder	Dimensions – mm										
Size	Part Number*	MF	UF	TF	Е	R	ØFB	ØВ			
ETH032	0111.064	10	80	64	48	32	7	30			
ETH050	0121.064	12	110	90	65	45	9	40			
ETH080	0131.064-01	16	150	126	95	63	12	45			
ETH100	0142.918	25	258	220	120	80	17.5	90			
ETH125	0152.918	40	320	270	150	100	21.5	110			

* Use order code when ordering cylinder; use part number for ordering spare replacement parts (one piece per part number)

Order Code

Plate is stainless steel

Cylinder	Dimensions – mm												
Size	Part Number*	S	W	MF	UF	TF	Е	R	ØFB	ØВ			
ETH032	0111.064	2	16	10	80	64	48	32	7	30			
ETH050	0121.064	4	25	12	110	90	65	45	9	40			
ETH080	0131.064-02	4	30	16	150	126	95	63	12	60			

* Use order code when ordering cylinder; use part number for ordering spare replacement parts (one piece per part number)

Front & Rear Plate Mount Ν

Plates are stainless steel

Cylinder	Dimensions – mm												
Size	Part Number**		S	w	MF	UF	TF	Е	R	ØFB	ØВ		
ETH032	Front & Rear	0111.064	2	16	10	80	64	48	32	7	30		
ETH050	Front & Rear	0121.064	4	25	12	110	90	65	45	9	40		
ETUOSO	Front	0131.064-02	4	20	16	150	126	05	63	12	60		
ETHUSU	Rear	0131.064-01	4	30	10	150	120	90			45		
ETH100	Front & Rear	0142.918	-	26	25	258	220	120	80	17.5	90		
ETH125	Front & Rear	0152.918	-	13	40	320	270	150	100	21.5	110		

* Dimension G2+ (parallel) or G1+ (inline) = Dimension + length of desired stroke (see Stroke, Usable Stroke and Safety Travel in Sizing & Selection for calculating stroke) ** Use order code when ordering cylinder; use part number for ordering spare replacement parts (one piece per part number)
ETH Rod End Options

Order Code

Dimensions - mm

Cylinder Size	Part Number*	Mass [kg]	кк	CL		СМ	LE	CE	AV	ER	ØCK (h11/E9)	к	L
ETH032	4309	0.09	M10 x 1.25	26.0	10.2	+0.13/-0.05	20	40	20	14	10	17	5
ETH050	4312	0.34	M16 x 1.5	39.0	16.2	+0.13/-0.05	32	64	32	22	16	24	8
ETH080	4314	0.69	M20 x 1.5	52.5	20.1	+0.02/-0.0	40	80	40	30	20	30	10

*Use order code when ordering cylinder; use part number for ordering spare replacement parts (cylinder rod with male thread is required)

F Female Threaded Rod End

N/

Part

Dimensions - mm

Cylinder Size	Number*	Mass [kg]	Α	КК	WH	SW**
ETH032	0111.029	0.04	14	M10 x 1.25	32	12
ETH050	0121.029	0.14	24	M16 x 1.5	50	20
ETH080	0131.029	0.42	29	M20 x 1.5	59	26

*Use order code when ordering cylinder; use part number for ordering spare replacement parts ** SW = width across flat (position of the flat is not fixed)

Male Threaded Rod End

W Wat			A KK		
	Part			Dimensions – mm	
Cylinder Size	Number*	Mass [kg]	Α	KK	SW**
ETH032	0111.028	0.06	22	M10 x 1.25	10
ETH050	0121.028	0.15	32	M16 x 1.5	17
ETH080	0131.028	0.48	40	M20 x 1.5	22

*Use order code when ordering cylinder; use part number for ordering spare replacement parts

** SW = width across flat (position of the flat is not fixed)

Order Code

S Sp	oherica	al Rc	d End					X X → 关	L	▶ ◄		
	0	-			U U U				×			
(3)		0				Ĩ						
					C) imensi	ons – I	► mm				
Cylinder Size	Part Number*	Mass [kg]	КК	ØCN (H9)	EN (h12)	EU	AX	СН	ØEF	J°	к	L
ETH032	4078-10	0.07	M10 x 1.25	10	14	10.5	20	43	28	13	17	5
ETH032 ETH050	4078-10 4078-16	0.07 0.23	M10 x 1.25 M16 x 1.5	10 16	14 21	10.5 15.0	20 28	43 64	28 42	13 15	17 24	5 8
ETH032 ETH050 ETH080	4078-10 4078-16 4078-20	0.07 0.23 0.41	M10 x 1.25 M16 x 1.5 M20 x 1.5	10 16 20	14 21 25	10.5 15.0 18.0	20 28 33	43 64 77	28 42 50	13 15 14	17 24 30	5 8 10

* Use order code when ordering cylinder; use part number for ordering spare replacement parts (cylinder rod with male thread is required)

_ Alignment Coupler

The alignment coupler mounts on the end of the cylinder rod to:

- Balance misalignments
- Increase the mounting tolerance
- Simplify cylinder mounting
- Increase cylinder guide service life
- Compensate for offsets between components and relieves guides from lateral force influences
- Maintain traction/thrust force bearing capacity

(1) Angle offset ±5° from centerline (2) Axial offset: ±1.5 mm from centerline

Cylinder	Part	Mass	Dimensions – mm											
Size	Number*	[kg]	A1	A2	В	С	ØD	Е	F	G	н	J	κ	
ETH032	LC32-1010	0.26	M10x1.25	M10x1.25	40	51	19	19	16	13	16	13	26	
ETH050	LC50-1616	0.64	M16x1.5	M16x1.5	54	59	32	29	25	22	29	14	33	
ETH080	LC80-2020	1.30	M20x1.5	M20x1.5	54	59	32	29	25	22	29	14	33	

*Use order code when ordering cylinder; use part number for ordering spare replacement parts (cylinder rod with male thread is required)

Order Code

R Linear Guide Module

Linear Guide Module Specifications

Cylinder Size	Part Number*	Total Mass (w/Zero Stroke) [kg]	Moving Mass (w/Zero Stroke) [kg]	Additional Mass [kg/m]
ETH032	32-2800R-xxxx	0.97	0.60	1.78
ETH050	50-2800R-xxxx	2.56	1.84	4.93
ETH080	80-2800R-xxxx	6.53	4.36	7.71

*Use order code when ordering cylinder; use part number for ordering spare replacement parts replacing xxxx with the desired stroke length. For example, order 50-2800R-0200 for 200 mm stroke. (Be sure to specify the same stroke as ordered on the matching ETH cylinder.)

dx: Deflection valid for F_v and F_z

Linear Guide Module offers:

- Anti-rotation control for higher torques
- Absorption of lateral forces

Additional stability and precision is achieved by:

- 2 hardened stainless steel guiding rods
- 4 linear ball bearings

Not available with IP65 models

Cylinder Rigidity with Linear Guide Module

	Dimensions – mm									
Part Number	A1	A2	B1	B2	B3	B4	B5	B6	B7	B 8
32-2800R-xxxx	50.0	97.0	45.0	90.0	78.0	32.5	50.0	4.0	12.0	61.0
50-2800R-xxxx	70.0	137.0	63.0	130.0	100.0	46.5	72.0	19.0	15.0	85.0
80-2800R-xxxx	105.0	189.0	100.0	180.0	130.0	72.0	106.0	21.0	20.0	130.0

								E1	E2		
Part Number	ØC1	C2	C3	ØD1	ØD2	Ø	D3	(Depth)	(Depth)	ØF1	G1
32-2800R-xxxx	12.0	73.5	50.0	6.6	11.0	M6 >	x 1.00	12.0	7.25	30.0	17.0
50-2800R-xxxx	20.0	103.5	70.0	8.4	15.0	M8 >	x 1.25	16.0	9.25	40.0	27.0
80-2800R-xxxx	25.0	147.0	105.0	10.5	18.0	M10	x 1.50	20.0	11.25	60.0	32.0
Part Number	H1	H2	L1+*	L2	L3+*	L4	L5	N1 *'	* P1	P2	P3
32-2800R-xxxx	81.0	16.0	152.0	120.0	17.0	71.0	64.0	17.0	36.0	31.0	40.0
50-2800R-xxxx	119.0	23.0	193.0	150.0	25.0	79.0	89.0	24.0	42.0	44.0	50.0
80-2800R-xxxx	166.0	36.0	253.0	200.0	30.0	113.0	110.0	30.0	50.0	52.0	70.0

* L1+ and L3+ = Dimension + length of desired stroke (see see Stroke, Usable Stroke and Safety Travel in Sizing & Selection for calculating

stroke) ** N1: Hexagon head; Linear guide module not available on IP65 models

Force Sensor Rod End

Jointed swivel head design with integrated force sensor

Swivel heads are important construction components with respect to rotary, pivoting and tilting movements. Force measurements are more and more frequently required in those applications.

The force transducers are suitable for direct mounting on the cylinder rod. They can, for example, be used to measure contact forces or overloads.

Requires male thread rod end option "M", see Plate

Mounts in Options & Accessories 22.

Features

 Measuring range: traction/ thrust forces up to ±25 kN

- Thin film implants (instead of conventional bonded foil strain gauges)
- Corrosion resistant stainless steel version
- Integrated amplifier
- Small temperature drift
- · High long term stability
- High shock and vibration resistance
- For dynamic or static measurements
- Good repeatability
- Simple mounting

	ETH032 ETH050						ETH080		ETH100	ETH	1125
	M05/M10	M16	M05	M10	M20	M05	M10	M32	M10/M20	M10	M20
Part Number	0111.916	0111.917	0121.916	0121.917	0121.918	0131.916	0131.917	0131.918	0131.918	0131.918	0131.918
Accuracy – %				2					1	1	1
Material					Stainle	ss steel					
Protection class					IP	67					
Calibration – kN	±3.7	±2.4	±9.3	±7.0	±4.4	±17.8	±25.1	±10.6	±56	±88.7	±114.0
Accuracy – N	14.8	9.6	37.2	28.0	17.6	71.2	100.4	42.4	1120	1774	2280

Thanks to thin film technology,

are very robust and long time

emits an output signal of 4 -

The sensors correspond to

the EN 61326 standard for

and traction forces.

electromagnetic compatibility

(EMC) and are sense both thrust

20 mA.

stable. An integrated amplifier

the swivel head force transducers

Electrical Connection

Analog output 4...20 mA (two-wire technology)

Force Sensor Cables

Part Number	Description
080-900456	2M sensor cable, 90 degree (symbol) angled connector, M12 to flying leads
080-900457	5M sensor cable, 90 degree (symbol) angled connector, M12 to flying leads

Force Sensor Rod End for ETH032

Force Sensor Rod End for ETH050 & ETH080

Dimensions - mm

Cylinder						ØD2														
Size	Α	В	ØВ	С	ØD1	0.008	Ε	F	G	GL	н	J1	J2	ØК	L1	L2	L3	Μ	SW*	U
ETH032	34	27	—	27	12	15	10	35	M10x1.25	22	40	44	63	22	119	102	36	8	19	8
ETH050	46	—	35	—	17	20.7	14	46	M16x1.5	28	50	43	62	30	148	125	44	11	27	12
ETH080	53	_	54	—	20	24.2	16	54	M20x1.5	33	54	44	63	35	171	144.5	54	13	32	13
*0.14																				

*SW = width across flat

OPTIONS & ACCESSORIES

OPTIONS & ACCESSORIES

1

Electric Cylinders

Limit Sensors

The ETH uses the Parker Global Sensor which can be mounted in the longitudinal grooves running along the cylinder body. These new sensors mount flush to the extrusion body, minimizing the overall width of the actuator.

The sensor cable can be concealed under the yellow T-slot covers which are provided with each unit.

Permanent magnets integrated into the screw nut actuate the sensors as the rod extends and retracts.

Note: Only PNP logic sensors are compatible with Compax3.

ETH032 and ETH050 sizes have two grooves on opposite sides of the cylinder; the ETH080 has two grooves on all four sides of the cylinder.

Common Specifications:

Electric current drain: 100 mA (max) Switching current: 10 mA (max) Supply voltage: 10 – 30 VDC Switching Frequency: 5 kHz

Black

Blue

+VDC

Signal

-VDC

NPN Wiring

Magnetic LED Cylinder Sensors

Model Number	Function	Logic	Cable	Compatible w/ Compax3		
P8S-GPFAX		PNP	<u> </u>	Yes		
P8S-GNFAX	NO	NPN	3 m	No		
P8S-GPCHX	N.O.	PNP	0.3 m cable with	Yes		
P8S-GNCHX		NPN	M8 connector*	No		
P8S-GQFAX		PNP	2 m	Yes		
P8S-GMFAX	NC	NPN	3 111	No		
P8S-GQCHX	N.C.	PNP	0.3 m cable with	Yes		
P8S-GMCHX		NPN	M8 connector*	No		

* 003-2918-01 is a 5 m extension cable to flying leads for these cables

ORDERING INFORMATION ETH Series

Fill in an order code from each of the numbered fields to create a complete ETH model order code. Refer to the

Order Example: ETH 0.32 M05 A 2 XPC B C N 0.200 C B Series ETH Series Eth Series Series <th>sectio</th> <th>on listed</th> <th>d for furth</th> <th>er details.</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>0</th> <th>8</th> <th></th> <th>۹</th> <th>10</th> <th></th> <th></th>	sectio	on listed	d for furth	er details.	1	2	3	4	5	6	0	8		۹	10		
 Series ETH Series ETH Frame Size (see "Performance by Cylinder Size and Screw Lead" chart and graphs in Specifications) G32 ISO32 cylinder size (soc) ISO60 cylinder Size and Screw Lead" chart in Specifications) Drive Screw (see "Performance by Cylinder Size and Screw Lead" chart in Specifications) Drive Screw (see "Performance by Cylinder Size and Screw Lead" chart in Specifications) Motor Mount/Cylinder Orientation M10 10 mm metric ballscrew (size ETH032 only) Motor Mount/Cylinder Orientation A for innie w/groove for initiator 3 & 9 o'clock Motor Mount/Cylinder Orientation A for innie w/groove for initiator 3 & 9 o'clock Parallel 12 o'clock w/groove for initiator 3 & 9 o'clock Parallel 12 o'clock w/groove for initiator 3 & 9 o'clock Parallel 12 o'clock w/groove for initiator 3 & 9 o'clock Parallel 12 o'clock w/groove for initiator 3 & 9 o'clock Parallel 3 o'clock w/groove for initiator 3 & 9 o'clock Parallel 3 o'clock w/groove for initiator 3 & 9 o'clock Parallel 3 o'clock w/groove for initiator 3 & 9 o'clock Parallel 6 o'clock / groove for initiator 3 & 9 o'clock Parallel 6 o'clock / groove for initiator 3 & 9 o'clock Parallel 6 o'clock / groove for initiator 3 & 9 o'clock Parallel 6 o'clock / groove for initiator 6 & 12 o'clock Parallel 9 o'clock / groove for initiator 6 & 12 o'clock Parallel 9 o'clock / groove for initiator 6 & 12 o'clock Parallel 9 o'clock / groove for initiator 6 & 12 o'clock Parallel 9 o'clock / groove for initiator 6	Ord	der Exa	ample:		ETH	032	M05	Α	2	XPC	В	С	Ν	0200	С	В	
 ETH Frame Size (see "Reductivation Section for details in Sizing & Integrated lubrication for details in Sizing & Integrated lubrication for details in Sizing & Lubrication hole at center of extrusion 3 o'clock ISOSO cylinder size ISOSO cyli	1	Serie	s							5	Lubric	ation B	ore C	Option			
 Frame Size (see "Performance by Cylinder Size and Screw Lead" chart and graphs in Specifications) SCG2 cylinder size SCG2 cylinder Size and Screw Lead" chart in Specifications (creater of extrusion SCG2 cylinder Size and Screw Lead" chart in Specifications (creater of extrusion SCG2 cylinder Size and Screw Lead" chart in Specifications (creater of extrusion SCG2 cylinder Size and Screw Lead" chart in Specifications (creater of extrusion SCG2 cylinder Size and Screw Lead" chart in Specifications (creater of extrusion SCG2 cylinder Size and Screw Lead" chart in Specifications (creater of extrusion SCG2 cylinder Size cylinder Crientation A cylinder Size cylinde	-	ETH								_	(see R	elubricat	ion Se	ection for	details	s in Sizing	&
 isolic "Porformance by Cylinder Size and Screw Lead" chart and graphs in Specifications) isol22 cylinder size isol23 cylinder size isol250 cylinder size isol255 cylinder size isol255 cylinder size isol255 cylinder size isol256 cylinder size isol260 cylinder size isol260 cylinder size isol260 cylinder size isol360 cylinder size isol260 cylinder size isol260 cylinder size isol260 cylinder size isol260 cylinder cylin	2	Fram	e Size								1	Integra	ated Iu	ubricatior	n port*		
G32 ISO32 cylinder size G30 ISO50 cylinder size G30 ISO50 cylinder size G30 ISO50 cylinder size G31 IsO50 cylinder size G32 ISO50 cylinder size G31 IsO50 cylinder size G32 IsO50 cylinder size G33 IsO50 cylinder size G34 IsO50 cylinder size G35 IsO50 cylinder size G36 IsO50 cylinder size G37 IsO50 cylinder size G38 IsO50 cylinder size G39 IsO50 cylinder size G31 IsO50 cylinder size G32 IsO50 cylinder size G33 IsO50 cylinder size G34 IsO50 cylinder size G35 IsO50 cylinder size G36 IsO50 cylinder size G37 IsO50 cylinder size G38 IsO50 cylinder size G33 IsO50 cylinder size G33 IsO50 cylinder size G34 IsO50 cylinder size G35 IsO50 cylinder size G36 IsO50 cylinder size	•	(see "l	Performar	nce by Cylin	nder Siz	e and s	Screw L	ead"			2	Lubric	ation	hole at c	enter c	of extrusior	۱
 3 3 0'dock 3 3 0'dock 4 Lubrication hole at center of extrusion 6 0 clock 5 0125 cylinder size 125 ISO125 cylinder size 126 ISO125 cylinder size 127 ISO125 cylinder size 128 ISO125 cylinder size 128 ISO125 cylinder size 129 ISO125 cylinder size 120 ISO120 cylinder Size and Screw Lead" chart in Specifications) 100 mm metric ballscrew (size ETH032 only) 120 20 mm metric ballscrew (size ETH050 only) 120 20 mm metric ballscrew (size ETH080 only) 122 32 mm metric ballscrew (size ETH080 only) 123 32 mm metric ballscrew (size ETH080 only) 122 1 clock 12 0'clock 12 0'clock w/groove for Initiator 3 & 9 o'clock 12 0'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock 1 12 0'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock 2 2 0'clock 3 0'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock 3 0'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock 3 0'clock w/groove for Initiator 6 & 12		032	ISO32	cylinder size	e P	»)					~	Lubric	ation	hole at c	enter c	of extrusior	ı
 100 ISO 100 cylinder size 100 ISO 100 cylinder size 125 ISO 125 cylinder size 126 ISO 125 cylinder size 127 ISO 125 cylinder size 128 ISO 125 cylinder size 129 Drive Screw (see "Performance by Cylinder Size and Screw Lead" chart in Specifications) 100 m metric ballscrew 100 m metric ballscrew (size ETH032 only) 100 m metric ballscrew (size ETH050 only) 101 metric ballscrew (size ETH050 only) 102 20 mm metric ballscrew (size ETH050 only) 1032 32 mm metric ballscrew (size ETH050 only) 104 20 Cock 105 Inline w/groove for Initiator 3 & 9 o'clock 105 Parallel 12 o'clock w/groove for Initiator 6 & 12 o'clock 105 Parallel 12 o'clock w/groove for Initiator 6 & 12 o'clock 106 Parallel 3 o'clock / groove for Initiator 6 & 12 o'clock 106 Parallel 3 o'clock / groove for Initiator 6 & 12 o'clock 107 Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock 108 Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock 109 Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock 109 Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock 100 Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock 100 Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock / groove for Initiator 6 & 12 o'clock 108 Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove		050	ISO50	cvlinder siz	e						3	3 o´clo	ock				
 100 ISO100 cylinder size 125 ISO125 cylinder size Drive Screw (see "Performance by Cylinder Size and Screw Lead" (hat in Specifications) M05 5 mm metric ballscrew M10 10 mm metric ballscrew (size ETH032 only) M20 20 mm metric ballscrew (size ETH030 only) M32 32 mm metric ballscrew (size ETH060 only) M60 for Mount/Cylinder Orientation A A A A A A A A A A A A A A A A A A A		080	ISO80	cylinder size	e						4	Lubric	ation	hole at c	enter c	of extrusion	۱
 125 ISO125 cylinder size Drive Screw (see "Performance by Cylinder Size and Screw Lead" chart in Specifications) M05 5 mm metric ballscrew M10 10 mm metric ballscrew (size ETH032 only) M20 20 mm metric ballscrew (size ETH050 only) M32 32 mm metric ballscrew (size ETH060 only) Motor Mount/Cylinder Orientation Motor G & 12 o'clock Parallel 12 o'clock w/groove for Initiator 3 & 9 o'clock Parallel 12 o'clock w/groove for Initiator 3 & 9 o'clock Parallel 12 o'clock w/groove for Initiator 3 & 9 o'clock Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initia		100	ISO10) O cylinder si	ize						_	Lubric	ation	hole at c	enter c	of extrusion	٦
 Drive Screw (see "Performance by Cylinder Size and Screw Lead" chart in Specifications) M05 5 mm metric ballscrew M16 16 mm metric ballscrew (size ETH032 only) M20 20 mm metric ballscrew (size ETH050 only) M32 32 mm metric ballscrew (size ETH060 only) M32 32 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation M of a linine w/groove for Initiator 3 & 9 o'clock B a linine w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 8 & 9 o'clock F a parallel 3 o'clock w/groove for Initiator 8 & 9 o'clock F a parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock F a parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock F a parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock F a parallel 6 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 6 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 6 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 8 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F a parallel 9 o'clock / groove for Ini		125	ISO12	5 cylinder si	ize						5	9 o´clc	ock	noio at o			
 Drive Screw (see "Performance by Cylinder Size and Screw Lead" chart in Specifications) Moto S mm metric ballscrew M10 10 mm metric ballscrew (size ETH032 only) M20 20 mm metric ballscrew (size ETH032 only) M32 32 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 1 mine w/groove for Initiator 3 & 9 o'clock Motor Mount/Cylinder Orientation A 2 1 c'clock w/groove for Initiator 6 & 12 o'clock Parallel 12 o'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1 c'clock w/groove for Initiator 3 & 9 o'clock F 2 1	2			-							* Not av	ailable wit	h Moto	or Mount/C	ylinder (Orientation v	vith
 Motor Mounting Configurations Motor-specific mounting Configurations are cated into four primary groups: Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH032 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A 2 2 mm metric ballscrew (size ETH080 parallel 12 o'clock M 2 2 o'clock M 2 2 o'clock M 2 2 0'clock <l< td=""><th>3)</th><td>Drive</td><td>Screw</td><td>and by Cylin</td><td>dor Siz</td><th>ro ond (</th><th>Sorouvi</th><th>ood"</th><td></td><td></td><td>onentati</td><td>on (order</td><td>coues</td><td></td><td></td><td></td><td></td></l<>	3)	Drive	Screw	and by Cylin	dor Siz	ro ond (Sorouvi	ood"			onentati	on (order	coues				
M055 mm metric ballscrewMotor-specific mounting configurations are cater into four primary groups: "XP": With Parker Xpress motor systems (listed bell "K": Flange & coupling kits for other Parker motor "P": Flange & coupling kits for other Parker Gearheads "N": Kits for Non standard motorsMotor Mount/Cylinder Orientation AInline w/groove for Initiator 3 & 9 o'clockParallel 12 o'clock w/groove for Initiator 3 & 9 o'clockParallel 12 o'clock w/groove for Initiator 3 & 9 o'clockParallel 12 o'clock w/groove for Initiator 3 & 9 o'clockParallel 3 o'clock w/groove for Initiator 3 & 9 o'clockParallel 3 o'clock w/groove for Initiator 3 & 9 o'clockParallel 3 o'clock w/groove for Initiator 3 & 9 o'clockParallel 3 o'clock w/groove for Initiator 3 & 9 o'clockParallel 3 o'clock w/groove for Initiator 3 & 9 o'clockParallel 4 o'clock w/groove for Initiator 3 & 9 o'clockParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clock </td <th></th> <td>chart i</td> <td>in Specific</td> <td>cations)</td> <td></td> <th></th> <th></th> <th>eau</th> <td></td> <td>6</td> <td>Motor</td> <td>Mount</td> <td>ing C</td> <td>onfigura</td> <td>tions</td> <td></td> <td></td>		chart i	in Specific	cations)				eau		6	Motor	Mount	ing C	onfigura	tions		
 M10 10 mm metric ballscrew M16 16 mm metric ballscrew (size ETH032 only) M20 20 mm metric ballscrew (size ETH050 only) M32 32 mm metric ballscrew (size ETH080 only) M32 32 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A a b Inline w/groove for Initiator 3 & 9 o'clock B b I Inline w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 3 & 9 o'clock C Parallel 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock F D Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock / groove for Initiator 6 & 12 o'clock / groove		M05 5 mm metric ballscrew							Motor-	specific	mour rv aro	iting cont ups:	liguratio	ons are ca	teç		
 M16 16 mm metric ballscrew (size ETH032 only) M20 20 mm metric ballscrew (size ETH050 only) M32 32 mm metric ballscrew (size ETH080 only) M32 32 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A a b linine w/groove for Initiator 3 & 9 o'clock B b linine w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock C b Parallel 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock F b Parallel 3 o'clock w/groove for Initiator 3 & 9 o'clock F b Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock F b Parallel 3 o'clock w/groove for Initiator 3 & 9 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiat		 M10 10 mm metric ballscrew M16 16 mm metric ballscrew (size ETH032 only) M20 20 mm metric ballscrew (size ETH050 only) 								"XP": V	Nith Park	ker Xp	ress moto	or syste	ems (listed l	bel	
 M20 20 mm metric ballscrew (size ETH050 only) M32 32 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A a finite w/groove for lnitiator 3 & 9 o'clock B a finite w/groove for lnitiator 6 & 12 o'clock C a finitiator 3 & 9 o'clock C a finitiator 3 & 9 o'clock D a finitiator 3 & 9 o'clock C a finitiator 6 & 12 o'clock w/groove for lnitiator 6 & 12 o'clock E finitiator 6 & 12 o'clock w/groove for lnitiator 6 & 12 o'clock F a finitiator 6 & 12 o'clock w/groove for lnitiator 6 & 12 o'clock F a finitiator 6 & 12 o'clock w/groove for lnitiator 6 & 12 o'clock F a finitiator 6 & 12 o'clock w/groove for lnitiator 6 & 12 o'clock F a finitiator 6 & 12 o'clock / groove for lnitiator 3 & 9 o'clock K fi finitiator 6 & 12 o'clock w/groove for lnitiator 6 & 12 o'clock / groove for lnitiator 6 & 12 o'clock M a field 0 o'clock / groove for lnitiator 6 & 12 o'clock M a field 0 o'clock / groove for lnitiator 6 & 12 o'clock M b printstre-03 gearbad on all inline and parallel size size ETH030 gearbad on all inline and parallel size size ETH030 gearbad M brith printstre-03 gearbad M brith pri										"K": Flange & coupling kits for other Parker motor							
 M32 32 mm metric ballscrew (size ETH080 only) Motor Mount/Cylinder Orientation A Inline w/groove for Initiator 3 & 9 o'clock B Inline w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 3 & 9 o'clock C Initiator 3 & 9 o'clock C Initiator 3 & 9 o'clock D Initiator 3 & 9 o'clock D Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock F Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock H Initiator 6 & 12 o'clock / groove for Initiator 3 & 9 o'clock K Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock / groove for Initiator 6 & 12 o'c										"P": Flange & coupling kits for Parker Gearheads							
 Motor Mount/Cylinder Orientation A Motor Mount/Cylinder Orientation B Motor Mount/Cylinder Orientation C Motor Mount/Cylinder Orientation A Motor Mount/C		M32 32 mm metric ballscrew (size ETH080 only)									"N": Ki	ts for No	on sta	ndard m	otors		
 Motor Mount/Cylinder Orientation A Motor Mount/Cylinder Orientation B Motor Systems ETHose ETHose Parker Xpress Motor Systems ETHose Provide and Parker Xpress Parker Xpress Motor Systems ETHose Provide and Parker Xpress Parker Xpress Motor Systems ETHose Provide and Parker Xpress Parker Xpress Motor Systems ETHose Provide and	_										(Refer	to Dimer	nsions	s for appr	ropriate	e order coo	de
 A Inline w/groove for Initiator 3 & 9 o'clock B Inline w/groove for Initiator 6 & 12 o'clock C Inline w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 3 & 9 o'clock C Inline w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 3 & 9 o'clock D Inline w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 6 & 12 o'clock w/groove for Initiator 3 & 9 o'clock* F Indefine Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock F Parallel 3 o'clock w/groove for Initiator 3 & 9 o'clock* F Parallel 6 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 6 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 6 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 6 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock F Parallel 9 o'clock / groove for Initiator F Parallel 9 o'clock / groove for Initiator F Parallel 9 o'clock / groove for Initiator F Parallel 9	4)	Motor Mount/Cylinder Orientation									mount motor	ing spec mountin	ification g con	ons for a ifiguratior	vailable ns)	e inline and	1 p
RParallel 12 o'clockXPCBE233FJ-KPSN•BInline w/groove for Initiator 6 & 12 o'clockParallel 12 o'clock w/groove for Initiator 3 & 9 o'clockXPCBE234LJ-KPSN•CParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPMMPP1003D1E-KPSB•DParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPMMPP1003D1E-KPSB•EParallel 3 o'clock w/groove for Initiator 6 & 12 o'clockParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*XPCMPP1003R1E-KPSB * A•FParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPVMPP1154B1E-KPSB * A•GParallel 6 o'clock / groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clockXPZMPP1154B1E-KPSN ** XPZXPZHParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZMPP1154B1E-KPSN ** XPZXPZJParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPIMPP1154P1E-KPSN ** XPZ*KParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clock**KParallel 9 o'clock / groove		A Inline w/groove for Initiator						Parke	r Xpress	Mot	or Syste	ms eth	1032 ETH050				
B Inline w/groove for Initiator SPD CM233FJ-115027 • C Image: Section of the		Ę	2	3 & 9 0 0	UCK						XPC	BE233	BFJ-K	PSN		• •	
BAPGBE344LJ-KPSNCParallel 12 o'clock w/groove for Initiator 3 & 9 o'clockXPHBE344LJ-KPSBDParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPHMPP1003D1E-KPSBDParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPMMPP1003D1E-KPSBEParallel 3 o'clock w/groove for Initiator 6 & 12 o'clockXPRMPP1003R1E-KPSNFParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*XPKMPP1003R1E-KPSBFParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPWMPP1003R1E-KPSNGParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clockXPVMPP1154B1E-KPSNHParallel 6 o'clock / groove for Initiator 3 & 9 o'clockParallel 6 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSNJParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSN **KParallel 9 o'clock / groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSN **KParallel 9 o'clock / groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clock****KParallel 9 o'clock / groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clock****KParallel 9 o'clock / groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove fo		_		Inline w/groove for Initiator							XPD	CM23	3FJ-1	15027	•	••	
CParallel 12 o'clock w/groove for Initiator 3 & 9 o'clockXH II bLCHAIG K OF XPL MPP1003D1E-KPSNDParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPM MPP1003D1E-KPSNDParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPM MPP1003D1E-KPSNEParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*XPR MPP1003R1E-KPSNFParallel 3 o'clock w/groove for Initiator 6 & 12 o'clock*XPV MPP1003R1E-KPSNGParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPV MPP1154B1E-KPSNGParallel 6 o'clock / groove for Initiator 3 & 9 o'clockXPX MPP1154B1E-KPSNHParallel 6 o'clock / groove for Initiator 3 & 9 o'clockXP2 MPP1154P1E-KPSNJParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2 MPP1154P1E-KPSNKParallel 9 o'clock w/groove for Initiator 3 & 9 o'clockXP2 MPP1154P1E-KPSNKParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2 MPP1154P1E-KPSNKParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2 MPP1154P1E-KPSN **KParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP3 MPP1003 gearhead on all inline and parallel size size ETH080 parallel which comes with PV90FB-003KParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockYP30FB-003 gearhead		B		6 & 12 o'o	clock						хра Урн	BE344	+LJ-N 11 I_K	PON PSR		•••	
CParallel 12 o'clock w/groove for Initiator 3 & 9 o'clockXPMMPP1003D1E-KPSBDParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPMMPP1003D1E-KPSBEParallel 3 o'clock w/groove for Initiator 6 & 12 o'clockXPMMPP1003D1E-KPSBEParallel 3 o'clock w/groove for Initiator 6 & 12 o'clock*XPMMPP1003B1E-KPSBFParallel 3 o'clock w/groove for Initiator 6 & 12 o'clock*XPMMPP1003B1E-KPSBGParallel 3 o'clock w/groove for Initiator 6 & 12 o'clock*XPMMPP1003B1E-KPSBGParallel 3 o'clock w/groove for Initiator 6 & 12 o'clockXPMMPP1003B1E-KPSBGParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPMMPP1003B1E-KPSBHParallel 6 o'clock / groove for Initiator 3 & 9 o'clockXPWMPP1154B1E-KPSNJParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZMPP1154P1E-KPSBKParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZMPP1154P1E-KPSBKParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZMPP1154P1E-KPSBKParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZKParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZKParallel 9 o'clock w/groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZKParallel 9 o'clock w/groove for		¥									XPL	MPP1	003D	1F-KPSN	J	•	
Initiator 3 & 9 o'clockXPNMPP1003D1E-KPSN *DParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPQMPP1003R1E-KPSB *EParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*XPRMPP1003R1E-KPSB *FParallel 3 o'clock w/groove for Initiator 6 & 12 o'clock*XPSMPP1003R1E-KPSB *GParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*XPVMPP1003R1E-KPSB *GParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPVMPP1154B1E-KPSN *GParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPXMPP1154B1E-KPSB **GParallel 6 o'clock / groove for Initiator 6 & 12 o'clockXPZMPP1154P1E-KPSN **JParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSN **JParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSN **KParallel 9 o'clock / groove for Initiator 6 & 12 o'clockXP2MPP103 gearhead on all inline and parallel size size ETH080 parallel which comes with PV90FB-003 ** With PV15FB-003 gearhead		С		Parallel 12	2 o'cloc	ck w/gr	oove for	r			XPM	MPP1	003D	1E-KPSE	3	•	
DParallel 12 o'clock w/groove for Initiator 6 & 12 o'clockXPPMPP1003D1E-KPSB *•EParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*Parallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*XPRMPP1003R1E-KPSB *•FParallel 3 o'clock w/groove for Initiator 6 & 12 o'clock*Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock*XPVMPP1003R1E-KPSB *•GParallel 3 o'clock w/groove for Initiator 3 & 9 o'clock*Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPVMPP1154B1E-KPSB *•HParallel 6 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZMPP1154P1E-KPSB **•JParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSB **KParallel 9 o'clock / groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSB **KParallel 9 o'clock / groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clock****KParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove for Initiator 6 & 12 o'clock****KParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockParallel 9 o'clock w/groove for Initiator 6 & 12 o'clock**KParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockParallel 9		-	F	Initiator 3	& 9 o'c	lock	(XPN	MPP1	003D	1E-KPSN	۷ *	•	
 D Farallel 12 0 Clock W/groove for Initiator Initiator 6 & 12 o'clock E Parallel 3 o'clock w/groove for Initiator 3 & 9 o'clock* F Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock* G Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clock H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock J Parallel 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock 				Dorollol 1		ok w/ar	aovo for				XPP	MPP1	003D	1E-KPSE	3 *	•	
 F Parallel 3 o'clock w/groove for Initiator 3 & 9 o'clock* F Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock* G Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clock H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 7 & 9 o'clock Parallel 9 o'clock / groove for Initiator 7 & 9 o'clock Parallel 9 o'clock / groove for Initiator 7 & 9 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 9 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 9 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 9 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 9 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 9 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 9 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock w/groove for Initiator 7 & 10 o'clock Parallel 9 o'clock Parallel 9 o'clock w/groove for Initiator Parallel 9 o'clock Parallel 9 o'clock Parallel 9 o'clock Parallel 9 o'clock Parallel 9 o'clock		D		Initiator 6	20000 & 120	iclock	Sove ior				XPQ	MPP1	003R	1E-KPSN	1	•	
 F Parallel 3 o'clock w/groove for Initiator 3 & 9 o'clock* F Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock* G Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clock H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock H Parallel 9 o'clock J Parallel 9 o'clock / groove for Initiator 6 & 12 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock 					u 12 0	0000					XPR	MPP1	003R	1E-KPSE	3	•	
 F G Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock * G Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clock H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 9 o'clock w/groove for Initiator 3 & 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock K 		Е.		Parallel 3	o'clock	k w/gro	ove for l	Initiator					003R		א ^מ א ר	•	
 F Parallel 3 o'clock w/groove for Initiator 6 & 12 o'clock* G Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clock H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock J Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock 		Ē	2	3 & 9 o'cl	ock*								154D	1E-KPSE	5	•	
 F G Parallel 6 o'clock w/groove for Initiator 3 & 9 o'clock H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock 				Parallel 3	o'clock	w/aro	ove for l	Initiator					104D		N C		
GParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockXPXMPP1154B1E-KPSNHParallel 6 o'clock / groove for Initiator 6 & 12 o'clockXPXMPP1154P1E-KPSNJParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP1MPP1154P1E-KPSNKParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockXP2MPP1154P1E-KPSN ** XP2KParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockXP2		F		6 & 12 o'	clock*	, gio							104D	1 E-MPOE	ر ** ا		
GParallel 6 o'clock w/groove for Initiator 3 & 9 o'clockAFXMPP1154B1E-KPSBHParallel 6 o'clock / groove for Initiator 6 & 12 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXPZMPP1154P1E-KPSBJParallel 9 o'clock / groove for Initiator 3 & 9 o'clockParallel 9 o'clock / groove for Initiator 3 & 9 o'clockXP2MPP1154P1E-KPSBKParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockParallel 9 o'clock w/groove for Initiator 6 & 12 o'clockWith PV34FE-003 gearhead on all inline and parallel size size ETH080 parallel which comes with PV90FB-003 ** With PV115FB-003 gearhead		Ч											104D		N 2 **		
 H Parallel 6 o'clock / groove for Initiator J Parallel 9 o'clock / groove for Initiator J Parallel 9 o'clock / groove for Initiator K Parallel 9 o'clock w/groove for Initiator 		G		Parallel 6	o'clock ock	k w/gro	ove for l	Initiator			XPY	MPP1	154P	1E-KPSN	1		
 H Parallel 6 o'clock / groove for Initiator 6 & 12 o'clock J Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock 			۲۰۰								XPZ	MPP1	154P	1E-KPSE	3		
 J Parallel 9 o'clock / groove for Initiator 3 & 9 o'clock K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock 		н		Parallel 6	o'clock	k / groo	ve for Ir	nitiator			XP1	MPP1	154P	1E-KPSN	\ **		
J Parallel 9 o'clock / groove for Initiator * With PV34FE-003 gearhead on all inline and parallel size S 9 o'clock * With PV34FE-003 gearhead on all inline and parallel size K Parallel 9 o'clock w/groove for Initiator * With PV115FB-003 gearhead K Parallel 9 o'clock * With PV115FB-003 gearhead			6 & 12 o'clock						XP2	MPP1	154P	1E-KPSE	3 **				
K 9 0°CIOCK size ETH080 parallel which comes with PV90FB-003 ** With PV115FB-003 gearhead		J	Parallel 9 o'clock / groove for Initiator							* With P	V34FE-00)3 gear	head on a	ll inline a	and parallel s	ize	
K Parallel 9 o'clock w/groove for Initiator 6 & 12 o'clock			EL/	3 & 9 0 Cl	UCK						size E F ** With I	<u>+080 para</u> PV115FB-	<u>11el </u> whi 003 ae	earhead	with PV	90FB-003	
b & 12 O CIOCK		к		Parallel 9	o'clock	k w/gro	ove for l	Initiator					34				
			P.L	6 & 12 0'0	clock												

*When ordered with a lubrication bore option (item 5, order code 3), check to make sure the motor/gearbox length does not block the lubrication port option. This will be an issue for shorter strokes.

(8)

R Linear guide module

Stroke

9

For fastest delivery please choose a standard stroke length from the chart below. (See page 43 "Stroke, Usable Stoke and Safety Travel" to calculate appropriate stroke length.)

=32023Custom Lengths

	ETH032	ETH050	ETH080	ETH100	ETH125
XXXX	50 - 1000	50 - 1200	50 - 1600	200 – 1600	200 - 1600
	(Customized le	ength in 1 mm			

Standard Lengths

	-				
	ETH032	ETH050	ETH080	ETH100	ETH125
0050	•	•			
0100	•	•	•		
0150	•	•	•		
0200	•	•	•	•	•
0300	•	•	•	•	•
0400	•	٠	٠	•	•
0600	•	•	•	•	•
0900		•	•		
1000	•				•
1200		•	•	•	•
1600			•	•	•

IP Rating

В

С

10

- A IP54 with galvanized steel hardware
 - IP54 with stainless steel hardware
 - IP65 epoxy coated cylinder

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

The XFC Series

Extreme Force Roller Screw Driven Electric Cylinders

Design Features

- Pre-engineered package
- Performance matched components
- Environmental protection
- Laser certified precision
- All steel construction with standard metric hydraulic type tie rod construction for durability, stiffness, and rigidity
- Elastomeric seals throughout with no gaskets for complete sealing
- Opposed preloaded angular contact bearings for bi-directional force capability
- Roller screw drive system for increased life, load, and shock loading capabilities
- Inline and parallel gear drive configurations for full transfer of thrust force
- Parker Stealth family advanced planetary gearheads direct mount to cylinder for standard reduction options from 3:1 to 10:1 with 100:1 available
- Parker MPP Series brushless servo motors for complete Parker system solution with gearhead, motor, drive, and controls
- Rod wiper and seal based on proven TS2000 design and composite rod bearing designed to survive rugged environments with minimal maintenance for the life of the cylinder

- High mechanical efficiency up to 90%
- Strokes up to 2000mm
- Extreme thrust force up to 356,000 N / 80,000 lbs
- Repeatability up to ±0.03mm
- Speeds up to 1016 mm/s
- Six metric profile sizes: 075, 090,115,140,165, 190
- Anti-rotate option

	075	090	115	140	165	190
Maximum Travel (mm)	1,150	1,700	2,000	2,000	2,000	2,000
Maximum Payload (N)	40,000	68,000	108,000	160,000	240,000	356,000
Maximum Acceleration (m/sec ²)	1,016	712	548	444	712	568

Parker is pleased to introduce a new family of high thrust electric cylinders featuring roller screw drive technology. The XFC Series further extends the feature rich and force dense offering of Parker's electric cylinder products. The XFC Electric Cylinder is designed to provide machine builders a high force electromechanical solution: offering long life, minimal maintenance, low operating costs, and structural rigidity. All this, in addition to Parker's world class customer service and industry leading delivery times.

As a worldwide leader in fluid power cylinder products, Parker has combined the best of both worlds into one unique product. All the benefits of electromechanical control and cleanliness combined with the structural rigidity and durability of a traditional hydraulic tie rod cylinder.

Flexibility & Versatile Programmability

In applications where high loads are required, roller screws offer a very attractive solution:

- Servo motors and controls feature simplified programming
- Electromechanical control systems provide infinite programmability
- Performance advantages not easily obtained by comparable fluid power technology include multiple move profiles, adjustable acceleration and deceleration, force control, and absolute positioning capabilities

These features allow the system to easily adapt to changing application conditions and performance requirements with minimal modification.

Design Considerations

Installation

Due to the reduced number of components required for a complete system, the commissioning time required for operation is significantly reduced relative to comparable fluid power systems. This allows system builders to quickly install, troubleshoot, and test system capabilities faster and more reliably than other alternatives.

Additionally machine break-down and set-up can be accomplished with relative ease and without concern of hydraulic fluid spillage.

Environmental Considerations

With electromechanical system technology, fluid leaks, filter changes, and air bleeding are a thing of the past. Simply mount the cylinder, plug in the cables, download a program and you are up and running in record time.

Anti-Rotation

Anti-rotation can now be achieved in XFC actuators thanks to a new design that incorporates a keying feature on the internal surface of the tubular body. This option can be configured through our standard part number structure.

Maintenance

Roller screw cylinder systems require little or no maintenance when compared to their fluid power alternatives, while still delivering long life and high performance. Series XFC cylinders are designed to be low maintenance with the factory installed full synthetic lubrication. For high duty cycle applications (>50%), oil filled cylinders are available with ports for recirculation as required.

Planetary roller screws offer distinct benefits over traditional ball screw and lead screw mechanisms, and add features not easily attainable with hydraulic or pneumatic linear devices.

A planetary roller screw transmits rotary motion into linear motion similar to a ball or lead screw. The key difference in the roller screw design is the use of planetary rollers in place of ball bearings as the primary rolling elements. The planetary rollers provide an increased number of contact surfaces between the external screw shaft and the internal threads of the roller nut relative to traditional ball or lead screw technology. The expanded number of contact points allow for:

- Enhanced thrust capacity— 5X more thrust!
- Enhanced load carrying capabilities
- Higher speeds than traditional hydraulic cylinders
- Greatly extended life 10X longer life!

SPECIFICATIONS

Electric Cylinders

Performance

XFC Frame Size		075	090	115	140	165	190
Continuous Thrust	kN	20	34	54	80	120	178
	(lbs)	(4,500)	(7,500)	(12,000)	(17,500)	(26,500)	(40,000)
Maximum Thrust	kN	40	68	108	160	240	356
	(lbs)	(9,000)	(15,000)	(24,000)	(35,000)	(53,000)	(80,000)
Maximum Acceleration	mm/sec²	19,600	19,600	19,600	19,600	19,600	19,600
	(in/sec²)	(773)	(773)	(773)	(773)	(773)	(773)
Maximum Stroke ¹⁾	mm	1150	1700	2,000	2,000	2,000	2,000
	(in)	(55.12)	(66.93)	(78.75)	(78.75)	(78.75)	(78.75)
Recommended Maximum Stroke	mm	750	750	750	1,000	1,000	1,250
Length of Unsupported Cylinder ²⁾	(in)	(29.53)	(29.53)	(29.53)	(39.37)	(39.37)	(49.21)

1) Consult factory for non-standard stroke lengths

2) Secondary support required for longer stroke lengths (consult factory)

System Characteristics

XFC Frame Size		075	090	115	140	165	190
Accuracy	mm	0.08	0.08	0.08	0.08	0.13	0.13
	(in)	(0.003)	(0.003)	(0.003)	(0.003)	(0.005)	(0.005)
Repeatability	mm	0.03	0.03	0.03	0.03	0.05	0.05
	(in)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)
Backlash	mm	0.03	0.03	0.03	0.03	0.03	0.03
	(in)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)

Screw Characteristics

XFC Size	Screw Diameter mm	Standard Lead ¹⁾ mm (in)/rev	Efficiency %	Ca Rating kN (lbf)	Thrust Tube Torque mN-m/N (Ib-in/Ibf)	Max. Speed ²⁾ mm/sec (in/sec)
075	01	5 (0.197)	88.78	40.4 (9,082)	0.889 (0.035)	508 (20.0)
075	21	10 (0.394)	91.17	44.6 (10,026)	1.752 (0.069)	1016 (40.0)
000	30	5 (0.197)	87.05	73.6 (16,546)	0.914 (0.036)	356 (14.0)
090	50	10 (0.394)	90.38	74.4 (16,726)	1.752 (0.069)	712 (28.0)
115	39	5 (0.197)	85.18	103.4 (23,245)	0.939 (0.037)	274 (10.8)
115	00	10 (0.394)	89.37	116.5 (26,190)	1.778 (0.070)	548 (21.6)
140	48	5 (0.197)	82.50	158.5 (35,632)	0.965 (0.038)	222 (8.7)
140	-0	10 (0.394)	88.34	171.2 (38,487)	1.803 (0.071)	444 (17.4)
165	60	10 (0.394)	87.05	238.6 (53,639)	1.829 (0.072)	356 (14.0)
105	00	20 (0.787)	90.38	238.6 (53,639)	3.531 (0.139)	712 (28.0)
190	75	10 (0.394)	85.45	356.5 (80,144)	1.854 (0.073)	284 (11.2)
190	15	20 (0.787)	90.97	356.5 (80,144)	3.658 (0.144)	568 (22.4)

Consult factory for availability of non-standard leads
 Speed is stroke dependant, see Maximum Speed charts for speed/stroke chart

Cylinder Temperature Rating*

Standard seals	-23 to 73°C (-10 to 165°F)
Fluorocarbon seals	-23 to 110°C (-10 to 230°F)

* Verify motor and gear box performance at higher temperatures.

Cylinder Weight - kg (lb)

Inline Configurations

XFC	Base Weight with Mount (at Zero Stroke)									
Frame Size	J Front Flange	C Foot	D Trunnion	K Extended Tie Rod	(Per 100 mm Stroke)					
075	9.1 (20)	9.1 (20)	9.5 (21)	8.6 (19)	1.41 (3.1)					
090	14.5 (32)	14.1 (31)	14.5 (32)	14.1 (31)	1.93 (4.3)					
115	27.7 (61)	27.7 (61)	28.1 (62)	26.8 (59)	3.08 (6.8)					
140	48.1 (106)	47.6 (105)	49.4 (109)	46.7 (103)	4.53 (10.0)					
165	103.4 (182)	102.1 (180)	104.3 (185)	100.2 (175)	7.17 (15.8)					
190	132.9 (293)	131.5 (290)	134.3 (296)	127.0 (280)	9.48 (20.9)					
				~~						

Parallel Configurations

XFC		- Contract					
Frame Size	J Front Flange	C Foot	D Trunnion	K, L, M Extended Tie Rod	H Rear Flange	B Rear Clevis	Weight (Per 100mm Stroke)
075	11.3 (25)	10.9 (24)	11.3 (25)	10.9 (24)	11.3 (25)	11.3 (25)	1.41 (3.1)
090	17.7 (39)	17.2 (38)	17.7 (39)	17.2 (38)	18.1 (40)	18.6 (41)	1.93 (4.3)
115	34.0 (75)	34.0 (75)	34.9 (77)	33.1 (73)	35.4 (78)	35.4 (78)	3.08 (6.8)
140	59.4 (131)	58.5 (129)	60.3 (133)	57.6 (127)	61.7 (136)	62.1 (137)	4.53 (10.0)
165	103.4 (228)	102.1 (225)	104.3 (230)	100.2 (221)	107.0 (236)	110.7 (244)	7.17 (15.8)
190	163.7 (361)	162.4 (358)	170.6 (376)	158.8 (350)	171.5 (378)	171.9 (379)	9.48 (20.9)

Note: All weights above assume oil filled lubrication

Cylinder Inertia

Inertia matching of the cylinder assembly to the motor will improve the performance of the mechanical system. The inertia ratio of the cylinder and load to the motor should be less than 10:1. A general rule for screw driven systems is 5:1.

$$I_{Total} = I_{GearHead} + \frac{(I_{XFC} + I_{Mass})}{(GearHeadRatio)^2}$$
$$I_{Mass} = Mass_{Load} (kg) \left(\frac{Lead (mm)}{3141.6}\right)^3$$
For PS Series gearhead inertia information, see:

www.parkermotion.com

XFC Inertia I (kg-m²)

XFC Size	Inline (Zero Stroke)	Parallel (Zero Stroke)	Stroke (Per 100 mm)
075	0.00008903	0.00037951	0.00001499
090	0.00031974	0.00089394	0.00006242
115	0.00107620	0.00349671	0.00017800
140	0.00229637	0.00923002	0.00040900
165	0.00655544	0.02428162	0.00099900
190	0.02702120	0.05552601	0.00244000

Life Charts

Electric Cylinders

Maximum Speed Charts

Buckling Strength Charts

The buckling strength of the cylinder is the maximum compressive load able to be exerted through the cylinder. These values are a function of the screw and thrust tube size and do not account for specific motor or gearbox performance. The force value from the specific mounting class and length of stroke should not be exceeded to ensure safe mechanical performance. Tension loads are not subject to buckling strength restrictions.

Available Mounts

K, L, M Extended Tie Rod Mount

Cylinders with Extended Tie Rods are suitable for straight line force applications, and are particularly useful where space is limited.

- K Front Mount (inline and parallel)
- L Rear Mount (parallel only)
- **M** Both Front & Rear Mount (parallel only)

J Integral Front Flange Mount

These cylinders are suitable for use on straight line force transfer applications.

J Front Flange Mount (inline and parallel)

Foot Mount

Foot mounted cylinders do not absorb forces along their center line. As a result, the application of force by the cylinder produces a moment which attempts to rotate the cylinder about its mounting bolts. It is therefore very important that the cylinder be firmly secured to the mounting surface and the load should be rigidly guided to avoid side loads being applied to the cylinder bearings.

C Foot Mount (inline and parallel)

T Rear Trunnion Mount

Trunnion mounting is used for rotary or arc-line motion and offer flexibility when designing applications that are not confined to linear movements. Consult factory to review specific applications for stroke and configuration.

T Rear Trunnion Mount (inline and parallel)

H Rear Flange Mount

These cylinders are suitable for use on straight line force transfer applications.

H Rear Flange Mount (parallel only)

B Rear Clevis Mount

Cylinders with pivot mountings, which absorb forces on their center lines, should be used where the machine member to be moved travels in a curved path. Pivot mountings may be used in tension (pull) or compression (push) applications. Cylinders using a fixed clevis may be used if the curved path of the thrust tube travels in a single plane.

B Rear Clevis Mount (parallel only)

DIMENSIONS

XFC Mount Options

Κ

DD

Extended Tie Rod Mount - Inline

Order FIRST ANGLE \bigcirc VIEW PROJECTION Code **Front Extended Tie Rods** BB

토 크거 귀한 ØAA WF CA G .1 (Bolt Circle) LB + Stroke ZJ + Stroke

Dimensions - mm (in)

VEC	a								Add S	Stroke
Size	AA	BB	DD	Е	G	J	TG	WF	LB	ZJ
075	83 (3.27)	30 (1.18)	M8x1	76.2 (3.00)	22 (0.87)	62 (2.44)	58.69 (2.31)	38 (1.50)	205.5 (8.09)	243.5 (9.59)
090	100 (3.94)	35 (1.38)	M10x1.5	88.9 (3.50)	25 (0.98)	74 (2.91)	70.71 (2.78)	40 (1.57)	248 (9.76)	288 (11.34)
115	127 (5.00)	40 (1.57)	M12x1.25	114.3 (4.50)	30 (1.18)	91 (3.58)	89.80 (3.54)	45 (1.77)	293 (11.54)	338 (13.31)
140	155 (6.10)	50 (1.97)	M16x1.5	139.7 (5.50)	35 (1.38)	108 (4.25)	109.60 (4.32)	45 (1.77)	348 (13.70)	393 (15.47)
165	185 (7.28)	60 (2.36)	M22x1.5	165.1 (6.50)	40 (1.57)	123 (4.84)	130.81 (5.15)	60 (2.36)	417 (16.42)	477 (18.78)
190	215 (8.46)	75 (2.95)	M22x1.5	190.5 (7.50)	50 (1.97)	152 (5.98)	152.03 (5.99)	62 (2.44)	503 (19.80)	565 (22.24)

Motor/Gearhead

XFC	C Dimension CA										
Size	PS090	PS115	PS142	PS180	PS220	MPP115	MPP142	MPP190	MPP270		
075	113 (4.45)	115 (4.53)	-	-	—	98 (3.86)	109 (4.29)	-	-		
090	115 (4.53)	117 (4.61)	-	-	_	100 (3.94)	111 (4.37)	_	-		
115	-	130 (5.12)	158 (6.22)	—	—	—	113 (4.45)	136 (5.35)	-		
140	_	_	161 (6.34)	190 (7.48)	_	_	_	139 (5.47)	-		
165	-	-	164 (6.46)	193 (7.60)	—	_	-	-	183 (7.20)		
190	—	_	_	194 (7.64)	_	_	—	_	214 (8.43)		

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

Parallel Extended Tie Rod Mount – Parallel

Order Code

Κ

- Front Extended Tie Rods
- Rear Extended Tie Rods
- M Both Front & Rear Extended Tie Rods

Dimensions - mm (in)

XFC Size	Ø AA	в	BA	BB	DD	Е	G	н
075	83 (3.27)	106 (4.17)	44 (1.73)	30 (1.18)	M8x1	76.2 (3.00)	22 (0.87)	174.2 (6.86)
090	100 (3.94)	128 (5.04)	54 (2.13)	35 (1.38)	M10x1.5	88.9 (3.50)	25 (0.98)	206.9 (8.15)
115	127 (5.00)	154 (6.06)	63 (2.48)	40 (1.57)	M12x1.25	114.3 (4.50)	30 (1.18)	271 (10.67)
140	155 (6.10)	180 (7.09)	72 (2.83)	50 (1.97)	M16x1.5	139.7 (5.50)	35 (1.38)	332.2 (13.08)
165	185 (7.28)	211 (8.31)	88 (3.46)	60 (2.36)	M22x1.5	165.1 (6.50)	40 (1.57)	379.1 (14.93)
190	215 (8.46)	252 (9.92)	100 (3.94)	75 (2.95)	M22x1.5	190.5 (7.50)	50 (1.97)	455.5 (17.93)

VEO							Add S	Stroke
Size	НС	J	КВ	кс	TG	WF	LB	ZJ
075	98 (3.86)	62 (2.44)	6.5 (0.26)	6.93 (0.27)	58.69 (2.31)	38 (1.50)	249.5 (9.82)	287.5 (11.32)
090	118 (4.65)	74 (2.91)	8 (0.31)	8.65 (0.34)	70.71 (2.78)	40 (1.57)	302 (11.89)	342 (13.46)
115	156 (6.14)	91 (3.58)	10 (0.39)	10.15 (0.40)	89.80 (3.54)	45 (1.77)	356 (14.02)	401 (15.79)
140	192.5 (7.58)	108 (4.25)	13 (0.51)	13.65 (0.54)	109.60 (4.32)	45 (1.77)	420 (16.54)	465 (18.31)
165	224 (8.82)	123 (4.84)	18 (0.71)	13.65 (0.54)	130.81 (5.15)	60 (2.36)	505 (19.88)	565 (22.24)
190	265 (10.43)	152 (5.98)	18 (0.71)	17.18 (0.68)	152.03 (5.99)	62 (2.44)	603 (23.74)	665 (26.18)

ØRD

Е

¢

0

Front Flange Mount - Inline Order

Code J

– VL

Dimensions - mm (in)

XFC		Ø				Ø						
Size	Е	FB	G	J	R	RD _{f8}	TF	UO	VL	WF	LB	ZJ
075	76.2	9	22	62	52	65	105	125	10	38	205.5	243.5
	(3.00)	(0.35)	(0.87)	(2.44)	(2.05)	(2.559)	(4.13)	(4.92)	(0.39)	(1.50)	(8.09)	(9.59)
090	88.9	11	25	74	65	75	117	139.7	10	40	248	288
	(3.50)	(0.43)	(0.98)	(2.91)	(2.56)	(2.953)	(4.61)	(5.50)	(0.39)	(1.57)	(9.76)	(11.34)
115	114.3	14	30	91	83	95	149	175	12	45	293	338
	(4.50)	(0.55)	(1.18)	(3.58)	(3.27)	(3.740)	(5.87)	(6.89)	(0.47)	(1.77)	(11.54)	(13.31)
140	139.7	18	35	108	107	110	172	210	12	45	348	393
	(5.50)	(0.71)	(1.38)	(4.25)	(4.21)	(4.331)	(6.77)	(8.27)	(0.47)	(1.77)	(13.70)	(15.47)
165	165.1	21	40	123	120	135	215	260	14	60	417	477
	(6.50)	(0.83)	(1.57)	(4.84)	(4.72)	(5.315)	(8.46)	(10.24)	(0.55)	(2.36)	(16.42)	(18.78)
190	190.5	22	50	152	155	155	253	300	16	62	503	565
	(7.50)	(0.87)	(1.97)	(5.98)	(6.10)	(5.315)	(9.96)	(11.81)	(0.63)	(2.44)	(19.80)	(22.24)

Motor/Gearhead

XFC	C Dimension CA										
Size	PS090	PS115	PS142	PS180	PS220	MPP115	MPP142	MPP190	MPP270		
075	113 (4.45)	115 (4.53)	-	-	—	98 (3.86)	109 (4.29)	—	—		
090	115 (4.53)	117 (4.61)	_	-	_	100 (3.94)	111 (4.37)	_	_		
115	-	130 (5.12)	158 (6.22)	-	—	—	113 (4.45)	136 (5.35)	_		
140	-	_	161 (6.34)	190 (7.48)	_	_	_	139 (5.47)	_		
165	-	-	164 (6.46)	193 (7.60)	-	—	-	-	183 (7.20)		
190	_	_	_	194 (7.64)	—	—	_	_	214 (8.43)		

ØFB x 4

 \bigcirc

٦

FIRST ANGLE VIEW PROJECTION

Add Stroke

Front Flange Mount — Parallel

Dimensions - mm (in)

XFC				Ø					
Size	В	BA	E	FB	G	н	HC	J	KB
075	106 (4.17)	44 (1.73)	76.2 (3.00)	9 (0.35)	22 (0.87)	174.2 (6.86)	98 (3.86)	62 (2.44)	6.5 (0.26)
090	128 (5.04)	54 (2.13)	88.9 (3.50)	11 (0.43)	25 (0.98)	206.9 (8.15)	118 (4.65)	74 (2.91)	8 (0.31)
115	154 (6.06)	63 (2.48)	114.3 (4.50)	14 (0.55)	30 (1.18)	271 (10.67)	156 (6.14)	91 (3.58)	10 (0.39)
140	180 (7.09)	72 (2.83)	139.7 (5.50)	18 (0.71)	35 (1.38)	332.2 (13.08)	192.5 (7.58)	108 (4.25)	13 (0.51)
165	211 (8.31)	88 (3.46)	165.1 (6.50)	21 (0.83)	40 (1.57)	379.1 (14.93)	224 (8.82)	123 (4.84)	18 (0.71)
190	252 (9.92)	100 (3.94)	190.5 (7.50)	22 (0.87)	50 (1.97)	455.5 (17.93)	265 (10.43)	152 (5.98)	18 (0.71)

								Add	Stroke
XFC Size	кс	R	Ø RD _{f8}	TF	UO	VL	WF	LB	ZJ
075	6.93 (0.27)	52 (2.05)	65 (2.559)	105 (4.13)	125 (4.92)	10 (0.39)	38 (1.50)	249.5 (9.82)	287.5 (11.32)
090	8.65 (0.34)	65 (2.56)	75 (2.953)	117 (4.61)	139.7 (5.50)	10 (0.39)	40 (1.57)	302 (11.89)	342 (13.46)
115	10.15 (0.40)	83 (3.27)	95 (3.740)	149 (5.87)	175 (6.89)	12 (0.47)	45 (1.77)	356 (14.02)	401 (15.79)
140	13.65 (0.54)	107 (4.21)	110 (4.331)	172 (6.77)	210 (8.27)	12 (0.47)	45 (1.77)	420 (16.54)	465 (18.31)
165	13.65 (0.54)	120 (4.72)	135 (5.315)	215 (8.46)	260 (10.24)	14 (0.55)	60 (2.36)	505 (19.88)	565 (22.24)
190	17.18 (0.68)	155 (6.10)	155 (5.315)	253 (9.96)	300 (11.81)	16 (0.63)	62 (2.44)	603 (23.74)	665 (26.18)

Foot Mount - Inline

-G

LH SK SK CA CA

Dimensions - mm (in)

WF

XFC													
Size	E	G	J	LH _{h10}	SA	ØSB	ST	SW	TS	US	WF	LB	ZJ
075	76.2	22	62	39	33.3	11	12.7	11	97	114.3	38	205.5	243.5
	(3.00)	(0.87)	(2.44)	(1.535)	(1.31)	(0.43)	(0.50)	(0.43)	(3.82)	(4.50)	(1.50)	(8.09)	(9.59)
090	88.9	25	74	45.5	44.5	14	19.1	13	115	139.7	40	248	288
	(3.50)	(0.98)	(2.91)	(1.791)	(1.75)	(0.55)	(0.75)	(0.51)	(4.53)	(5.50)	(1.57)	(9.76)	(11.34)
115	114.3	30	91	58	57.2	18	25.4	15	155	184.2	45	293	338
	(4.50)	(1.18)	(3.58)	(2.283)	(2.25)	(0.71)	(1.00)	(0.59)	(6.10)	(7.25)	(1.77)	(11.54)	(13.31)
140	139.7	35	108	71	57.2	18	25.4	18	175	209.6	45	348	393
	(5.50)	(1.38)	(4.25)	(2.795)	(2.25)	(0.71)	(1.00)	(0.71)	(6.89)	(8.25)	(1.77)	(13.70)	(15.47)
165	165.1	40	123	83.5	73.0	22	31.8	20	210	254	60	417	477
	(6.50)	(1.57)	(4.84)	(3.287)	(2.87)	(0.87)	(1.25)	(0.79)	(8.27)	(10.00)	(2.36)	(16.42)	(18.78)
190	190.5	50	152	96.5	92.1	26	38.1	25	260	304.8	62	503	565
	(7.50)	(1.97)	(5.98)	(3.799)	(3.63)	(1.02)	(1.50)	(0.98)	(10.24)	(12.00)	(2.44)	(19.80)	(22.24)

Motor/Gearhead

XFC	C Dimension CA										
Size	PS090	PS115	PS142	PS180	PS220	MPP115	MPP142	MPP190	MPP270		
075	113 (4.45)	115 (4.53)	-	-	—	98 (3.86)	109 (4.29)	-	-		
090	115 (4.53)	117 (4.61)	_	-	_	100 (3.94)	111 (4.37)	_	_		
115	-	130 (5.12)	158 (6.22)	-	-	-	113 (4.45)	136 (5.35)	-		
140	_	_	161 (6.34)	190 (7.48)	_	_	_	139 (5.47)	_		
165	-	-	164 (6.46)	193 (7.60)	-	-	-	-	183 (7.20)		
190	_	_	_	194 (7.64)	_	_	_	_	214 (8.43)		

E SQ

US

ØSB x 4

ई

Add Stroke

Foot Mount – Parallel

FIRST ANGLE VIEW PROJECTION

С

Dimensions - mm (in)

XFC Size	В	BA	E	G	н	НС	J	КВ	кс
075	106 (4.17)	44 (1.73)	76.2 (3.00)	22 (0.87)	174.2 (6.86)	98 (3.86)	62 (2.44)	6.5 (0.26)	6.93 (0.27)
090	128 (5.04)	54 (2.13)	88.9 (3.50)	25 (0.98)	206.9 (8.15)	118 (4.65)	74 (2.91)	8 (0.31)	8.65 (0.34)
115	154 (6.06)	63 (2.48)	114.3 (4.50)	30 (1.18)	271 (10.67)	156 (6.14)	91 (3.58)	10 (0.39)	10.15 (0.40)
140	180 (7.09)	72 (2.83)	139.7 (5.50)	35 (1.38)	332.2 (13.08)	192.5 (7.58)	108 (4.25)	13 (0.51)	13.65 (0.54)
165	211 (8.31)	88 (3.46)	165.1 (6.50)	40 (1.57)	379.1 (14.93)	224 (8.82)	123 (4.84)	18 (0.71)	13.65 (0.54)
190	252 (9.92)	100 (3.94)	190.5 (7.50)	50 (1.97)	455.5 (17.93)	265 (10.43)	152 (5.98)	18 (0.71)	17.18 (0.68)

								Add S	Stroke
LH _{h10}	SA	ØSB	ST	sw	тѕ	US	WF	LB	ZJ
39	33.3	11	12.7	11	97	114.3	38	249.5	287.5
(1.535)	(1.31)	(0.43)	(0.50)	(0.43)	(3.82)	(4.50)	(1.50)	(9.82)	(11.32)
45.5	44.5	14	19.1	13	115	139.7	40	302	342
(1.791)	(1.75)	(0.55)	(0.75)	(0.51)	(4.53)	(5.50)	(1.57)	(11.89)	(13.46)
58	57.2	18	25.4	15	155	184.2	45	356	401
(2.283)	(2.25)	(0.71)	(1.00)	(0.59)	(6.10)	(7.25)	(1.77)	(14.02)	(15.79)
71	57.2	18	25.4	18	175	209.6	45	420	465
(2.795)	(2.25)	(0.71)	(1.00)	(0.71)	(6.89)	(8.25)	(1.77)	(16.54)	(18.31)
83.5	73.0	22	31.8	20	210	254	60	505	565
(3.287)	(2.87)	(0.87)	(1.25)	(0.79)	(8.27)	(10.00)	(2.36)	(19.88)	(22.24)
96.5	92.1	26	38.1	25	260	304.8	62	603	665
(3.799)	(3.63)	(1.02)	(1.50)	(0.98)	(10.24)	(12.00)	(2.44)	(23.74)	(26.18)
	LH _{h10} 39 (1.535) 45.5 (1.791) 58 (2.283) 71 (2.795) 83.5 (3.287) 96.5 (3.799)	LHh10SA3933.3(1.535)(1.31)45.544.5(1.791)(1.75)5857.2(2.283)(2.25)7157.2(2.795)(2.25)83.573.0(3.287)(2.87)96.592.1(3.799)(3.63)	LHh10SAØSB3933.311(1.535)(1.31)(0.43)45.544.514(1.791)(1.75)(0.55)5857.218(2.283)(2.25)(0.71)7157.218(2.795)(2.25)(0.71)83.573.022(3.287)(2.87)(0.87)96.592.126(3.799)(3.63)(1.02)	LHh10SAØSBST3933.31112.7(1.535)(1.31)(0.43)(0.50)45.544.51419.1(1.791)(1.75)(0.55)(0.75)5857.21825.4(2.283)(2.25)(0.71)(1.00)7157.21825.4(2.795)(2.25)(0.71)(1.00)83.573.02231.8(3.287)(2.87)(0.87)(1.25)96.592.12638.1(3.799)(3.63)(1.02)(1.50)	LHh10SAØSBSTSW3933.31112.711(1.535)(1.31)(0.43)(0.50)(0.43)45.544.51419.113(1.791)(1.75)(0.55)(0.75)(0.51)5857.21825.415(2.283)(2.25)(0.71)(1.00)(0.59)7157.21825.418(2.795)(2.25)(0.71)(1.00)(0.71)83.573.02231.820(3.287)(2.87)(0.87)(1.25)(0.79)96.592.12638.125(3.799)(3.63)(1.02)(1.50)(0.98)	LHh10SAØSBSTSWTS3933.31112.71197(1.535)(1.31)(0.43)(0.50)(0.43)(3.82)45.544.51419.113115(1.791)(1.75)(0.55)(0.75)(0.51)(4.53)5857.21825.415155(2.283)(2.25)(0.71)(1.00)(0.59)(6.10)7157.21825.418175(2.795)(2.25)(0.71)(1.00)(0.71)(6.89)83.573.02231.820210(3.287)(2.87)(0.87)(1.25)(0.79)(8.27)96.592.12638.125260(3.799)(3.63)(1.02)(1.50)(0.98)(10.24)	LHh10SAØSBSTSWTSUS3933.31112.71197114.3(1.535)(1.31)(0.43)(0.50)(0.43)(3.82)(4.50)45.544.51419.113115139.7(1.791)(1.75)(0.55)(0.75)(0.51)(4.53)(5.50)5857.21825.415155184.2(2.283)(2.25)(0.71)(1.00)(0.59)(6.10)(7.25)7157.21825.418175209.6(2.795)(2.25)(0.71)(1.00)(0.71)(6.89)(8.25)83.573.02231.820210254(3.287)(2.87)(0.87)(1.25)(0.79)(8.27)(10.00)96.592.12638.125260304.8(3.799)(3.63)(1.02)(1.50)(0.98)(10.24)(12.00)	LHh10SAØSBSTSWTSUSWF3933.31112.71197114.338(1.535)(1.31)(0.43)(0.50)(0.43)(3.82)(4.50)(1.50)45.544.51419.113115139.740(1.791)(1.75)(0.55)(0.75)(0.51)(4.53)(5.50)(1.57)5857.21825.415155184.245(2.283)(2.25)(0.71)(1.00)(0.59)(6.10)(7.25)(1.77)7157.21825.418175209.645(2.795)(2.25)(0.71)(1.00)(0.71)(6.89)(8.25)(1.77)83.573.02231.82021025460(3.287)(2.87)(0.87)(1.25)(0.79)(8.27)(10.00)(2.36)96.592.12638.125260304.862(3.799)(3.63)(1.02)(1.50)(0.98)(10.24)(12.00)(2.44)	LH _{h10} SA ØSB ST SW TS US WF LB 39 33.3 11 12.7 11 97 114.3 38 249.5 (1.535) (1.31) (0.43) (0.50) (0.43) (3.82) (4.50) (1.50) (9.82) 45.5 44.5 14 19.1 13 115 139.7 40 302 (1.791) (1.75) (0.55) (0.75) (0.51) (4.53) (5.50) (1.57) (11.89) 58 57.2 18 25.4 15 155 184.2 45 356 (2.283) (2.25) (0.71) (1.00) (0.59) (6.10) (7.25) (1.77) (14.02) 71 57.2 18 25.4 18 175 209.6 455 420 (2.795) (2.25) (0.71) (1.00) (0.71) (6.89) (8.25) (1.77) (16.54) 83.5 73.0

Rear Trunnion Mount - Inline Order

TJ -

	 LB +	Stroke
-	 ZJ +	Stroke

WF

Code

Dimensions	– mm	(in)
------------	------	------

G

XJ + Stroke

VEO					a					A	dd Strok	æ
Size	Е	G	J	тJ	D TD _{f8}	TL	TE	тм	WF	LB	XJ	ZJ
075	76.2	22	62	74.5	20	16	112	80	38	205.5	169	243.5
	(3.00)	(0.87)	(2.44)	(2.93)	(0.787)	(0.63)	(4.41)	(3.15)	(1.50)	(8.09)	(6.65)	(9.59)
090	88.9	25	74	89	25	20	135	95	40	248	199	288
	(3.50)	(0.98)	(2.91)	(3.50)	(0.984)	(0.79)	(5.32)	(3.74)	(1.57)	(9.76)	(7.83)	(11.34)
115	114.3	30	91	111	32	25	170	120	45	293	227	338
	(4.50)	(1.18)	(3.58)	(4.37)	(1.260)	(0.98)	(6.69)	(4.72)	(1.77)	(11.54)	(8.94)	(13.31)
140	139.7	35	108	132	40	32	209.4	145.4	45	348	261	393
	(5.50)	(1.38)	(4.25)	(5.20)	(1.575)	(1.26)	(8.244)	(5.72)	(1.77)	(13.70)	(10.28)	(15.47)
165	165.1	40	123	152	50	40	250	170	60	417	325	477
	(6.50)	(1.57)	(4.84)	(5.98)	(1.969)	(1.57)	(9.84)	(6.69)	(2.36)	(16.42)	(12.80)	(18.78)
190	190.5	50	152	188	63	50	295.4	195.4	62	503	377	565
	(7.50)	(1.97)	(5.98)	(7.40)	(2.480)	(1.97)	(11.63)	(7.69)	(2.44)	(19.80)	(14.84)	(22.24)

<u>=</u>==

CA

Motor/Gearhead

XFC	Dimension CA												
Size	PS090	PS115	PS142	PS180	PS220	MPP115	MPP142	MPP190	MPP270				
075	113 (4.45)	115 (4.53)	-	-	—	98 (3.86)	109 (4.29)	-	-				
090	115 (4.53)	117 (4.61)	_	-	_	100 (3.94)	111 (4.37)	_	-				
115	-	130 (5.12)	158 (6.22)	-	-	—	113 (4.45)	136 (5.35)	-				
140	-	_	161 (6.34)	190 (7.48)	_	_	_	139 (5.47)	_				
165	-	-	164 (6.46)	193 (7.60)	-	—	-	-	183 (7.20)				
190	-	_	_	194 (7.64)	—	—	_	_	214 (8.43)				

Ó

FIRST ANGLE VIEW PROJECTION

Rear Trunnion Mount - Parallel

Dimensions - mm (in)

XFC Size	в	BA	Е	G	н	НС	J	КВ	кс
075	106 (4.17)	44 (1.73)	76.2 (3.00)	22 (0.87)	174.2 (6.86)	98 (3.86)	62 (2.44)	6.5 (0.26)	6.93 (0.27)
090	128 (5.04)	54 (2.13)	88.9 (3.50)	25 (0.98)	206.9 (8.15)	118 (4.65)	74 (2.91)	8 (0.31)	8.65 (0.34)
115	154 (6.06)	63 (2.48)	114.3 (4.50)	30 (1.18)	271 (10.67)	156 (6.14)	91 (3.58)	10 (0.39)	10.15 (0.40)
140	180 (7.09)	72 (2.83)	139.7 (5.50)	35 (1.38)	332.2 (13.08)	192.5 (7.58)	108 (4.25)	13 (0.51)	13.65 (0.54)
165	211 (8.31)	88 (3.46)	165.1 (6.50)	40 (1.57)	379.1 (14.93)	224 (8.82)	123 (4.84)	18 (0.71)	13.65 (0.54)
190	252 (9.92)	100 (3.94)	190.5 (7.50)	50 (1.97)	455.5 (17.93)	265 (10.43)	152 (5.98)	18 (0.71)	17.18 (0.68)

XFC		Ø						Add Stroke	
Size	TJ	TD _{f8}	TL	TE	ТМ	WF	LB	XJ	ZJ
075	74.5	20	16	112	80	38	249.5	169	287.5
	(2.93)	(0.787)	(0.63)	(4.41)	(3.15)	(1.50)	(9.82)	(6.65)	(11.32)
090	89	25	20	135	95	40	302	199	342
	(3.50)	(0.984)	(0.79)	(5.32)	(3.74)	(1.57)	(11.89)	(7.83)	(13.46)
115	111	32	25	170	120	45	356	227	401
	(4.37)	(1.260)	(0.98)	(6.69)	(4.72)	(1.77)	(14.02)	(8.94)	(15.79)
140	132	40	32	209.4	145.4	45	420	261	465
	(5.20)	(1.575)	(1.26)	(8.244)	(5.72)	(1.77)	(16.54)	(10.28)	(18.31)
165	152	50	40	250	170	60	505	325	565
	(5.98)	(1.969)	(1.57)	(9.84)	(6.69)	(2.36)	(19.88)	(12.80)	(22.24)
190	155	63	155	300	253	62	603	377	665
	(6.10)	(2.480)	(5.315)	(11.81)	(9.96)	(2.44)	(23.74)	(14.84)	(26.18)

Dimensions - mm (in)

XFC				Ø				
Size	В	BA	Е	FB	FJ	G	Н	НС
075	106	44	76.2	9	12	22	174.2	98
	(4.17)	(1.73)	(3.00)	(0.35)	(0.47)	(0.87)	(6.86)	(3.86)
090	128	54	88.9	11	14	25	206.9	118
	(5.04)	(2.13)	(3.50)	(0.43)	(0.55)	(0.98)	(8.15)	(4.65)
115	154	63	114.3	14	16	30	271	156
	(6.06)	(2.48)	(4.50)	(0.55)	(0.63)	(1.18)	(10.67)	(6.14)
140	180	72	139.7	18	20	35	332.2	192.5
	(7.09)	(2.83)	(5.50)	(0.71)	(0.79)	(1.38)	(13.08)	(7.58)
165	211	88	165.1	21	25	40	379.1	224
	(8.31)	(3.46)	(6.50)	(0.83)	(0.98)	(1.57)	(14.93)	(8.82)
190	252	100	190.5	22	30	50	455.5	265
	(9.92)	(3.94)	(7.50)	(0.87)	(1.18)	(1.97)	(17.93)	(10.43)

Add Stroke

XFC								
Size	J	КС	R	TF	UO	WF	LB	ZJ
075	62	6.93	52	105	125	38	249.5	287.5
	(2.44)	(0.27)	(2.05)	(4.13)	(4.92)	(1.50)	(9.82)	(11.32)
090	74	8.65	65	117	139.7	40	302	342
	(2.91)	(0.34)	(2.56)	(4.61)	(5.50)	(1.57)	(11.89)	(13.46)
115	91	10.15	83	149	175	45	356	401
	(3.58)	(0.40)	(3.27)	(5.87)	(6.89)	(1.77)	(14.02)	(15.79)
140	108	13.65	107	172	210	45	420	465
	(4.25)	(0.54)	(4.21)	(6.77)	(8.27)	(1.77)	(16.54)	(18.31)
165	123	13.65	120	215	260	60	505	565
	(4.84)	(0.54)	(4.72)	(8.46)	(10.24)	(2.36)	(19.88)	(22.24)
190	152	17.18	155	253	300	62	603	665
	(5.98)	(0.68)	(6.10)	(9.96)	(11.81)	(2.44)	(23.74)	(26.18)

Rear Clevis Mount - Parallel Only

Dime	Dimensions — mm (in)													
XFC Size	в	BA	СВ	Ø CD _{H9}	cw	E	FL	G	н	нс				
075	106	44	20	14	10	76.2	31	22	174.2	98				
	(4.17)	(1.73)	(0.79)	(0.551)	(0.39)	(3.00)	(1.22)	(0.87)	(6.86)	(3.86)				
090	128	54	30	20	15	88.9	46	25	206.9	118				
	(5.04)	(2.13)	(1.18)	(0.787)	(0.59)	(3.50)	(1.81)	(0.98)	(8.15)	(4.65)				
115	154	63	30	20	15	114.3	48	30	271	156				
	(6.06)	(2.48)	(1.18)	(0.787)	(0.59)	(4.50)	(1.89)	(1.18)	(10.67)	(6.14)				
140	180	72	40	28	20	139.7	59	35	332.2	192.5				
	(7.09)	(2.83)	(1.57)	(1.102)	(0.79)	(5.50)	(2.32)	(1.38)	(13.08)	(7.58)				
165	211	88	50	36	25	165.1	79	40	379.1	224				
	(8.31)	(3.46)	(1.97)	(1.417)	(0.98)	(6.50)	(3.11)	(1.57)	(14.93)	(8.82)				
190	252	100	60	45	30	190.5	87	50	455.5	265				
	(9.92)	(3.94)	(2.36)	(1.772)	(1.18)	(7.50)	(3.43)	(1.97)	(17.93)	(10.43)				
XFC								Add S	Stroke					

Size	J	КС	LR	М	MR	WF	LB	XC	ZC	ZJ
075	62	6.93	17	14	17	38	249.5	318.5	332.5	287.5
	(2.44)	(0.27)	(0.67)	(0.55)	(0.67)	(1.50)	(9.82)	(12.54)	(13.09)	(11.32)
090	74	8.65	29	20	25	40	302	388	408	342
	(2.91)	(0.34)	(1.14)	(0.79)	(0.98)	(1.57)	(11.89)	(15.28)	(16.06)	(13.46)
115	91	10.15	29	20	25	45	356	449	469	401
	(3.58)	(0.40)	(1.14)	(0.79)	(0.98)	(1.77)	(14.02)	(17.68)	(18.46)	(15.79)
140	108	13.65	34	28	34	45	420	524	552	465
	(4.25)	(0.54)	(1.34)	(1.10)	(1.34)	(1.77)	(16.54)	(20.63)	(21.73)	(18.31)
165	123	13.65	50	36	45	60	505	644	680	565
	(4.84)	(0.54)	(1.97)	(1.42)	(1.77)	(2.36)	(19.88)	(25.35)	(26.77)	(22.24)
190	152	17.18	53	45	54	62	603	752	797	665
	(5.98)	(0.68)	(2.09)	(1.77)	(2.13)	(2.44)	(23.74)	(29.61)	(31.38)	(26.18)

FIRST ANGLE VIEW PROJECTION

()

ØRD

e

Male Rod End

Order Code

А

Metric Thread

B Imperial Thread

Dimensions - mm (in)

XFC				K	K					
Size	Α	D	KB	Α	В	ØMM	NA	ØRD _{f8}	VL	WF
075	22 (0.87)	19 (0.75)	6.5 (0.26)	M16x1.5	5/8-18	36 (1.42)	24 (0.94)	65 (2.558)	10 (0.39)	38 (1.50)
090	28 (1.10)	24 (0.94)	8 (0.31)	M20x1.5	3/4-16	45 (1.77)	30 (1.18)	75 (2.952)	10 (0.39)	40 (1.57)
115	36 (1.42)	32 (1.26)	10 (0.39)	M27x2	1-14	56 (2.20)	40 (1.57)	95 (3.739)	12 (0.47)	45 (1.77)
140	45 (1.77)	39 (1.54)	13 (0.51)	M33x2	1 1/4-12	70 (2.76)	49 (1.93)	110 (4.329)	12 (0.47)	45 (1.77)
165	56 (2.21)	48 (1.89)	18 (0.71)	M42x2	1 1/2-12	90 (3.54)	60 (2.36)	135 (5.313)	14 (0.55)	60 (2.36)
190	63 (2.48)	55 (2.17)	18 (0.71)	M48x2	1 3/4-12	110 (4.33)	70 (2.76)	155 (6.101)	16 (0.63)	62 (2.44)

Rod Eye

Order

Code

С

Dimensions – mm (in)

XFC Size	AW	ØСВ	ØCK _{H9}	EM _{h13}	ER _{MAX}	LE	ØMM	► AW →
075	48 (1.89)	32 (1.26)	14 (0.551)	20 (0.787)	16 (0.63)	19 (0.75)	36 (1.42)	
090	61 (2.40)	40 (1.57)	20 (0.787)	30 (1.181)	20 (0.79)	32 (1.26)	45 (1.77)	
115	66 (2.60)	45 (1.77)	20 (0.787)	30 (1.181)	23 (0.89)	32 (1.26)	56 (2.20)	
140	73 (2.87)	60 (2.36)	28 (1.102)	40 (1.575)	30 (1.18)	39 (1.53)	70 (2.76)	
165	99 (3.90)	80 (3.15)	36 (1.417)	50 (1.969)	40 (1.57)	54 (2.13)	90 (3.54)	
190	104 (4.09)	100 (3.94)	45 (1.772)	60 (2.362)	50 (1.97)	57 (2.24)	110 (4.33)	øск Ц

FIRST ANGLE VIEW PROJECTION

О

Mounting Accessories

Dimensions – mm (in)

Rod Clevis

XFC Size	Part No.	CE	CL	CM _{A16}	ØCK _{H9}	CR	LK _{MIN}	ER _{MAX}	КК	Load Rating kN (lb)
075	0950250075	41 (1.61)	40 (1.57)	20 (0.787)	14 (0.551)	30 (1.18)	19 (0.75)	15.53 (0.61)	M16x1.5	20 (4,500)
090	0950250090	60 (2.36)	60 (2.36)	30 (1.181)	20 (0.787)	50 (1.97)	32 (1.26)	25.32 (1.00)	M20x1.5	34 (7,500)
115	0950250115	68 (2.68)	60 (2.36)	30 (1.181)	20 (0.787)	50 (1.97)	32 (1.26)	25.71 (1.01)	M27x2	54 (12,000)
140	0950250140	84 (3.31)	83 (3.27)	40 (1.575)	28 (1.102)	60 (2.36)	39 (1.54)	32.50 (1.28)	M33x2	80 (17,500)
165	0950250165	110 (4.33)	103 (4.06)	50 (1.969)	36 (1.417)	76 (2.99)	54 (2.13)	41.04 (1.62)	M42x2	120 (26,500)
190	0950250190	120 (4.72)	123 (4.84)	60 (2.362)	45 (1.772)	101.5 (4.00)	57 (2.24)	51.83 (2.04)	M48x2	178 (40,000)

Pivot Pin

XFC Size	Part No.	ØAA	Ø СК _{Н9}	EM	FL	ØНВ	LE _{MIN}	MR _{MAX}	тG	UD	Part No.	Ø EK _{f8}	EL
075	1448100000	59 (2.32)	14 (0.551)	20 (0.79)	29 (1.14)	9 (0.35)	19 (0.75)	17 (0.67)	41.7 (1.64)	64 (2.52)	1434790000	14 (0.551)	45 (1.77)
090	1448110000	74 (2.91)	20 (0.787)	30 (1.18)	48 (1.89)	13.5 (0.53)	32 (1.26)	29 (1.14)	52.3 (2.06)	75 (2.95)	1434800000	20 (0.787)	66 (2.60)
115	1448120000	91 (3.58)	20 (0.787)	30 (1.18)	48 (1.89)	13.5 (0.53)	32 (1.26)	29 (1.14)	64.3 (2.53)	90 (3.54)	1434800000	20 (0.787)	66 (2.60)
140	1448130000	117 (4.61)	28 (1.102)	40 (1.58)	59 (2.32)	17.5 (0.69)	39 (1.54)	34 (1.34)	82.7 (3.26)	115 (4.53)	1434810000	28 (1.102)	87 (3.43)
165	1448140000	137 (5.39)	36 (1.417)	50 (1.97)	79 (3.11)	17.5 (0.69)	54 (2.13)	50 (1.97)	96.9 (3.82)	127 (5.00)	1434820000	36 (1.417)	107 (4.21)
190	1448150000	178 (7.01)	45 (1.772)	60 (2.36)	87 (3.43)	26 (1.02)	57 (2.24)	53 (2.09)	125.9 (4.96)	165 (6.50)	1434830000	45 (1.772)	129 (5.08)

Electric Cylinders

OPTIONS & ACCESSORIES Motors, Gearheads & Adapter Plates

Motor and gearhead selection is critical to the performance of the XFC electromechanical cylinder and must be sized based on the application requirements.

The tables below and on the next page provide information on Parker MPP motors or PS Series gearheads that are appropriate with the XFC.

A motor-only selection is typically used in high-speed/low-force

MPP Series Motors

Dimensions – mm (in)

applications, whereas a motor/ gearhead combination is beneficial for slow speed/high force.

Standard configurations are available if a number is listed in the adapter plate columns (MAP, LAP). This number represents the adapter plate width and corresponds to the appropriate size motor and gearhead.

HD

sQ

LD

Parker

MPP Series Motor

LM

Adapter Plate

MAP

If the number is zero, the motor or gearhead combination is possible, but an adapter plate is not required. A dash indicates that a suitable combination is not available as a standard configuration.

Consult the factory to inquire about other options or configurations.

		MAP																
MPP	Motor						Inline					Parallel						
Size	Length	LM	LD	HD	Ρ	075	090	115	140	165	190	075	090	115	140	165	190	
	2	152.4 (6.00)	89.2 (3.51)					—	-	-	-			-	-	-	-	
115	3	177.8 (7.00)	115.2 (4.54)	159.0 (6.26)	113.0 (4.45)	0.0	0.0	0.0 —	-	-	-	12 12 (0.47) (0.47)	-	-	-	-		
	4	203.2 (8.00)	140.2 (5.52)					—	-	—	—			-	-	-	-	
	2	172.9 (6.81)	9 109.9) (4.33)	.9 3) .8 3) 188.8 .9 (7.43) 4)						-	-	-	-		-	-	-	-
142	4	223.7 (8.81)	160.8 (6.33)		142.7	16	16 (0.63)	16) (0.63)	-	-	-	-	16	16 – (0.63) _	-	-	-	
	6	274.5 (10.81)	211.9 (8.34)		(5.62)	(0.63)			-	-	—	-	(0.63)		-	-	-	
	8	325.3 (12.81)	261.9 (10.31)						-	-	-	-			-	-	-	
	4	224.0 (8.82)	110.3 (4.34)			-	-			-	-	-	-			-	-	
190	6	275.0 (10.83)	161.3 (6.35)	260.1 (10.24)	184.9 (7.28)	-	-	25 (0.98)	25 (0.98)	-	-	-	-	25 (0.98)	25 (0.98)	-	-	
	8	325.3 (12.81)	211.3 (8.32)			-	-			—	—	—	—			—	-	
270	6	293.3 (11.55)	175.3 (6.90)	335.9	266.7	-	_	_	30	30	_	-	-	-	-	30	-	
210	8	344.1 (13.55)	255.5 (10.06)	(13.22)	(10.50)	-	_	_	(1.18)	(1.18)	_	-	-	-	-	(1.18)	-	

Note: Make sure the output torque on the motor is sufficient for the application. MPP torque information can be found at www.parkermotion.com

Motor Brake Option

For vertical applications, a static brake should be used to resist back-driving the screw mechanism. A motor brake increases the overall length of the motor as indicated in the chart.

Brake Option Additional Motor Length

Motor size	092	100	115	142	190	270
LM and LD	34.5	48.5	48.5	51.6	89.0	127.0
Increase by:	(1.36)	(1.91)	(1.91)	(2.03)	(3.50)	(5.00)

For specific motor holding torque, refer to MPP motor data at www.parkermotion.com

OPTIONS & ACCESSORIES

PS Series Gearheads

Dimensions - mm (in)

Gear	MPP	Motor													
size	Size	Length	LM	LD	HD	Ρ	GA	LGH	075	090	115	140	165	190	
PS90	092	1 2 3	127.2 (5.01) 152.6 (6.01) 178.0 (7.01)	64.2 (2.53) 90.2 (3.55) 115.2 (4.52)	136.4 (5.37)	88.8 (3.50)	90 (3.54)	89.5 (3.52)	19	0.0	_ _ _	_ _ _	_ _ _	- - -	
	100	2 3	149.1 (5.87) 174.5 (6.87)	86.2 (3.39) 111.2 (4.38)	143.8 (5.66)	97.8 (3.85)		98 (3.86)	(0.73)		_	_	_ _	_	
	092	1 2 3	127.2 (5.01) 152.6 (6.01) 178.0 (7.01)	64.2 (2.53) 90.2 (3.55) 115.2 (4.52)	136.4 (5.37)	88.8 (3.50)						_ _ _	_ _ _	_ _ _	
PS115	100	2 3	149.1 (5.87) 174.5 (6.87)	86.2 (3.39) 111.2 (4.38)	143.8 (5.66)	97.8 (3.85)	115 (4.53)	114.2 (4.50)	24 22 (0.94) (0.87)	22 (0.87)	0.0	_	_	_	
	115	2 3 4	177.8 (7.00) 203.2 (8.00)	115.2 (4.54) 140.2 (5.52)	159.0 (6.26)	113.0 (4.45)						_ _ _	_ _ _	_ _ _	
PS142	100	2 3 2	149.1 (5.87) 174.5 (6.87) 152.4 (6.00)	86.2 (3.39) 111.2 (4.38) 89.2 (3.51)	143.8 (5.66)	97.8 (3.85)			-	_				_	
	115	2 3 4	177.8 (7.00) 203.2 (8.00)	115.2 (4.54) 140.2 (5.52)	159.0 (6.26)	113.0 (4.45)	142 (5.59)	133.7 (5.26)	-	-	29 (1 14)	5.0 (0.20)	5.0 (0.20)	_	
	142	2 4 6 8	172.9 (6.81) 223.7 (8.81) 274.5 (10.81) 325.3 (12.81)	109.9 (4.33) 160.8 (6.33) 211.9 (8.34) 261.9 (10.31)	188.8 (7.43)	142.7 (5.62)	(0.00)	(0.20)	(1 (1 	()	(0120)	()			
	115	2 3 4	152.4 (6.00) 177.8 (7.00) 203.2 (8.00)	89.2 (3.51) 115.2 (4.54) 140.2 (5.52)	159.0 (6.26)	113.0 (4.45)		148.5 (5.85)	- - -	- - -	- - -				
PS180	142	2 4 6 8	172.9 (6.81) 223.7 (8.81) 274.5 (10.81) 325.3 (12.81)	109.9 (4.33) 160.8 (6.33) 211.9 (8.34) 261.9 (10.31)	188.8 (7.43)	142.7 (5.62)	182 (7.17)	151 (5.95)	_ _ _	_ _ _	_ _ _	24 (0.94)	24 (0.94)	0.0	
	190	4 6 8	224.0 (8.82) 275.0 (10.83) 325.3 (12.81)	110.3 (4.34) 161.3 (6.35) 211.3 (8.32)	260.1 (10.24)	184.9 (7.28)		192.5 (7.58)	_ _ _	_ _ _	_ _ _				
PS220	190	4 6 8	224.0 (8.82) 275.0 (10.83) 325.3 (12.81)	110.3 (4.34) 161.3 (6.35) 211.3 (8.32)	260.1 (10.24)	184.9 (7.28)	220	212 (8.35)						36	
	270	6 8	293.3 (11.55) 344.1 (13.55)	175.3 (6.90) 255.5 (10.06)	335.9 (13.22)	266.7 (10.50)	(0.00)	252 (9.92)	_	_	_	_	_	(1.42)	

¹ LAP dimension is required for parallel mounting only; 0.0 means no adapter plate required. Inline configurations do not require adapter plates.

Note: Make sure the output torque on the gear head is sufficient for the application. PS torque information can be found at www.parkermotion.com

Compax3 Drive/Controller

Compax3 Power Range Current A_{RMS} Compax3 Device Supply Voltage Cont I_{neak}(<5s) S025V2 2.5 5.5 1Ø230/240VAC S063V2 6.3 12.6 S100V2 10 20 3Ø230/240VAC S150V2 15 30 S038V41 3.8 9.0 7.5 S075V41 15 3Ø400/480VAC S150V41 15 30 S300V41 30 60 H050V41 50 75 H090V41 90 135 3Ø400/480VAC H125V41 125 187.5 155 232.5 H155V41

1Rated at 400 VAC

Standard Features

- Power range of 1kW...75kW
- 8 digital inputs, 4 digital outputs
- Available with ETHERNET Powerlink, and EtherCat
- RS232 / RS485 interfaces
- 2 analog inputs (+/-10V, 14 bits)
- 2 analog outputs (+/-10V, 8 bits)
- Encoder input or output
- Motors supported:
 - Synchronous servo motors
 - Asynchronous motors
 - Linear motors
 - Torque motors
- Position sensing at the motor shaft via:
 - Resolver
 - Rotary/linear encoder
 - Sine-cosine feedback
 - Hiperface interface
 - EnDat 2.2 interface
 - Compatible with most feedback systems
- Support for SSI feedback

Extensions

- Real-time bus for axis coupling
- Scalable technology and
- control functions
- Integrated or external controls

Functions (summary)

- Programmable according to IEC61131-3
- Reg-related positioning, electronic gearing, dynamic positioning (motion superimposition) and torque-force control
- Cam modular, with coupling and decoupling functions, cam switching mechanism

Technologies

- T10: Step/Direction and Analog Command Input
- T11: Positioning indexer
- T30: IEC61131-3 Positioning with function modules according to PLCopen
- T40: IEC61131-3 Positioning plus Cam function modules

Electric Cylinders

For further information on Compax3 Drive/Controllers or assistance

with sizing and selection, please consult parkermotion.com, or

consult the factory

Complementary Parker Products

Parker offers HMI solutions for any application from simple push button replacement through sophisticated networking, multimedia and data logging requirements. Products range from entry level embedded displays through full Windows-based Industrial PC solutions.

Parker offers a broad family of motors with unparalleled performance, a torque range of 1.2 in-lbs to 4000 in-lbs and complete customization capabilities. For higher torque requirements, Parker's Stealth gearheads are the perfect solution.

Alarm History Son

(

Solid State Switches

Global Drop-In Solid State Switches

Specifications

Switch Classification	Standard PNP or NPN
Туре	Electronic
Output Function	Normally Open/Closed
Switch Output	PNP/NPN
Operating Voltage	10 - 30VDC
Continuous Current	100 mA max.
Response Sensitivity	28 Gauss min.
Switching Frequency	5 KHz
Power Consumption	10 mA max.
Voltage Drop	2.5 VDC max.
Ripple	10% of Operating Voltage
Hysteresis	1.5 mm max.
Repeatability	0.1 mm max.
EMC	EN 60 947-5-2
Short-circuit Protection	Yes
Power-up Pulse Suppression	Yes
Reverse Polarity Protection	Yes
Enclosure Rating	IP68
Shock and Vibration Stress	30g, 11 ms, 10 to 55Hz, 1 mm
Operating Temperature Range	-25°C to +75°C (-13°F to +167°F)
Housing Material	PA 12 Black
Connector Cable	PVC
Connector	PUR

Global solid state switch outputs may be influenced by an external magnetic field. Care must be taken to avoid external magnetic field exposure.

Solid State Switch Ordering Information

PI	NP*	NPN			
Nomally Open	Normally Closed	Normally Open	Normally Closed		
P8S-GPFIX	P8S-GQFIX	P8S-GNFIX	P8S-GMFIX		
P8S-GPFTX	-	P8S-GNFTX	-		
P8S-GPSHX	P8S-GQSHX	P8S-GNSHX	P8S-GMSHM		
P8S-GPSCX	-	P8S-GNSCX	-		
Yes	Yes	No	No		
	PI Nomally Open P8S-GPFIX P8S-GPFTX P8S-GPSHX P8S-GPSCX Yes	PNP*Nomally OpenNormally ClosedP8S-GPFIXP8S-GQFIXP8S-GPFTXP8S-GPSHXP8S-GQSHXP8S-GPSCXYesYes	PNP*Normally ClosedNormally OpenNomally OpenNormally ClosedNormally OpenP8S-GPFIXP8S-GQFIXP8S-GNFIXP8S-GPSHX-P8S-GNSHXP8S-GPSCX-P8S-GNSCXYesYesNo		

*PNP needed for Compax3 Servo Drive.

Tie Rod Bracket Assembly

Global switch bracket fits XFC 075 – 115 cylinders. Global switches and bracket assemblies must be ordered separately.

ORDERING INFORMATION

Select an order code from each of the numbered fields to create a complete XFX model order number. Include hyphens and non-selective characters as shown in example below.

			Ū	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	U	(12)	(13)	(14)	(15)		(16)
0	rder Exa	ample:	XFC	075	LA	05	J	Ν	Α	Α	Ν	XXXX	– A	03 -	- A09A	Α	1	-	Α
1	Series	Extreme	Force	Cylind	or					5	PI	rimary N	/lount						
	A U	Extronito	1 0100	O yill lo	01					6	S	econdar	y Mour	nt					
2	Frame	Size									In	line Mo	tor Con	figura	ation				
	075	75 mm									С	Fo	oot Mou	nt					
	090	90 mm									J	Fr	ont Flan	ge Mc	bunt				
	115	115 mm	l								K	E>	ktended	Tie Ro	od Mount	(Fro	nt)		
	165	165 mm	1								Т	Re	ear Trun	nion N	1ount				
	190	190 mm	1								Ν	N	o Secon	idary N	Nount				
(3)	Confia	uration									Pa -		lotor C	onfigu	uration				
\cup	Inline N	Notor									B	Re	ear Clev	is					
	LA	Mountin	q Posit	ion A*								FC		nt					
	LB	Mountin	g Posit	ion B*							н	Re Fi	ear Flang	ge					
	LC	Mountin	g Posit	ion C*							J	Fr	oni Fian	ige ivic	ouni a al Maximt	/ Г ие	(t		
	LD	Mounting	g Posit	ion D*									(tended		od Mount		nii)		
	Paralle	I Motor	-										denueu dended		od Mount		nt Q	Doc	nr)
	PA	Mounting	g Posit	ion A*							IVI T		ar Trup		Ja Mount	(FIO	ΠQ	nea	u)
	РВ	Mounting	g Posit	ion B*							I N			dan N	Nount				
	РС	Mounting	g Posit	ion C*							IN	INC	0 Secon	iuary n	viount				
	PD	Mounting	g Posit	ion D*						7	R	od End							
	0										Α	М	etric Thi	read –	Male Enc	ł			
4	Screw			0075	000		1 4 0 \				В	In	nperial T	hread	– Male Er	nd			
	10			·0075,	090,	115,	140) 140 1	65 t	00)		С	R	od Eye						
	10				,090, = 0.10	115, ()	40, 1	65, 1	90)		Х	Sp	oecial						
	20	20 mm L	_eau (×	FUTO	0 & 19	0)				(8)	L	ubricatio	on						
										C		Oi	il Filled F	Port Po	osition A*				
*	Motor	Mountin	ng and	d Port	Pos	ition	5				В	Oi	il Filled F	Port Po	osition B*				
			[7:1							с	Oi	il Filled F	Port Po	osition C*				
	Note: Moto in position	or shown "A"	0	0							D	Oi	il Filled F	Port Po	osition D*				
	for all mou dimension	nting pages	-	A							Е	G	rease Fil	led (red	quired for	verti	cal a	ppli	cations)
	C.		<u>e</u> 		0	[0]	. –				*R po	efer to illus sition and	tration at I the motor	eft. For (mount (parallel conf position can	igurat Inot b	ions, e the	the c sam	vil fill port ə.
	Ľ	≝ D 			 	3 ⊧ ⊸⊦	3			9) 0	ptions							
		<u>0) </u>	<u>, (</u> ⊕.∖ 		(0)	(O j					Α	Pr	repped f	or Lim	it Switche	€S*			
			0	<u></u>							в	Fl	uorocarl	oon Se	eals				
			-	U اچ							С	Fl	uorocarl	oon Se	eals and L	imit	Swit	ch l	Ready*
											Ν	N	one						-
									_										

*Options A and C are only available with XFC 075, 090 and 115 with grease-filled lubrication

10 Stroke Length – mm

50 - 2000 mm (See Specifications for maxXXXXstroke by bore size. For stroke <50 or >2000please consult factory)

(1) Gearhead Frame Size ¹⁾

- A PS90 Frame for Size XFC075 & 090
- B PS115 Frame for Size XFC075, 090 & 115
- C PS142 Frame for Size XFC115, 140 & 165
- D PS180 Frame for Size XFC140, 165 & 190
- E PS220 Frame for Size XFC190
- X Special
- N No Gearhead (Motor only)

(12) Gearhead Ratio

- 00 No Gearhead
- 03 Gearhead with 3:1 ratio
- **04** Gearhead with 4:1 ratio
- **05** Gearhead with 5:1 ratio
- 07 Gearhead with 7:1 ratio
- 10 Gearhead with 10:1 ratio
- XX Custom Gear Ratio

(B) Motor Selection* 1)

	240 VAC		460 VAC
A09A	MPP0921C	A09B	MPP0921R
A09C	MPP0922D	A09D	MPP0922R
A09E	MPP0923D	A09F	MPP0923R
A10A	MPP1002D	A10B	MPP1002R
A10C	MPP1003C	A10D	MPP1003R
A11A	MPP1152D	A11B	MPP1152R
A11C	MPP1153C	A11D	MPP1153R
A11E	MPP1154B	A11F	MPP1154P
A14A	MPP1422C	A14B	MPP1422R
A14C	MPP1424C	A14D	MPP1424R
A14E	MPP1426B	A14F	MPP1426P
-	_	A14G	MPP1428Q
-	_	A19A	MPP1904P
A19B	MPP1906B	A19C	MPP1906P
-	_	A19D	MPP1908P
	_	A27A	MPP2706P
_	_	A27B	MPP2708N

X00X	Special	X00X	Special		
*Refer to Motors, Gearheads & Adapter Plates in Options & Accesories for motor pairing options by bore size.					

(14) Motor Feedback ²⁾

- A 2000 Count Encoder (1E)
- B 2000 Count Encoder Serial Interface (3E)
- **C** Single Speed Resolver (41)
- D Multi-Turn Absolute Encoder (6S)
- **E** Single-Turn Absolute Encoder (9S)
- N No Motor or Special Motor

(15) Motor Options* 2)

- 1 No Brake
- 2 24 VDC Brake (B)
- 3 Shaft Seal (V)
- 4 24 VDC Brake (B) and Shaft Seal (V)

0 No Motor or Special Motor

*Brake required for vertical applications

16 Revision Identifier

в

A Standard Cylinder

Anti-rotation Option (When selecting antirotation option, grease filled option must also be selected [Option "E" from (8) Lubrication

section]. Consult factory for rotation torque greater than stated catalog values in Specifications)

Includes proper mounting surface for selected gearhead and motor.
 For customer supplied motors, not provided by Parker, select option "N" for Motor Feedback and "0" for Motor Options.

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

Rotary and Lift Positioning

Delivering precise positioning for rotary or vertical motion, products in this section have been designed for high performance and flexibility of use. They are designed to function independently or in conjunction with linear stages. Accurate and robust, these components integrate with other Parker motion control elements, streamlining the machine design process.

- Multiple drive train options available
- Profile stages as small as 80 mm in diameter
- Speed up to 600 rpm
- Repeatability to +/- 1 arc-sec
- Easily mountable to other Parker Stages to form multi-axis systems

mPR Miniature Precision Rotary Stage

Self-contained stage includes direct drive motor, high resolution feedback, and high precision rotary bearing. Easily mounted to existing Parker product lines. Page 472.

RM Series Worm Drive Rotary Tables

The RM Series offers an unparalleled combination of smooth operation plus high accuracy and high-load capacity. **Page 496.**

ZP200 Vertical Lift "Wedge" Stages

Support platform providing precise vertical translation and positioning while maintaining X-Y integrity. **Page 507.**

PM-DD Powerful Direct Drive Motors

Ideal for applications that require attaching a load directly to the motor, the PMDD offers robust power and smooth motion with no backlash. Page 487.

200RT Series Rotary Tables

Low profile and light weight make these ideal indexing units for multi-axis combinations with highprecision linear tables. **Page 501.**

The mPR Series Miniature High Precision Rotary Stage

- Compact size
- Self-contained stage includes direct drive motor, high resolution feedback, and high precision rotary bearing
- Easily mounted to existing Parker mSR, MX, and XR product lines
- Very high precision rotary motion

multi-axis system.

Typical Enhancements

- Hall effect sensors for commutation
- Direct mounting pattern for mSR, MX, and XR products
- 3 meter length high-flex cables
- Integrated servo motor
- Ample through hole

Maximum Diameter (mm)

Maximum Payload (N)

Maximum Velocity (rpm)

- Clean room option available
- 3 digital encoder resolution options, plus a 1 Vp-p analog option
- CE and RoHS compliant as standard

mPR Series

104

117

600

					-
Π					
H		0	6		T
mPR80					

mPR100

The Miniature Precision Rotary (mPR) stage is designed to meet the needs of OEMs and machine builders seeking very high precision in a compact direct drive product.

Two form factors of 80mm and 104mm diameter mount easily on top of small linear motion axes for building complete multi-axis motion systems.

The mPR is lightweight without sacrificing precision and stiffness and delivers excellent torque density.

High angular resolution and precision angular repeatability, combined with high precision runout values, make the mPR a high performer in the field of precision rotary motion control.

The mPR is driven with a direct drive, 3 phase AC servo motor which is integrated directly to the products Aluminum base. The direct drive eliminates mechanical compliance which might exist from gearing or screw driven devices. As a result the mPR delivers excellent angular dynamic response, and high precision rotary positioning. The combination of all of these features make the mPR the ideal stage for applications in laser processing, electronics manufacturing, semiconductor inspection, and high precision metrology.

For examples of multi-axis systems, visit **www.parker.com**/ **emn/mPR.**

mPR Design Advantages

(1) **Tapped Holes and Dowel Pinning**

The mPR has tapped holes in both the top and base for ease of mounting and dowel pins to ensure repeatable mounting when mounting additional tooling to the stage.

(2) **High Flex Cabling**

The mPR uses high flex cabling as standard to ensure maximum life of the stage regardless of whether it's integrated into a multi or single axis system.

(3) Integrated, Optical Linear Encoder

The mPR provides maximum versatility with three different optical digital encoder resolutions and an analog sine/cosine option. Easily change resolutions with an external interface, instead of changing the entire head.

Frameless Kit Motor Direct Drive 4) The frameless kit motor is directly integrated with the drive train to deliver reliable performance in small spaces.

(5) **High Precision Crossed Roller Bearings**

High performance precision-grade bearings have up to five times the life expectancy of typical ball bearings. These bearings are lubricated for the life of the product to reduce maintenance.

Standard Features

Travel	360 Degree Continuous			
Motor	Frameless Direct Drive Motor (will hall Effect Device)			
Feedback	Non-Contact Optical Encoder			
Scale	20um Pitch Stainless Steel Ring			
Resolution	1Vp-p Analog Output (see specifications) Digital Output Options (see specifications)			
Sensors	Integrated Home Mark (Encoder Channel C)			
Runout	Axial: < 6um available (see specifications) Radial: < 6um available (see specifications)			
Bearings	High Precision Crossed Roller Bearings			
Encoder Cable	High Flex, 10M Cycle, 3m length			
Motor / Hall Cable	Integrated with Motor			
Structure	Anodized Aluminum 6064-T6			
Environment	Standard Optional: Clean Room			
Temperature	0–50 degrees Celsius			
Humidity	10–80% Non-Condensing			

(6) Clean Room Tested

Limited contact surfaces within the product make the mPR ideal for clean room applications. Higher clean room versions are available for order as custom. Contact the Parker applications engineering department for more details at 1.800.358.9070.

able Rotar

FEATURES

Application Solutions: Rotary Driven Automation Tables

Electronics Manufacturing

The mPR is an ideal theta axis for electronics manufacturing given its combination of tight geometric performance, precision and speed. The combination of precision cross roller bearing, high resolution feedback device, and high performance servo drive make the mPR extremely responsive for high speed pick and place of miniature components for electronics manufacturing. In addition to its geometric and dynamic performance, the mPR is also very robust, as it is designed for 100% duty cycle, and lubricated for the life of the product, requiring no preventative maintenance.

Laser Machining and Laser Processing

The mPR is an excellent rotary axis for laser machining and laser processing applications given its spectacular bearing performance and smooth motion. Regardless if cutting, marking, etching or welding the mPR is an ideal rotary stage for laser processing equipment given the tight integration of slotless rotary servo motor, high resolution feedback and high precision rotary bearing. The combination of all these key design elements in the mPR will make all features in the work piece smooth and precisely positioned.

Semiconductor Manufacturing, Handling, and Metrology

The mPR in combination with other Parker precision linear axes (XR, mSR, and MX) make ideal building blocks for applications in semiconductor manufacturing, handling, and metrology. The precision and clean operation make the mPR ideal for applications for skew adjustment of the wafer. Direct mounting to the XR, mSR and MX is also very advantageous when making XY-theta systems.

Precision Metrology

The mPR makes for a spectacular rotary axis for automated metrology equipment. Smooth precise angular motion, and limited runout errors make the mPR an ideal rotary stage for optical metrology equipment measuring miniature parts or features. The compact size and ease of integration make the mPR an ideal rotary compliment to multi axis metrology systems.

SPECIFICATIONS mPR80

(80 mm diameter profile)

The mPR80 is a miniature precision rotary stage that has been engineered to deliver a combination of modularity, flexibility, and performance in an extremely compact package.

Stage Information		
Stage Mass	kg	1.45
Max Load (Axial)	kg	4.0
Max Load (Radial)	kg	4.0
Moving Mass	kg	0.54
Rotating Moment of Inertia	kg*mm^2	320

Motor Information

Stall Current	Arms	1.6
Peak Current	Arms	5.04
Voltage Constant	Vrms/krpm	13.86
Torque Constant	Nm/Arms	0.229
Resistance	Ohms	6.5
Inductance	mH	5.5
Stall Torque Continuous	Nm	0.36
Peak Torque	Nm	0.9
Max Bus Voltage	Vdc	340
Max Winding Temperature	Degree C	125
Winding Thermal Resistance	Deg C / watt	2.36
Magnet Pitch	Deg	120
Motor Thermal Time Constant	minutes	11
Motor Cable Diameter	mm	4.7
Encoder Diameter	mm	4.5
Cable Length	m	3

Rotary Tables

			Encode	er Option	
Encoder Dependent Specifications		E1	E2	E3	SC
Travel	Degrees	360	360	360	360
Home Position Location	+/- Degrees	1	1	1	1
Encoder lines Per Revolution	lines / rev	11,840	11,840	11,840	11,840
Encoder Resolution	Arc-Sec	5.47	0.547	0.0547	Analog Sine/Cos
Bi-directional Repeatability	+/- Arc-Sec	11	2.5	1.25	*
Axial Runout	μm	6	6	6	6
Radial Runout	μm	6	6	6	6
Wobble	Arc-Sec	15	15	15	15
Max Velocity	RPM	600	100	10	600

* SC encoder resolution is dependent upon drive input resolution.

mPR100 (104 mm diameter profile)

The mPR100 is a self-contained precision rotary stage, including a direct drive motor, feedback device, and precision rotary bearings.

Stage Information		
Stage Mass	kg	2.9
Max Load (Axial)	kg	12.0
Max Load (Radial)	kg	12.0
Moving Mass	kg	1.0
Rotating Moment of Inertia	kg*mm^2	1000

Motor Information

Arms	3.79
Arms	11.95
Vrms/krpm	41.28
Nm/Arms	0.68
Ohms	3.9
mH	8.9
Nm	2.0
Nm	6.2
Vdc	340
Degree C	125
Deg C / watt	1.02
Deg	60
minutes	28
mm	7.5
mm	4.5
m	3
	Arms Arms Vrms/krpm Nm/Arms Ohms MH MM MM Vdc Degree C Degree C Deg C / watt Deg minutes mm mm

			Encoder I	nterpolator	
Encoder Dependent Specifications		E1	E2	E3	SC
Travel	Degrees	360	360	360	360
Home Position Location	+/- Degrees	1	1	1	1
Encoder lines Per Revolution	lines / rev	15,744	15,744	15,744	15,744
Encoder Resolution	Arc-Sec	4.116	0.4116	0.0412	Analog Sine/Cos
Bi-directional Repeatability	+/- Arc-Sec	10	2	1	*
Axial Runout	μm	6	6	6	6
Radial Runout	μm	6	6	6	6
Wobble	Arc-Sec	12.5	12.5	12.5	12.5
Max Velocity	RPM	600	95	9.5	600

* SC encoder resolution is dependent upon drive input resolution.

Speed-Torque Performance

Parker MotionSizer sizing software available for free download at www.parker.com/emn.

Below are speed-torque performance curves at a variety of different bus voltages supplied to the mPR. To achieve full speed-torque performance of the motor, a bus voltage of 170–340 volts is required. **Note: Speed is limited by encoder resolution. See specifications sheet for limits.*

Rotary Tables

Motor Hall and Power Cable Information

Male 9 Pin D-Sub							
Color	Function	Pin Number					
Black	Hall Power	5					
White	Hall Ground	6					
Yellow	H1	7					
Blue	H2	8					
Green	H3	9					

Motor Leads					
Color	Function				
Red	U				
Brown	V				
Orange	W				
Green/Yellow	Ground				

Stage Wiring Encoder Information

Optical Encoder (E1, E2, E3 Option)

Function	Signal	Pin #
Dowor	5 Volts DC	8
Power	Ground	2, 9
	A+	14
In even entel Signale	A-	6
incremental Signals	B+	13
	B-	5
Deference Mark	Z+	12
Reference Mark	Z-	4
Limits*	Not connected	10, 11
Setup	(Used in installation)	1
Error Output	NPN	3

Sine Cosine Encoder (SC Option)

Function	Signal	Pin #
Bower	5 Volts DC	4, 5
Power	0 Volts DC	12, 13
	Cosine +	9
Incromontal Signala	Cosine -	1
incremental Signals	Sine +	10
	Sine -	2
Poforonoo Mark	Z+	3
	Z-	11
Limits*	Not connected	7, 8
Setup	(Used in installation)	6
Remote Calibration	NPN	14

* The mPR is not equipped with limit sensors. However, the unit's encoder system can be equipped with limit sensors "integral" to the scale. Consult the factory for more information.

Moment Loading

Below are two plots indicating the maximum allowable moment arms at a given payload to ensure product life of 1 billion revolutions.

Rotary Tables

CONFIGURATIONS

mPR80 Multi-Axis Cartesian Robot Configurations

Тор

DIMENSIONS mPR80 Dimensions

Download 2D & 3D files from www.parker.com/emn/mPR

DIMENSIONS

DIMENSIONS

mPR100 Dimensions

OPTIONS & ACCESSORIES

Parker Drives and Cable Accessory Part Numbers

Encoder Type	Drive	Cable Interconnect Part Number
Digital	IPA	006-2690-01
Analog	IPA	006-2692-01
Digital	P Series	006-2691-01
Digital/Analog	Motor Power and Hall Flying Lead	006-2678-01
Digital	Digital Encoder Flying Lead	006-2679-01
Analog	Analog Encoder Flying Lead	006-2680-01

ORDERING INFORMATION mPR Series

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8		
	Order I	Example:	mPR	080	D	Α	E2	Н	3	Ν		
1	Series mPR											
2	Size 080 100	80mm 104mm										
3	Drive D	Direct										
4	Motor C	Option										
	Α	Standard Option										
5	Encode	r Resolution										
		mPR80	mPR1	00								
	E1	5.47 Arc-Sec	4.116	Arc-Sec)							
	E2	0.547 Arc-Sec	0.4116	6 Arc-Se	ЭС							
	E3	0.0547 Arc-Sec	0.0412	2 Arc-Se	ec .							
	SC	Analog Sine/Cosine	Analog	g Sine/C	osine							
6)	Home											
0	Н	Н										
7	Cable C	ption										
	3	3 meter high-flex										
8	Clean R	loom Option										
	Ν	Standard Class 1000										
	*	Consult factory for higher	cleanroo	m optio	ns							

mPR Drive Solutions

Drive/Control Solutions

The Intelligent Parker Amplifier, or IPA, is a versatile servo drive/ controller based on the ACR control platform.

The IPA provides a dual port Ethernet interface which gives the machine builder the flexibility needed to create cost effective motion control solutions.

The IPA operates as a fully programmable stand-alone motion controller with on-board I/O and virtual axis capability or can be integrated into a PLC or PC-based machine control solution. Software tools are included to optimize motion performance and efficiently monitor and manage the application.

EtherNet/IP gives IPA users a popular connectivity option to PLCs for easy integration of servo motion in larger machine control application. The IPA is an EtherNet/IP adapter device supporting both I/O and Explicit Messaging. Add-On Instructions are available for seamless integration with Logix controllers.

Drive Solutions

P Series Drive

P Series - DC version

The P-Series drives operate with a variety of machine control architectures, and offer sophisticated servo functionality. Accurate and easy to use inertia detection leads to fast set-up of tuning parameters and minimal settling time.

Advanced filtering and vibration suppression features can be used to increase throughput and improve positioning performance. For high speed, real-time network applications, the P-Series is available with, EtherCAT, the fastest growing, most flexible industrial Ethernet protocol. Ideal for use with the Parker Automation Controller, the P-Series also follows the open standards for EtherCAT.

The Pulse version can be configured for step and direction control input and includes analog inputs for torque or velocity control. Select Indexer mode to create up to 64 position table entries triggered via inputs or over a RS422 interface.

The PM-DD Series Powerful Direct Drive Rotary Motors

- Robust power and smooth motion with no backlash
- Ideal for applications that require attaching a load directly to the motor
- Compact and accurate with high torque density
- Easily configured with multiple control options
- Very high precision
 rotary motion
- Easy configuration
- Multiple control options
- Predefined Profile mode provides ideal indexing features for your machine
- EtherCAT gives high speed communication for multiaxis solutions

PM-DDB06B

PM-DDFA6G

PM-DD Series

360

15,000 500

* Several other sizes available. Bracket shown is only available with home switch option.

Maximum Diameter (mm)

Maximum Payload (N)

Maximum Velocity (rpm)

CC	Rolls

P Series direct-drive rotary motors are high performance integrated positioning systems. The combination of high torque, zero backlash, and precision bearing structure results in fast settling time and outstanding accuracy.

The PM-DD servo motor is designed to provide high torque and high accuracy. Tapped mounting holes and a hollow through bore allow this robust motor to be used in a variety of applications that require the load to be attached directly to the motor. By eliminating the use of couplings or belts, the load can be driven in a smooth, nearly frictionless motion with no backlash.

PM-DD motors are a perfect match with the P Series Servo Drives. The absolute encoders in the motor populate motor nameplate data back to the drives for simplified commissioning. Accurate and easy to use inertia detection leads to fast setup of tuning parameters and minimal settling time. Once the motor is connected to a P series drive, it will automatically recognize the motor. The pulse version of the drive can be configured for step and direction control input and includes analog inputs for torque or velocity control. Select indexer mode to create up to 64 position table entries triggered via inputs or over a RS422 interface.

For high speed, real-time network applications, the P-Series is available with EtherCAT, the fastest growing, most flexible industrial Ethernet protocol. Ideal for use with the Parker Automation Controller, the P-Series also follows the open standards for EtherCAT.

(**1**) Winding

Optimized winding structure provides high performance in a compact package.

(2) Encoder

For accurate control, the PM-DD is equipped with 20 bit absolute feedback with BISS-C communication as standard. This allows accuracy of +/- 30 arc-sec. with repeatability of +/- 1.3 arc-sec.

(3) Frame

The PM-DD is made in five frame sizes: 135mm. 175mm, 230mm, 290mm, and 360mm. 13 models provide power options that can meet a wide variety of application requirements.

- Rated speed: 200 RPM/150 RPM
- Rated torque: 3 Nm to 160 Nm

Pre-Defined Profile Function with Parker Drives

Available in 64 profiles

Ref Indes		80	÷.	
Itia Deleter	in .	300000	14	wie:
Current Judes	č.,	4.1		
Printland Tar	- br	Rom	- 1	pale ways
Renter Arts	e vana	340933		Same
888 CH 3705	800 I.N 807	NOT	HERE CON HOME	por por
-	-	-	-	-
and free	(and the s	and the second	anna chail	and the
	1001	PARE	ROUT	HETAIT
888 179	888.011	-	and CN	888.05
30.0	501.1	BLJ	ESL)	BRA
ALC: N	100 01	488.011	MB CN	100 01
282	PATTA	ISTINT	10,8	POA.
BE CN	888 DN	and DN	and Oh	Aug (0)
AOVIN	Back (m)	Beleval.	Second .	anteres.
2 • (1)	e. 6			T-1111
	tion it is able	1	Drive Dr.	uniter 1

Parker Hannifin Corporation • Electromechanical & Drives Division • Irwin, Pennsylvania • 800-358-9070 • www.parker.com/emn

(5) Bearing

(4) Magnet

Improved bearing design yields low vibration and outstanding mechanical accuracy. Load carrying capabilities extend to 15,000N.

SERVO DRIVE

Ideal direct drive solution for P series drive

• 100~400W : PD-04P & 04C

- 400~1kW : PD-10P & 10C
- 1kW~3.5kW : PD-35P & 35C

180

Relative

180

SPECIFICATIONS

PM-

Rotary Tables

PM-

SPECIFICATIONS **PM-DD Series**

With 5 frame sizes (13 models) available, the PM-DD Series can provide peak torques up to 480 Nm and load carrying capabilities up to 15,000 N.

		PM-I	DDB	D	PM-I		D	PM-I		D	PI DDE	M- □D□H	DDF	n- □G□H
		03	06	09	06	12	18	12	22	34	40	60	A1	A 6
P series Drive		PD-04	PD-04	PD-04	PD-04	PD-04	PD-04	PD-04	PD-10	PD-10	PD-10	PD-35	PD-35	PD-35
Diameter	mm		ø135			ø175			ø230		ø2	90	ø3	60
Rated Power	W	63	126	188	126	251	377	251	461	712	838	1,257	1,728	2,513
Rated Torque	N-m	3	6	9	6	12	18	12	22	34	40	60	110	160
Peak Torque	N-m	9	18	27	18	36	54	36	66	102	120	180	330	480
Rated Current	Arms	1.12	1.46	2.63	1.48	2.41	3	2.58	3.33	5.72	5.3	8.33	9.48	14.6
Peak Current	Arms	3.36	4.38	7.89	4.44	7.23	9	7.74	9.99	17.16	15.9	24.99	28.44	43.8
Rated Velocity	rpm		200			200			200		20	00	18	50
Max Velocity	rpm	500	500	500	500	500	400	500	400	400	300	300	250	250
Torque Constant	N-m/ Arms	2.76	4.25	3.57	4.18	5.13	6.12	4.8	6.81	6.13	7.77	7.42	11.95	11.29
Moment of Inertia	kg -m²×10-4	5.74	8.67	11.5	27.32	38.9	50.48	54.14	68.15	82.16	311.55	371.71	1410.2	1763.4
Power Rate	kW/s	15.68	42.35	70.43	13.18	52.71	118.59	26.6	71.02	140.7	51.36	96.68	85.9	145.4
Angular Acceleration	rad/s ²	191.2	141.6	127.7	455.03	323.9	280.3	450.9	309.6	241.5	778.35	619.1	1281.13	1101.4
Accuracy for ABS Position	arc-sec							±30						
Accuracy for Repeatability	arc-sec							±1.3						
Axial run-out	mm							0.015						
Radial run-out	mm							0.03						
Allowable thrust load	Ν		1500			3300			4000		11(000	150	000
Allowable moment load	N-m		40			70			93		25	50	35	50
Encoder					20-bi	it single t	urn seria	l encode	er (BiSS-	C / Abso	olute)			
Weight (Approx.)	kg	6.3	7.2	9.2	8.7	10.6	12.6	17.3	19.6	21.9	28.2	35	54	70.3

Working	Ambient Temperature	Operating: 32–104°F (0–40°C) Storage: -4–140°F (-20–60°C)
Environment	Ambient Humidity	20-80% RH (avoid dew/condensation)
	Atmosphere	Avoid direct sunlight. No corrosive gas, inflammable gas, oil mist, or dust.

Speed-Torque Performance

Size B

Torque [Nm]

40.0

30.0

20.0

10.0

0.0

0

Torque [Nm]

Size D

Torque [Nm]

Speed-Torque Performance

Size E

DIMENSIONS

DIMENSIONS PM-DD Series

Size B

Motor	Length (mm) 'L'	Weight (Kg)
PM-DDB03D	78	6.3
PM-DDB06D	100	7.2
PM-DDB09D	124	9.2

Motor	Length (mm) 'L'	Weight (Kg)
PM-DDC06D	77	8.7
PM-DDC12D	95	10.6
PM-DDC18D	113	12.6

Size D

Motor	Length (mm) 'L'	Weight (Kg)
PM-DDD12D	82.5	17.3
PM-DDD22D	100.5	19.6
PM-DDD34D	118.5	21.9

Size E

Motor	Length (mm) 'L'	Weight (Kg)
PM-DDE40D	95.4	28.2
PM-DDE60D	113.4	35

Size B

Product	Length (mm) 'L'	Weight (Kg)
PM-DDFA1G	131	54
PM-DDFA6G	167	70.3

ORDERING INFORMATION PM-DD Series

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	$\overline{\mathcal{O}}$				
мо	TOR Or	der Example:	PM-DD	В	60	Α	NO	Н					
1	Series DD	DD Motor				4	Rated SpeedA300rpmD200rpm(Standard e135 e200 : 200rpm)						
2	Size B C D	External Diameter 135m External Diameter 175m External Diameter 230m	ım ım				G M	150r 100r	rpm (Standard, ø360 : 150rpm) rpm				
	E F	External Diameter 290m External Diameter 360m	ım ım			5	Encode NO	Encoder NO 135 175 230 290 360 20Bit (Single turn ABS, Biss-C communica					
3	Torque 03 3Nm 06 6Nm 09 9Nm						Shaft T H	Shaft TypeHStandard hollow shaft					
	60 A6	60Nm 160Nm				7	Voltage	e 200V DD Motor (no entry needed)					

			1 2	3	4			
C	ABLE Ord	ler Example:	APCS E	03	ZS			
1	Cable Ty APCS	ype APCS						
2	Cable E PN	Encoder Feedback Motor Power						
3	Length 03 05 10 20	3m 5m 10m 20m						
4	Rated S	peed						

Standard Feedback Cable Standard Power Cable (PM-DDF series)

YS Standard Power Cable(PM-DDB~E series)

Rotary Tables

RM Series Worm Drive Precision Stages

Precision for High Load Applications

- Unique self-compensating preload to limit backlash
- Solid or thru bore construction
- Robust bearing design for high-load capacity
- Built-in limit switches
- Aluminum construction with stainless steel top plate

s on with ate	
Vhen to Use High accuracy High loads Compact High stiffness	

Applications

Fiber optics Medical Packaging Pharmaceutical Robotics Semiconductor

Electronic assembly

RM100

RM150

RM200

RM300

*Bracket shown is only available with home switch option.

	RM Series
Maximum Diameter (mm)	297
Maximum Payload (N)	4,511
Maximum Velocity (rpm)	30

The RM Series offers an unparalleled combination of high accuracy and high load capacity. These rotary stages utilize a precision worm gear with the worm "flexed" against the gear to ensure a proper mesh. This feature provides high repeatability with very smooth operation. Additionally, the rotary stages incorporate an oversized preloaded cross roller bearing, offering exceptional stiffness and load capacity.

FEATURES

- (1) Motor Mounting and Coupling for easy installation
- (2) Integral Limit Switches mounted under top plate for safety
- (3) Preloaded Cross Roller Bearings for high loads and spindle stiffness
- Stainless Steel Top Plate
 with solid or through hole construction

(5)

Optional Inline Rotary Encoder for direct position feedback

- **6 Completely Sealed and Lubricated** for long life even in harsh environments
- Heavy Duty Stainless Steel Worm with Bronze Gear for smooth operation and high torque
- (8) Self-Compensating Preload for zero backlash

SPECIFICATIONS RM Series Worm Drive Precision Stages

The Rotary Stage Series is ideal for traditional industrial applications which require high load and thrust capacities while achieving precision motion.

Performance Specifications

	Ах	ial	Perpendicular Capacity						
	Capa	acity	@ 25	mm	@150 mm				
Model No.	(kg)	(lb)	(kgf)	(lb)	(kgf)	(lb)			
R100M	100	220	22	48	7	15			
R150M	400	880	88	194	33	73			
R200M	600	1320	200	440	85	187			
R300M	1000	2220	325	715	160	352			

	Worm	Unidirectional Repeatability ⁽¹⁾	Peak Output Torque @100 RPM Input		Peak Output Speed	Wei	ight	Inertia	
Model No.	Gear Ratio	(arc-min)	(Nm)	(in-lb)	(RPM)	(kgf)	(lbf)	gm-cm sec ²	oz-in sec ²
R100M	60:1	0.2	8	70.8	30	2.3	5.0	0.0057	0.0000784
R150M	72:1	0.2	25	221	30	6.0	13.0	0.055	0.00076
R200M	72:1	0.2	55	487	30	15.0	33.0	0.148	0.00210
R300M	90:1	0.2	75	664	30	35.0	77.0	0.368	0.00516

Accuracy Specifications⁽¹⁾

	Main Bearing Runout	Main BearingPositionalRunoutWobbleAccuracy ⁽¹⁾		Bidirectional Repeatability ⁽¹⁾	Maximum Running Torque (Unloaded at 2 rps)		
	(microns)	(arc-min)	(arc-min)	(arc-min)	(Nm)	(oz-in)	
R100M	±15	±0.5	5	0.5	0.141	20	
R150M	±20	±0.5	3	0.5	0.177	25	
R200M	±25	±0.5	3	0.5	0.212	30	
R300M	±30	±0.5	3	0.5	0.247	35	

(1) Accuracy and repeatability are based on stage mounted to a flat granite surface and measured at 25 mm above the center of the stage.

Download 2D & 3D files from www.parker.com/emn/RMSeries

DIMENSIONS

DIMENSIONS RM Series Dimensions

(This dimension is used when the in-line encoder option is selected.)

Dimensions (mm)

RM Series Sensor Locations

	Α		В		С		D		E	
Model No.	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
R100M	98.5	3.88	100	3.94	55	2.16	85	3.35	8	0.32
R150M	147.6	5.81	150	5.90	75	2.95	125	4.92	11	0.43
R200M	197.7	7.78	200	7.87	90	3.54	170	6.70	15	0.59
R300M	297.7	11.72	300	11.81	108	4.25	270	10.63	16	0.63

	F		G		н		J		K	
Model No.	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)
R100M	12.700	0.50	15	0.59	45	1.77	5	0.197	18	0.709
R150M	26.187	1.03	27	1.06	66	2.60	10	0.394	38.1	1.50
R200M	41.280	1.63	27	1.06	66	2.60	10	0.394	38.1	1.50
R300M	55.575	2.19	39	1.53	113	4.45	12	0.472	73	2.875

	L		Μ		Ν		Р	R	Stage	Weight
Model No.	(mm)	(in)	(mm)	(in)	(mm)	(in)	Тар	CBore	(kg)	(lb)
R100M	21	0.83	45	1.772	75	2.953	M5 x 0.8	M5	1.8	3.97
R150M	30.1	1.18	100	3.937	125	4.921	M6 x 1	M6	5	11
R200M	33.5	1.32	100	3.937	150	5.905	M8 x 1.25	M8	13	28.66
R300M	44.3	1.74	150	5.905	250	9.843	M8 x 1.25	M8	29	63.93

ORDERING INFORMATION

RM Series Worm Drive Precision Stages

Fill in an order code from each of the numbered fields to create a complete model order code.

	1 2	3 4	5 6	7	8
Order Example:	R 150M	7 MP2	C04 L1H1	E0	R1

1 Series

Worm Gear Rotary Series

2 Metric Square Width

100M	100 mm
150M	150 mm
200M	200 mm

- **300M** 300 mm
- 3 Gear Ratio
 - **6** 60:1 (R100)
 - 7 72:1 (R150 and R200)
 - 9 90:1 (R300)

(4) Motor Mounting

- M00 No motor block included
- M16 Motor block for Parker BE16(1,2,3 stack)
- M22 Motor block for Parker LV/HV23, SM23(1,2,3)
- M23 Motor block for Parker BE23(1,2,3 stack)
- M34 Motor block for Parker BE34 motors
- MP1 Including motor and mount with BE163CJ-NPSN
- MP2 Including motor and mount with BE233FJ-NSPN
- MP3 Including motor and mount with HV233-02-10

5 Coupling Code

- **C00** No coupling included
- **C01** 0.1875 inch coupling included
- **C02** 5 mm coupling included
- **C03** 0.250 inch coupling included (for BE16,LV/HV23)
- **C04** 0.375 inch coupling included (for BE23/SM23(1,2,3)
- **C05** 8 mm coupling included
- **C06** 9 mm coupling included
- C07 11 mm coupling included
- C08 0.500 inch coupling included (for BE34 motors)
- C09 14 mm coupling included
- C10 16 mm coupling included

6 Limits Switches

- LOHO No Home or Limit Sensors included
- LOH1 1 normally open NPN home sensor included
- L1H0 2 normally closed NPN limit sensors included
- L1H1 1 home and 2 limit sensors included

⑦ Encoder in Line with Top Plate

- **E0** No encoder included
- E1 2000 line in-line rotary encoder included

(8) Environment

- **R1** Standard environmental protection
- **R2** Cleanroom preparation included to class XX(TBD)

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

200RT Series Rotary Tables Precise Rotary Positioning and Indexing

200RT

304

889

900

- Highly repeatable indexing (12 arc-sec)
- Load capacities to 200 lbs
- 360 degrees continuous travel
- Performance tested worm gear drive
- Selectable table sizes and drive ratio
- Dual race angular contact support bearing
- Quality design and construction

Maximum Diameter (mm)

Maximum Input Velocity (rpm)

Maximum Payload (N)

Options

- Motor couplings in a wide range of coupling styles and bores
- Motor mounts
- Home sensor for fixed reference point
- High resolution, high accuracy rotary encoders
- Custom designed sealed units
- Motors, drives & controls available for complete system solutions

*Bracket shown is only available with home switch option.

The 200RT Series Rotary Tables are designed for precise motor-driven rotary positioning and indexing. These tables are designed to function independently or in conjunction with linear tables used in the highprecision and precision automation applications.

Their low profile design minimizes stack height in multi-axis configurations and enables them to fit in many places where other motorized rotary devices cannot. Models are available in 5, 6, 8, 10, or 12 inch diameters and are offered with four gear ratios making it convenient to match size, speed, and load requirements. They can be selected in either English or metric mounting.

They are found in virtually all industries where intermittent part indexing, part scanning, skew adjustment, or precise angular alignment is required. At the heart of these tables is a rugged main support bearing which is comprised of two preloaded angular contact bearing races. It is designed for high load capacity and smooth, flat rotary motion. The drive is a precision worm gear assembly which is preloaded to remove backlash. The top and base are constructed of high quality aluminum with an attractive black anodized finish. The top and bottom mounting surfaces are precision ground to assure flatness.

FEATURES

- 1 Multiple sizes Models are available in five diameter sizes and are offered with four gear ratios
- Load capacities to 200 pounds
- (3) Available with English or Metric Mounting
- (4) Low profile design minimizes stack height in multiaxis configurations
- (5) High resolution, high accuracy rotary encoders can be added for direct positional feedback of the table top position.
- (6) Custom designed sealed units are offered to prevent excessive wear or internal damage resulting from dust and contaminants

SPECIFICATIONS

The various table sizes of the 200RT Series makes it convenient to match size, speed, and load requirements for any application.

200RT Common Characteristics

	Units	Precision	Standard
Positional Repeatability (unidirectional)	arc-min	0.2	0.5
Duty Cycle	%	50	50
Table Runout (maximum) *	in (µm)	±0.001 (±25)	±0.003 (±75)
Concentricity **	in (µm)	±0.001 (±25)	±0.005 (±127)
Wobble	arc-sec	30	60
Input Velocity (maximum) ***	revs/sec	15	15

* Runout refers to the vertical deviation of the table top while rotating.

** Concentricity refers to the horizontal deviation of the table top while rotating.

*** Maximum output velocity is dependent on the drive ratio selected.

Travel Dependent Characteristics

Accuracy arc-min

Table Diameter inches	Drive Ratio	Load Capacity Ibs (kgf)*	Precision	Standard	Output Torque in-lb (N-m)	Inertia 10 ⁻³ -ozin-sec² (10 ⁻⁶ kg-m-sec²)	Input Breakaway Torque (max.) ozin (N-m)	Running Torque (max) oz-in (N-m)	Standard Top	Total
5.0	180:1	25 (11)	3	10	25 (2.8)	0.14 (0.102)	22 (0.16)	20 (0.13)	0.67 (0.3)	6.0 (2.7)
5.0	90:1	25 (11)	3	10	25 (2.8)	0.15 (0.112)	22 (0.16)	20 (0.13)	0.67 (0.3)	6.0 (2.7)
5.0	36:1	25 (11)	5	12	25 (2.8)	0.24 (0.173)	22 (0.16)	20 (0.13)	0.67 (0.3)	6.0 (3.6)
6.0	180:1	150 (68)	3	10	120 (13.6)	0.16 (0.112)	22 (0.16)	20 (0.13)	0.91 (0.42)	8.0 (2.7))
6.0	90:1	150 (68)	3	10	120 (13.6)	0.20 (0.132)	22 (0.16)	20 (0.13)	0.91 (0.42)	8.0 (3.6)
6.0	45:1	150 (68)	5	12	120 (13.6)	0.29 (0.204)	22 (0.16)	20 (0.13)	0.91 (0.42)	8.0 (3.6)
8.0	180:1	150 (68)	3	10	120 (13.6)	0.24 (0.163)	28 (0.19)	25 (0.18)	2.23 (1.01)	15.0 (6.8)
8.0	90:1	150 (68)	3	10	120 (13.6)	0.66 (0.459)	28 (0.19)	25 (0.18)	2.23 (1.01)	15.0 (6.8)
8.0	36:1	150 (68)	5	12	120 (13.6)	0.90 (0.642)	28 (0.19)	25 (0.18)	2.30 (1.05)	15.0 (6.8)
10.0	180:1	200 (90)	3	10	190 (21.5)	0.74 (0.530)	33 (0.22)	30 (0.21)	5.26 (2.30)	29.0 (13.1)
10.0	90:1	200 (90)	3	10	190 (21.5)	1.02 (0.734)	33 (0.22)	30 (0.21)	5.26 (2.30)	29.0 (13.1)
10.0	45:1	200 (90)	5	12	190 (21.5)	2.13 (1.53)	33 (0.22)	30 (0.21)	5.26 (2.30)	29.0 (13.1)
12.0	180:1	200 (90)	3	10	190 (21.5)	0.99 (0.713)	33 (0.22)	30 (0.21)	7.67 (3.49)	32.0 (14.5)
12.0	90:1	200 (90)	3	10	190 (21.5)	1.59 (1.12)	33 (0.22)	30 (0.21)	7.67 (3.49)	32.0 (14.5)
12.0	45:1	200 (90)	5	12	190 (21.5)	3.83 (2.75)	33 (0.22)	30 (0.21)	7.67 (3.49)	32 (14.5)

* Load centered on table. If offset, see charts for moment capacity.
DIMENSIONS

Dimensions - inches (mm) "B" dia. thru hole "A" dia. table top Drive Screw Shaft "M" dia. -Home Option \oplus \oplus ₽ Ð Ð Н t U U D ctr'd С 4 mtg. holes (top) on a "J" dia b.c. Ð English models = 1/4-20 thd. Metric models = M6 thd. Ð $\begin{array}{l} 4 \mbox{ mtg. holes (top)} \\ \mbox{on a "K" dia b.c.} \\ \mbox{English models} = 1/4\mbox{-}20 \mbox{ thd.} \\ \mbox{Metric models} = M6 \mbox{ thd.} \end{array}$ \oplus \oplus D ctr'd С

English Units

				E Standard	E Option	F Standard	F Option						
Α	в	С	D	(T2)	(T3)	(T2)	(T3)	G	н	J	к	L	М
5.0	1.0	5.0	4.0	1.8	2.42	0.38	1.00	1.11	1.66	3.0	4.0	1.38	0.188
6.0	1.75	6.0	5.0	2.0	2.62	0.38	1.00	1.23	2.04	4.0	5.0	1.38	0.25
8.0	1.75*	8.0	6.0	2.5	3.12	0.50	1.00	1.57	2.04	4.0	6.0	1.38	0.25
10.0	2.0	10.0	9.0	3.0	3.62	0.75	1.00	1.81	3.03	6.0	8.0	1.38	0.25
12.0	2.0	10.0	9.0	3.0	3.62	0.75	1.00	1.81	3.03	8.0	10.0	2.38	0.25

*On the 8.0" (203,2) diameter table with 36:1 ratio, this dimension is 1.0" (25,4).

Metric Units

				E	E	F	F						
				Standard	Option	Standard	Option						
Α	В	С	D	(T2)	(T3)	(T2)	(T3)	G	н	J	κ	L	Μ
127.0	25.4	127.0	100	46.0	61.5	9.6	25.0	28.1	42.1	75	100	35	4.76
152.4	44.5	152.4	125	50.8	66.5	9.6	25.0	31.4	51.8	100	125	35	6.35
203.2	44.5*	203.2	175	63.5	79.2	12.7	25.0	39.8	51.8	100	150	35	6.35
254.0	50.8	254.0	225	76.2	91.9	19.0	25.0	45.9	76.9	150	200	35	6.35
304.8	50.8	254.0	225	76.2	91.9	19.0	25.0	45.9	76.9	200	250	60.4	6.35

*On the 8.0" (203,2) diameter table with 36:1 ratio, this dimension is 1.0" (25,4).

OPTIONS & ACCESSORIES

Motor Couplings

A wide range of coupling styles and bores are available to match motor requirements. Bellowsstyle couplings, offering the lowest windup are required for all precision grade tables, while the aluminum and stainless steel helix couplers offer good windup characteristics and high durability at a lower cost.

Motor Mounts

The motor mount is designed for an industry standard NEMA 23 motor flange and a maximum shaft length of 0.85".

Home Sensor

The Home sensor provides a fixed reference point to which the table can always return. This is a mechanical reed switch which is mounted the body of the rotary table and is activated by a magnet embedded on the table top.

Rotary Encoders

High resolution, high accuracy rotary encoders can be added for direct positional feedback of the table top position.

Rotary encoders can be mounted directly to the base of the rotary table. The encoder input shaft is then coupled directly to the rotary table top, supplying positional feedback of the table top, with no drive train errors. They can be supplied with or without a base housing which encloses and protects the encoder.

Seals

Custom designed sealed units are offered to prevent excessive wear or internal damage resulting from dust and contaminants.

Motors, Drives & Controls

Micro-step motors with drives are available for direct mounting to the rotary tables. Motion controllers can also be added to provide systems with seamless connectivity.

High Performance Direct Drive Rotary Tables

Parker's DM1004 direct drive brushless servo motor tables offer an alternative to the 200RT series for high throughput precision indexing.

our website for complete information.

ORDERING INFORMATION 200RT Rotary Tables

Fill in an order code from each of the numbered fields to create a complete model order code.

						1	2	3	4	5	6	7	8	9	10	1			
			Orde	r Exam	ple:	2	08	01	RT	Μ	S	H1	C1	M1	E0	T1			
1	Series 2								8	 (8) Motor Coupling C1 No coupling C2 0.25 in bore, helix, aluminum 									
2	Table D	liameter								C3 0.25 in bore, helix, stainless steel									
	05 06 08 10 12	5 in, 125 i 6 in, 150 i 8 in, 200 i 10 in, 250 12 in, 300	nm nm nm mm mm							C4 C6 C7		(not available on 205 model) 0.25 in bore, bellows, required for precision grade 0.375 in bore, helix, stainless steel (not available on 205 model) 0.375 in bore, bellows, required for precision grade						n grade on grade	
3	Gear B	atio							9	Mo	tor I	Moun	t						
٢	01	180:1, Av	ailable or	n all dia.						M1		23 fr	ame s	size					
 01 180: 1, Available on all dia. 02 90:1, Available on all dia. 04 45:1, Available on 6", 10" and 12" dia. only 05 36:1, Available on 5" and 8" dia. only 					10	EncoderE0No encoderE8Ring encoder – 314,880 post quad. counts					s/rev								
4	Table S	tyle							(11)	Tab	le T	qo							
	RT								0	T1 T2		No to Stan	op dard t	op					
5	Mounti E M	ng English Metric (80	0CT only)						T3		Over moto	rsized or)	top (ra	aises h	neight	to clea	ar NEMA	4 23
6	Grade S P	Standard Precision																	
	Homo																		

- 11 No home switches
- H2 Magnetic home switches

Free sizing and selection support from Virtual Engineer at parker.com/VirtualEngineer

ZP200 Series Vertical Lift "Wedge" Table

Precise Vertical Translation, Small Form Factor

- Precision platform for vertical (Z-axis) positioning
- Continuous duty High dynamic performance
- Precision straightness (±5 arc-sec) throughout range of motion
- Precision ground ballscrew drive 5, 10, or 20 mm lead
- Multi-axis compatibility with XR and LXR tables
- Laser tested and certified with calibrated lead value
- Quality design and construction

Options

- Linear Encoder option with selectable resolutions of 0.1, 0.5, 1.0 μm
- Fail-safe brake (field installable - mounts directly to the ballscrew drive)
- Class 10 cleanroom preparation
- Selectable motor mounting and couplings for SM16 or NEMA 23 servo or stepper motors
- Easily adjusted travel "limit" and "home" sensors are provided in an enclosed sensor pack

ZP200

	ZP200 Series
Maximum Travel (mm)	25
Maximum Payload (N)	735
Maximum Acceleration (m/sec ²)	7.2

The ZP200 Z axis lift table is a stable support platform which provides precise vertical translation and positioning, while maintaining X-Y integrity.

Recirculating square rail bearings are incorporated into a unique variation of

"wedge" mechanics to enable reliable high dynamic performance without the potential loss of travel encountered with cross roller bearings.

The ZP200 is compatible with XR and LXR tables for multi-axis systems, and it can be utilized as the system base axis or top axis to fit the motion requirements of the application. Standard mounting holes and dowel pin holes accommodate repeatable mounting.

FEATURES

- (1) Up to 25 mm Vertical Travel with positional accuracy down to 8 microns
- (2) Three leadscrew options of 5, 10 and 20 mm to provide to best solution for your applications
- (3) Selectable motor mounting and couplings for SM16 or NEMA 23 servo or stepper motors
- (4) Linear Encoder option with selectable resolutions of 0.1, 0.5, 1.0 μm
- (5) Compatible with XR and LXR tables for multi-axis systems, and it can be utilized as the system base axis or top axis to fit motion requirements
- (6) Standard mounting holes and dowel pin holes accommodate repeatable mounting

ZP200 utilized in a laser test set-up

SPECIFICATIONS

The rugged bearing design of the ZP200 Series provides platform stiffness and stability while the precision ground ball-screw drive assures positional accuracy and worry-free operation.

ZP200 Specifications

	Precision	Standard			
Travel (Z-axis)	25 mm (limit to limit)	25 mm (limit to limit)			
Positional Accuracy with no encoder ^{1,2,7} with linear encoder ^{3,6,7}	8 µm 8 µm	20 µm 			
Positional Repeatability with no encoder ^{1,7} with 1.0 µm linear encoder ^{6,7} with 0.5 µm linear encoder ^{6,7} with 0.1 µm linear encoder ^{6,7}	± 3 μm ± 5 μm ± 4 μm ± 3 μm	± 10 μm 			
Lift Lead Ratio ⁴ 5 mm lead ballscrew drive 10 mm lead ballscrew drive 20 mm lead ballscrew drive	1.8199 3.6397 7.2794	mm/rev mm/rev mm/rev			
Lift Velocity 5 mm lead ballscrew drive 10 mm lead ballscrew drive 20 mm lead ballscrew drive	110 mm/sec 220 mm/sec 440 mm/sec				
Load Capacity (normal)	15 kg (33 lb)	75 kg (165 lb)			
Duty Cycle	10	0%			
Max Acceleration	7.2 m	n/sec ²			
Efficiency	90)%			
Max Breakaway Torque ^₅	0.15	5 Nm			
Max Running Torque⁵	0.13	3 Nm			
Linear Bearing - Coefficient Of Friction	0.	01			
Ballscrew Diameter	16	mm			
Unit Weight	5.82	2 kg			
Top Plate Weight	2.2	5 kg			
Pitch ⁷	± 15 Arc-sec	± 45 Arc-sec			
Roll ⁷	± 15 Arc-sec	± 25 Arc-sec			
Input Inertia 5 mm lead ballscrew drive 10 mm lead ballscrew drive 20 mm lead ballscrew drive	2.32 x 10 2.51 x 10 3.12 x 10) ^{,₅} Kg-m²) ^{,₅} Kg-m²) ^{,₅} Ka-m²			

SPECIFICATIONS

- 1) Measured 38 mm directly above the true center of the top mounting surface.
- 2) Measured using calibrated lead value (provided).
- 3) Slope correction value provided
- Lift per 1 motor shaft revolution. Lift lead listed is nominal. All units are provided with calibrated lead value.
- 5) Torque ratings are measured with unit unloaded, traveling upward.
- 6) Measured directly over encoder on outer edge.
 7) Pitch and Roll Specifications are measured with <1kg load. Addition of load increases pitch and roll error by 10 arc-sec per 5 kg of load assuming the load center of gravity is located at the center of the stage platform. Cantilevered loading increases these errors more.

Table Life/Compression (Normal) Load

The graph provides a preliminary evaluation of the support bearing life/load characteristics. The curves show the life/load relationship when the applied load is centered on the carriage, normal (perpendicular) to the carriage mounting surface. For final evaluation of life vs load, including off center, tension, and side loads contact Parker Applications Engineering at 800-245-6903.

Life with Compression Load

DIMENSIONS

Download 2D & 3D files from www.parker.com/emn/ZP200

DIMENSIONS

.99[25.2] (sensor pack)

1.38 [34.9] (optical switches)

100-9274-01 XR Adapter Plate

A multi-axis adapter plate is available to mount the ZP200 to an XR/LXR table or, mount an XR/LXR table to the ZP200. This plate is 9.53 mm thick and includes standard dowel pin holes for repeatable alignment.

ZP200 as Base	ZP200 as Top Axis
Yes	-*
Yes	_*
Yes	Yes
Yes	Yes
Yes	-*
	ZP200 as Base Yes Yes Yes Yes Yes

*Not recommended - consult factory.

ORDERING INFORMATION ZP200 Series

Fill in an order code from each of the numbered fields to create a complete model order code.

			1	2	3	4	5	6	7	8	9	10	11	(12)	13	
		Order Example:	ZP200	T01	М	S	D2	H12	L12	C3	М3	E3	B2	R1	P1	
1	Series ZP200							⑧ C C C	ouplin 1 3	g No co 0.25"	oupling bore k	ı Dellow	S			
2	Travel T01	25 mm						C C	C5 0.38" bore bellowsC23 9.0 mm (0.35") bore bellows							
 Mounting M Metric 								9 M M M	lotor N 1 12	No motor mounts SM16/BE16 motor						
4	Grade P S	Precision Standard						M	3 61	NEM/ BE23	A 23 aı motor	nd SN ⁻ mour	123 ma nt	otors		
	0							10 Li	inear E	Incod	ler Op	otion				
5	Drive S D2 D3 D4	crew 5 mm lead 10 mm lead 20 mm lead						E E E E	1 2 3 4 5	No er 1.0 m 0.5 m 0.1 m 5.0 m	icron icron icron icron icron					
6	Home \$	Sensor						E	7	Sine/o	cosine	enco	der			
	H1 H11 H12 H13 H14	No sensor N.C. current sinking, se N.O. current sinking, se N.C. current sourcing, s N.O. current sourcing, s	ensor pack ensor pack sensor pac sensor pac	k k				(1) B B B	rake O 1 2	ption No br Shaft	ı ake brake					
	Travel I	imit Sensors						12) E R	nvironi 1	menta Class	al 1000					
Ū	L1	No sensor						R	2	Class	10					
	L11 L12 L13 L14	N.C. current sinking, se N.O. current sinking, se N.C. current sourcing, s N.O. current sourcing, s	ensor pack ensor pack sensor pac sensor pac	k k				13 P	1	Place	holde	r				

Drives, Motors, Gearheads, & Controllers

Components and Systems for Complete Solutions

Parker Electromechanical & Drive products are built using industry standard interfaces and market-leading features that combine great value and performance. For a cost-effective and efficient solution, Parker offers bundled or kitted systems. We can combine motors, gearheads, and positioning systems to deliver a configured subsystem ready for installation. Parker configuration and setup software accommodates the rest of the product line, making start-up a snap. Combining this with our custom product modification capabilities gives the machine builder an economical custom-fit solution, with reduced engineering effort, straightforward integration, and modular compatibility.

Gearheads & Gearmotors

Precision options with less than 3 arc-minutes of backlash. NEMA sizes, right angle, dual drive, and more. **Page 513**

Rotary & Linear Motors

Motors with maximum torque density, cog-free rotary motion, and the greatest winding uniformity and accuracy in the industry.

Page 516

Servo Drives & Drive/Controllers

Servo drives and controllers deliver maximum power output and performanceand they're optimized for easy setup. Page 525

Motion & Machine Controllers

Parker controllers offer a variety of communication protocol options and builtin advanced features. They easily adapt to existing networks. Page 527

Stepper Drives & Drive/Controllers

Stepper drives and controllers for a variety of applications and machine types. Page 526

Visualization–Human-Machine

Interfaces

Solutions for every application, from simple push-button replacement to sophisticated network and data requirements. Page 528

Gearheads & Gearmotors

Gearhead Selection Guide

PV Series Precision Gearheads

The PV Series gearhead combines power and versatility in an economical package. It comes in a wide range of options including dimensional output face crossovers to the Parker Bayside PX, Alpha LP, Neugart PLE, Stober PE and Standard NEMA gearheads.

The PV Series is available in metric and NEMA frame sizes ranging from 40mm to 115mm, NEMA sizes 17, to 42. Ratios are available in 3:1 thru 100:1. Whether you're an OEM or an end-user searching for competitive alternatives, the PV offers a superior solution.

- Higher radial load capacity: Taper roller output bearings
- Competitive alternatives: Five drop-in output face options
- Universal mounting kits: Quicker deliveries and easier mounting
- Higher gear wear resistance: Plasma Nitriting heat treating

				Continuous		
Product Series	Gear Geometry	Configuration	Frame Sizes (mm)	Torque (Nm)	Radial Load (N)	Backlash
PV40/17	Planetary	In-Line	40 (NEMA 17)	3.5 to 6.7	375 to 575	<6
PV60/23	Planetary	In-Line	60 (NEMA 23)	10.2 to 22.5	665 to 2535	<4
PV90/34	Planetary	In-Line	90 (NEMA 34)	33 to 71	1040 to 4270	<12
PV115/42	Planetary	In-Line	115 (NEMA 42)	67 to 144	1235 to 8550	<8

Planetary Gearheads

Our Generation II Stealth[®] Series provides high radial load, increased service life, and easy mounting. The Stealth Generation II Helical Planetary Gearhead design yields superior performance in the most demanding high-performance applications. For larger frame sizes, Parker offers Generation I Stealth[®] Series gearheads in 180 to 220 mm and NEMA 56 frame sizes.

For standard precision applications, the PV Series gearhead combines power and versatility in an economical package with a wide range of options.

- Nominal continuous torque from 3.5 to 1808 Nm (31 to 16,091 in-lb)
- In-line or right-angle configurations
- Higher radial and axial load capacity—widely spaced angular contact output bearings

- Increased service life-full complement planet needle bearings
- Universal mounting kits quicker deliveries and easier mounting
- Helical planetary gearing high torque and low backlash
- High stiffness—integral ring gear
- Plasma nitrited gear treating—higher gear wear resistance
- Some models available with special shafts for flange/face mounting

Product Series	Gear Geometry	Configuration	Frame Sizes (mm)	Continuous Torque (Nm)	Radial Load (N)	Service Life (hrs)	Backlash
PS	Helical Planetary	In-Line	60 to 220	40 to 1800	>8400	20,000	<3
PX	Helical Planetary	In-Line	60 to 142 (NEMA 23 to 56)	30 to 280	>4050	20,000	<6
RS	Helical Planetary/ Spiral Bevel	Right Angle	60 to 220	35 to 1800	>8400	20,000	<4
RX	Helical Planetary/ Spiral Bevel	Right Angle	60 to 142 (NEMA 23 to 56)	25 to 130	>4500	20,000	<12

The Stealth Gen II Helical

Planetary Gearheads incorporate design enhancements to provide superior performance for the most demanding high performance applications.

Stealth Gen II incorporates dual angular contact bearings providing higher radial load capacities while maintaining high input speeds. Design enhancements also include full compliment needle bearings allowing for increased service life and extended warranties. Internal design changes and optimized gearing geometries allow for one fill level for any orientation, resulting in shortened part number designation and simplified order placement.

Universal mounting kits provide common mounting kits across multiple product lines to promote quicker deliveries and ease of mounting to any servo motor. Applications that require either high precision (PS/RS Series Gearheads), or midrange precision (PX/RX Series Gearheads) or lower precision (PV Series Gearheads), utilize the same mounting kit part numbers within the same frame size.

 High stiffness: Integral ring gear and rigid sun gear

MultiDrive Gearheads

Stealth[®] MultiDrive offers three different output options for true flexibility:

RB Series low ratio RD Series double shaft RT Series hollow shaft

All models are configured in a compact, right-angle package. MultiDrive gearheads feature Stealth^{*} helical gearing for high torque, high accuracy and quiet operation.

With five frame sizes and multiple ratios to choose from, you are sure to find a Stealth[®] MultiDrive to fit your servo motor application.

- Frame sizes from 90 to 180 mm
- Continuous torque from 23 to 260 Nm (204 to 2,300 inlb)
- Space saving compact, right-angle design saves space in many applications
- Low backlash—standard as low as 8 arc-minutes and 4 arc-minutes optional
- Smooth, quiet operation and long life—hardened precision spiral bevel gears ensure quiet operation
- Quick, error-free mounting to any servo or stepper motor using Parker's ServoMount[®] design
- Sealed unit: seals and O-rings provide IP65 protection to prevent leaks and to protect against harsh environments

Rotary & Linear Motors

Rotary & Linear Motor Selection Guide

Modified and Custom Motor Resources

Parker's standard shaft, feedback, and connection motor options meet the needs of most customers. However, we also engineer custom designs for customers whose applications require unique connectors, mountings, or windings.

Purchasing a custom motor from Parker is cost-effective, in part because we don't require you to order minimum quantities of your design. Plus, we offer short lead times for custom design services. Whether you buy a standard or custom motor, you can count on Parker to provide the best servo motor solution.

Other Modification Services

http://bit.ly/AT_CMR

- Private labeling
- Special paints/coatings
- Special windings
- Shorter lengths
- High-speed balancing

Connectors

- MS connectors
- Right-angle rotatable
- MS connectors on back cover
- Special cable lengths
- High-flex cables
- Custom cables and connectors
- Cable exiting through rear equal
- Cable exiting through rear cover

Flanges

- Tapped mounting holes
- NEMA flanges
- Face mount
- Customer-specified flanges

Gearheads

- Custom ratios
- Customer-specified flanges
- Customer-specified output shaft

Shafts

- Special lengths
- Special flats
- Special keyways
- Special shaft diameters

Complete Solutions

- Hollow shafts
- Rear shaft extension
- Double flats
- Shaft pinning
- Pressed-on gears
- Center tapped
- Special shaft materials

Resolver

Feedback

Brakes

Spring released

• Permanent magnet

24 and 90 volt brakes

Custom feedback devices

· Incremental and smart encoders

• Absolute encoders - single- and multi-turn

MPP/MPJ Series Rotary Servo Motors

http://bit.ly/AT_MPP

The MaxPlusPlus (MPP) family of brushless servo motors is redefining performance, flexibility, and reliability. The industry's highestperforming servo motor uses eight-pole segmented lamination technology, which produces more torque in a shorter package. Use MaxPlusPlus motors for higher torque applications, customization options, or when high performance is required.

When higher inertia is desired to improve system performance, the MPJ is the perfect choice. It includes all the same features and benefits of the MPP, but increases the rotor inertia by 3 to 8 times over the standard MPP.

- MPP: 92 to 270 mm frame sizes MPJ: 92 to 142 mm frame sizes
- 1.5 to 158 Nm (13 to 1398 in-lb) continuous stall torque
- 4.3 to 402 Nm (38.1 to 3558 in-lb) peak torgue
- Very high torque-to-inertia ratio
- Right-angle rotatable

connectors

- Eight different feedback devices including encoder, serial encoder, resolver, Hiperface DSL, Heidenhain and Stegmann single and multi-turn absolute encoders
- IP64 standard, IP65 optional
- Special shaft, front flange, and feedback devices available
- CE and UL

Series MPP	092x	100x	115x	142x	190x	270x
Continuous stall torque range Nm (in-lb)	1.55 (14) to 4.0 (36)	4.6 (41) to 6.3 (56)	5.7 (51) to 9.8 (87)	11.1 (98) to 33.4 (295)	35.5 (315) to 62.4 (552)	120.1 (1,063) to 162 (1,433)
Peak torque range Nm (in-lb)	4.93 (50) to 12.8 (113)	14.5 (129) to 20.1 (178)	18.1 (160) to 31.2 (277)	35.1 (311) to 106 (935)	113 (996) to 198 (1,750)	380 (3,366) to 512 (4,537)
Rated speed (rpm)	3800 to 5000	4000 to 5000	1800 to 4000	2800 to 4000	2000 to 3000	800 to 1600
Rated output range (rpm)	0.5 to 1.6	1.5 to 1.9	1.6 to 2.7	3.4 to 7.0	8.3 to 11.8	12.1 to 20.3
Rotor Inertia kg-m ² MPP MPJ	7.8x10 ⁻⁵ 4.2x10 ⁻⁴	2.6x10 ⁻⁴ 8.2x10 ⁻⁴	4.1x10 ⁻⁴ 1.1x10 ⁻³	2.1x10 ⁻³ 8.3x10 ⁻³	6.2x10 ⁻³ -	3.5x10 ⁻² -

MPW Series Stainless Steel Servo Motors Series

http://bit.ly/AT_MPW

The new MPW Series extends the MPP motor family to meet the needs of those applications exposed to high pressure, highly caustic, washdown environments. Specific applications can be found in such markets as food and beverage, pharmaceutical, packaging, and any other application that may be exposed to harsh conditions like salt, fog, and humidity.

The NSF mark represents Parker's company wide commitment to quality, safety, and compliance with The Public Health and Safety Organization standard requirements for safe food handling.

- 10 models covering three frame sizes
- Sealed to IP69K for 1200 psi washdown requirements
- Potted stator design for improved thermal efficiency
- 35 to 227 in-lbs continuous torque (230 and 460 VAC supply)
- Options include high resolution encoders, resolvers, and 24 V brake
- Cable options available to plug and play with a wide variety of drives
- Complies with all NSF standard 169

P Series Motors

http://bit.ly/AT_PD

The P Series brushless servo motors are the perfect match with P Series drives, providing high torque and fast settling times with one-touch tuning.

All motors include high resolution BiSS-C absolute encoders that populate motor nameplate data back to the drives for simplified commissioning. Economical, low profile cable connections help machine builders meet demanding size and budget requirements.

- 40, 60, 80 mm frame sizes
- 0.2 to 3 Nm (2 to 28 in-lb) continuous stall torque

- 0.5 to 10 Nm (4 to 85 in-lb) peak torque
- Allowable load inertia up to 30 x rotor
- BiSS-C absolute feedback, up to 524288ppr
- Performance matched with P drives
- 3000 rpm rated, 5000 rpm max speed
- Low-profile cable connections
- Static brakes available
- IP67 rated (body and connectors)
- CE (EMC & LVD) and UL (pending)

SM Series Servo Motors

http://bit.ly/AT_SM

The SM Series brushless servo motors feature a slotless stator design eliminating all detent torque in the motor to provide extremely smooth motion, especially at low speeds. The slotless design also creates a higher rotor inertia, which is ideal for applications involving high inertial loads (such as lead screws and belt drives). This higher rotor inertia simplifies tuning and increases system stiffness.

The SM Series motors also feature a rugged anodized aluminum body and connector housing. An IP65 rating can be obtained on motors with PS connectors and an optional shaft seal. All SM motors are CE (LVD) compliant.

Parker's wide range of planetary gearheads are well-suited for the SM Series motor. Easy sizing and selection can be done using Parker's Motion Sizer.

- NEMA size 16 and 23
- 0.19 to 1.2 Nm (1.7 to 10.6 in-lb) continuous stall torque
- 0.57 to 3.6 Nm (5.0 to 31.9 in-lb) peak torque
- Up to 7500 RPM rated speed
- Brushless construction
- Slotless design
 Negligible detent torque
 - Reduced torque ripple
 - High inertia
- High-performance
 neodymium magnets
- Thermostat protected
- TENV housing
- IP65 option
- Feedback options

 Encoder/Hall effect
 Resolver
- CE compliant

Series SM	161	162	231**	232**	233**
Continuous stall torque Nm	0.2	0.3	0.4	0.7	1.1
(oz-in)	(26)	(47)	(54)	(106)	(156)
Peak torque Nm	0.6	0.1	1.1	2.2	3.3
(oz-in)	(78)	(141)	(160)	(316)	(467)
Rated speed (rpm)	7,500	7,500	7,500	7,500	5,800
Rotor inertia kg-m ²	1.1x10⁻⁵	1.8x10⁻⁵	5.2x10⁻⁵	9.3x10⁻⁵	1.4x10 ⁻⁴
(oz-in-s ²)	(1.5x10⁻³)	(2.6x10⁻⁴)	(7.4x10⁻³)	(1.3x10⁻²)	(1.9x10 ⁻²)

*All specifications represent encoder feedback.

**Resolver version available with higher stall and peak torques.

BE Series Servo Motors

http://bit.ly/AT_BE

BE Series brushless servo motors produce high continuous stall torque in a cost-reduced package.

The exceptional torque of the BE Series motors is the result of an increased number of magnetic poles on the rotor.

Traditional motors in these frame sizes have four magnetic poles, while the BE Series motors have eight poles. The BE motors incorporate Parker's proven bridged stator design. This two-piece lamination design simplifies the winding process, creating cost savings. The bridged stator construction also results in less audible noise generated by the motor.

Parker's wide range of planetary gearheads is well suited for the BE Series motor. Easy sizing and selection can be done using Parker's Motion Sizer.

- NEMA 16, 23, and 34 sizes
- 0.15 to 4.9 Nm (1.3 to 43.4 inlb) continuous stall torque
- 0.45 to 14.6 Nm (4.0 to 129.2 in-lb) peak torque
- Up to 5000 rpm rated speed
- Brushless construction
- Eight-pole open-lamination design provides increased torque and lower cost
- High torque density packaging
- Bridged stator design quiet operation
- High-performance neodymium magnets
- Thermoswitch protection
- Feedback options

 Encoder/Hall effect
 Resolver
- CE compliant

K Series Frameless Kit Motors

http://bit.ly/AT_K

Frameless kit motors are the ideal solution for machine designs that require high performance in small spaces. Kit motors are directly integrated with the drive train, resulting in a smaller, more reliable motor package. Direct drive motion construction also gives equipment designers the advantages of lower costs, increased reliability, and improved performance.

Best Used for:

- A significant cost savings
- Reduced mechanical complexity
- Greater design flexibility
 - High performance in a compact package
- Improved dynamic response and settling
- Minimum motor size per application space
- Low cogging for smooth operation
- Low inertia for high acceleration

Features

- High peak torque up to 93.37 Nm (826.4 in-lb)
- High speeds up to 50,000
 rpm
- Superior performance high stiffness and better response
- High reliability—no mechanical couplings
- Compact design minimizes
 product size
- Low cogging—special orientation of the laminations and odd slot count
- Very low torque ripple at low speeds for smooth and precise rotary motion

EX Series Explosion Proof Servo Motors

The EX Servo motors are designed to function in Category II, Group II explosive atmospheres in respect to the EN 50014 standard. These servo motors are certified according to directive ATEX 94/9/ CE and are available in a Gas or Gas-Dust version. The motors differ in that the Gas-Dust version is equipped with a special lip seal on the customer end shaft.

- Explosion-proof material "D" according to directive ATEX 94/9/CE
- Stall torque from 1.75 to 35 Nm (15.5 to 311 in-lb)
- Rated speeds up to 4000 rpm
- Extremely compact
- High dynamics
- Integrated resolver does not require an additional encoder
- Maintenance-free, lubricated-for-life bearings

HW/HKW Series Synchronous Water Cooled Spindle Motors

The HW servomotors are watercooled brushless synchronous motors delivered as individual components (rotor, stator and resolver) to make a complete spindle unit. These motors are driven by Compax3 Series servo drives.

- Permanent magnet cold rotor
- Compact size with low rotor inertia
- Stable balancing
- Speed range to 50,000 rpm
- Reduced maintenance
- High torque at zero speed
- Positioning capability

GVM Series for Vehicle Electrification

The GVM (Global Vehicle Motor) is Parker's PMAC offering for electric and hybrid electric powertrain motors, and electrohydraulic actuation.

The GVM's highly engineered magnetics achieve efficiencies in peak regions not obtainable

in other designs. The GVM uses a new patent-pending advanced cooling system that has minimal impact on the size and weight of the motor.

The scalability and customization of the GVM allows the widest performance range available. Tested to the demanding heavy duty vehicle grade standards of SAE J1455, the GVM can handle the toughest job for any on or offroad vehicle.

- Multiple frame sizes, stack lengths, and windings
- Peak power density up to 4.2 kW/kg
- Continuous power density up to 2.3 kW/kg

- 24–800 VDC operating voltages
- Samarium Cobalt (SmCo) magnets allow high temperature operation and remove demagnetization failure mode
- Highly efficient design reduces thermal dissipation requirements, lowering overall cooling system costs
- Very low torque ripple-even at peak current
- Low rotor inertia for high dynamic responsiveness
- Up to 20% more range for a given battery pack
- Ultra-thin stator laminations with reduced slots virtually eliminates eddy currents

TMW/TMA Series Torque Motors

The torque motor is a permanent magnet brushless motor, optimized to operate at low speeds. It is particularly suitable for direct drive applications requiring high torque capabilities at low speeds.

As a replacement for asynchronous or direct current motors coupled with a gearbox, torque motors are advantageous with their more compact, quieter, maintenancefree design.

- No more gearbox
- No maintenance
- Energy savings
- Silent operation (European directive 2003/20/Ce)
- Better speed regulation
- Compact design
- Stall torque from 391 to 21,000 Nm (289 to 15,540 ft-lb)
- Rated speeds up to 800 RPM
- TMA Series air cooled, without fan; TMW Series water cooled with anticorrosive
- IP55 rating
- Sincos Hiperface, EnDat feedback

LV/HV Series Rotary Stepper Motors

http://bit.ly/AT_HV

The LV (Low Voltage) and HV (High Voltage) motor series provide outstanding performance at a competitive price. The LV motors are available in five frame sizes, and the HV are available in three frame sizes, so it is easy to choose the optimal speed and torque combination.

The LV motors are rated for use with drives running up to 80 VDC; the HV are rated for use with drives running off of 120 VAC power.

The LV/HV Series is optimized for use with the E-Series microstepping drives.

- High performance
- Cost effective
- Optimized motors for both low-voltage and highvoltage applications

- Static torques from 6.5 to 1285 in-oz)
- LV: 11, 14, 17, 23, and 34 frame sizes
 HV: 17, 23, and 34 frame sizes
- Single, double, or triple stack lengths available
- LV: up to 80 VDC windings HV: up to 170 VDC windings
- Single or double shaft options
- Flying leads or 10-foot cable options
- Customization available
- Encoder options available
- CE (LVD)

RIPPED Ironcore Linear Motors

http://bit.ly/AT_RIP

Parker RIPPED ironcore linear motors, with their patented anticog technology, can produce the large forces needed for many industrial applications—without the roughness associated with traditional ironcore linear motors.

The RIPPED family is well suited for a broad range of extremely demanding applications.

- Patented anti-cog technology for extremely smooth motion
- 3 different cross sections
- Single magnet row for high performance at an economical price
- Connector module allows for quick installation and easy cable management
- Ultra high-flex cable standard

I-Force Ironless Linear Motors

http://bit.ly/AT_IM

Parker I-Force ironless motors offer high force and rapid accelerations in a compact package. Parker's patented I-beam shape, with its overlapping windings, allows for a higher power density in a smaller motor, improved heat removal, and added structural stiffness. A forgiving air gap and no attractive forces allow for easy installation and zero cogging during motion.

- 4 different cross sections (110, 210, 310, and 410) with up to 8 poles
- Compact size with high force density and superior heat removal
- Air and water cooling
- Vacuum rated to 10⁻⁶ torr
- Ultra high-flex cable standard

ML18 I-Force Ironless Linear Motor

http://bit.ly/AT_ML

Introducing the newest (and smallest) member of Parker's I-Force ironless linear motor family. The ML18 incorporates the I-Force I-beam shape with overlapping windings allowing for high power density, improved heat removal, and added structural stiffness.

- Height of 35mm, width of 18mm offers a compact solution
- Three coil lengths provide peak force up to 50N
- Ironless design produces zero cogging
- Light weight allows for rapid accelerations
- Innovative magnet track provides a low cost solution

Servo Drives

Servo Drive Family Attributes

Series	P Series	PSD	Compax3	IPA	ACR7000-V
Input power	24 to 80 VDC, 120/240 VAC	120/240/480 VAC	120/240/480 VAC	120/240 VAC	24 to 48 VDC
Power range	100W to 3.5kW	200W to 15kW	200W to 100kW	400W to 1.5kW	50W to 400 W
Feedback	BiSS-C, Encoder, Endat	HiperfaceDSL, Encoder, Resolver	Encoder, Resolver, Sincos, Endat, Sincos Hiperface	BiSS-C, HiperfaceDSL, Encoder, Endat	BiSS-C, Encoder
Fieldbus communications options	EtherCAT	EtherCAT, EtherNet/IP, PROFINET	EtherCAT, PROFINET, ETHERNET Powerlink, Profibus, CANopen	EtherNet/IP	EtherNet/IP
Command input	±10V analog step/ direction		±10V analog step/ direction		
Programmable controller version	Indexer		Indexer, IEC61131-3	AcroBASIC	AcroBASIC
PC communications	USB, Modbus-RTU	Ethernet TCP/IP	RS-232	Ethernet TCP/IP	Ethernet TCP/IP
Form factor	Single axis with direct AC input	Single axis with direct AC input, Multi-Axis with shared DC supply	Single axis with direct AC input, Multi-Axis with shared DC supply	Single axis with direct AC input	Multi-axis Controller with up to 8 drives, external DC supply

*T11 - Basic indexer, T30 - Full programmable IEC61131-3; T40 - T30 plus electronic camming, gearing, PLS, etc.

PSD Servo Drive

ACR7000 Multi-Axis Servo Drive/Control

Stepper Drives

Stepper Drive Family Attributes

Series	E-AC	E-DC	eCL	ACR7000-T
Power input	120 VAC	24 to 48 VDC	24 VDC	24 VDC
Peak current output (Amps)	Up to 3.5	Up to 4.8	Up to 4.0	Up to 4.0 (per axis)
Command input	Step/Direction	Step/Direction	EtherCAT	Programmable, standalone controller with Ethernet communications
Recommended Parker motors	HV series	LV series	eCL	LV, eCL
Encoder input	No	No	Yes - required	Yes - 1 per axis
Form factor	Single axis with direct AC input	Single axis with external DC supply	Single axis with external DC supply	Multi-Axis Controller with up to 4 drives, external DC supply

E-AC and E-DC Microstepping Drives

ACR7000 Multi-Axis Drive/Controller

www.parker.com/em/e-ac www.parker.com/em/e-dc

Motion & Machine Control

	Communication				Drive	es	Encoder Programming			Axes			I/O								
Series	EtherCAT	Ethernet/IP	Profinet	OPC-UA	Ethernet TCP/UDP	Integrated stepper	Integrated servo	Incremental encoder	BISS-C	IEC 61131-3 & PLCOpen	AcroBasic	Multi-axis coordination	G-code (DIN66025)	Embedded HMI webserver	Windows API	S	4	ω	1-8+	Network accessory	Embedded
PAC320	•	•	•	•	•					•		•	•	•					•	•	
ACR7xV		•			•		•	•	•		•	•			•		•	•			•
ACR7xT		•			•	•		•			•	•			•	•	•				•

PAC (Parker Automation Controller)

Ether CAT.

The PAC is an all-in-one machine controller that leverages EtherCAT to provide a high-performance automation solution. Programmed with IEC 61131-3 and utilizing PLCOpen and G-code for motion control, the PAC seamlessly integrates PLC, Motion Control, and HMI Visualization into a single device.

Hardware

- 1.60GHz, 64-bit dualcore Intel Atom
- Local PACIO via E-bus connector
- Remote PACIO via EtherCAT network
- SD card application memory

Features

- Programmed using Parker Automation Manager IDE
- Industry 4.0 and IIoT Ready
- Capable of simple to complex Robotics motion control
- HTML5-based embedded remote & local HMI

Additional communication

ACR 7000 Series

The ACR series is Parker's staple motion controller. Built upon decades of motion expertise, the 7000 blends control with embedded stepper or servo drives resulting in a small, economic package perfect for table top and laboratory-style instruments.

Motion Control

- Linear, circular, and helical interpolation of up to 8 axes
- Segmented electronic camming
- Electronic gearing with real-time phase shifting
 Libraries for PC based
- applications

Additional communication

EtherNet/IP

Stepper Drives

- 2 or 4 axes at 4 Amps/ axis
- μStepping selectable to 51,200 steps/rev

Servo Drives

- Up to 8 axes with 8 Amps/axis continuous and 16 Amps/axis peak
- 62.5 μsec servo update rate

Complete Solutions

Visualization & HMI

Visualization & HMI Selection Guide

Product Families

* The HMI application is developed through Parker Automation Controller and the HMI runtime is running on the PAC itself. The PT simply acts as a thin-client HMI displaying the embedded WebVisu application on the PAC.

The next generation has arrived! Create the new face of your machine using Parker's proven and intuitive HMI development software on powerful new hardware and gorgeous displays. The latest generation of Parker's HMIs—the XT, IX, PT, and PC offer powerful flexibility in a modern form factor.

With the same look and feel, any of the XT, IX, and PC modules could

be interchanged in the same cutout space. On the inside, these HMIs vary drastically, offering the right fit for any application.

The lightning-fast XT hardware provides a powerful boost to our award-winning, drag-and-drop HMI creation software, Xpress. For power users looking for more control with data logging and VBA scripting, our InteractX software platform has moved to the new sleek IX series.

The PC option includes Windows Standard Embedded 7 enabling users to run 3rd party software or develop their own.

Find More Online

For complete information on all other Parker Electromechanical & Drives product lines not covered in this catalog, please visit our website at:

parker.com/emn

		Entre Inc.	NDFAMINEA INLINE	-mon Rossil, Scinifictal April August
Par	ker	E	At fiesults 🖉 👻 Dearth for a f	and there they are they are and a second
HOME IN	COUCTS SCUTCHE MANDETS	launigen weiter tolkty 460.01	US CONTACTUS	
Increase of	anical and Cross Distant Alartic	1		
Bring	HIS IS	PARK	KER	
FEA	TURED PRODUCTS			
۲		I		Sector >
	MOTION AND MACHINE CONTROLLERS	DRIVES AND INVERTERS	MOTORS	LINEAR AND ROTARY POSITIONERS

The Parker Community offers a knowledge base with frequently asked questions, up-to-date division blog posts, and an interactive user forum. Access is free and signing up is easy! To join the community, please visit:

community.parker.com/technologies/electromechanical-group

Parker Hannifin offers thousands of product lines ranging from viton seals and brass fittings to hydraulic cylinders with kilo-newtons of force.

To find out more about the complete Parker Hannifin family of products, please visit:

parker.com

Complete Solutions

Technical Reference

With over 80 years of motion and control experience Parker Hannifin has the engineering expertise to assist in design, development, and production of challenging automation projects. The following pages detail some of the engineering considerations when dealing with electromechanical motion control. In a changing business environment where business partnerships are more important than ever, Parker is pleased to offer the engineering excellence a company should expect from a premier partner. Whether the question is about thermal effects on submicron accuracies, outgassing materials in a vacuum rated environment, particulate generation in a clean room environment, or simply critical speeds of ground versus rolled ball screws, Parker has experience in providing proven solutions.

Engineering Overview

Overview of motion technologies, components, and system variables and parameters to consider when designing a motion system. Page 531.

System Considerations

Assembly configurations, loading, precision, and motor components. Page 540.

How to Size and Select

Thrust and motion profile calculations, torque requirements, load and cylinder orientations, bearing tables, load, and life expectancy. **Page 549.**

Glossary of Terms

GLOSSARY

Absolute Positioning: Rofers employing position faultback de maintain a given mechanical loc Accuracy: The difference between meanum deviation between a actual position of a positioning : List of common terms and definitions used in the design of electromechanical positioning systems. **Page 560.**

Linear Mechanics

Linear positioner components, rotaryto-linear conversion information, and drive technologies comparison. **Page 533.**

Electronic Components

Linear encoder types used in linear positioning systems, and controller/ amplifier/motion controllers. Page 546.

Complete System Analysis

System modeling for overall positioning system performance, and frequency response for analysis of motion characteristics. **Page 557.**

Offer of Sale Page 562.

ENGINEERING OVERVIEW

Electromechanical motion systems utilize various technologies as building blocks for obtaining point to point, scanning, and contouring motions.

These technologies or components include (but are not limited to):

- Ballscrews (rolled, ground, or whirled)
- Leadscrews (rolled or ground)
- Belt drives (herringbone design or trapezoidal tooth design)
- Linear motors (ironless, ironcore, or back iron designs)
- Cross roller bearings (standard and anticage creep designs)
- Square rail bearings (precision and standard designs)
- Roller bearing wheels (steel or polyamide designs)
- Round rail bearings (bushing and recirculating ball designs)
- Motors (DC, Stepper, and Servo designs)
- Encoders (Linear, Rotary, Absolute, Incremental)
- Amplifiers (also known as drives)
- Controllers (single and multi-axis)
- HMI (Touch screen user interface devices)

By understanding the trade-offs in technologies (for example between a precision ground ball screw versus a rolled ball screw or a servo motor versus a stepper motor) engineers are more efficient in designing the right motion solution. The following pages are intended as a resource for trying to understand the benefits of the technologies and other important things to consider when designing a motion system.

System Variables and Parameters

The following diagram represents a product tree of a modeled positioning system. The upper section represents various System Variables, which describe the STATIC, SERVO and DYNAMIC specifications of the machine. These variables are modeled as a function of system parameters as shown below. The bottom section of the diagram represents system parameters that characterize the various motion control components of the positioning system. These parameters are needed to be selected for various reasons including structural design, component sizing, and servo tuning. The model relates these parameters to the performance variables as shown above. It can therefore be used to assist in the selection of these parameters to result in a cost-effective solution.

Motion Control Component Parameters

LINEAR MECHANICS

Linear Positioner Components:

Bearings:

Recirculation Bearing

Typically used for highest stiffness and high speed (Pitch, Yaw and Roll on the order of 10 arc-sec).

Crossed Roller Bearing

Typically used for a combination of high stiffness and high smoothness of motion (Pitch, Yaw, Roll on the order of 5 arc sec).

Air Bearing

Typically used for highest precision (sub micron) and highest smoothness of motion. (Pitch, Yaw, Roll on the order of 1 arc-sec).

Drive Transmission

Ball Screw

Typically used for high acceleration, high force.

Lead Screw

Typically used for high smoothness of motion.

Linear Motor (Ironless)

Typically used for very high smoothness of motion at low or high velocity.

Linear Motor (Iron Core)

Typically used for achieving a combined high force (up to 20,000 N), long travel (unlimited) and high speed (up to 10 m/sec).

Belt Drive

Typically used for high speed applications.

Motors

See Motion Control Components in System Considerations section.

Encoders

Rotary Encoder

Typically mounted to the back of a rotary motor and used for lower precision at lower cost.

Linear Encoder

Typically used for higher precision at higher cost.

Rotary to Linear Conversion

Linear motion systems driven by rotating electric motors commonly employ one of three rotary-to-linear conversion systems: ballscrew, acme screw or belt drive.

Leadscrew

Screw-drive mechanisms, whether Acme screw or ballscrew, provide high thrust (to thousands of pounds) but are often limited by critical speed, maximum recirculation speed of ball nut circuits, or sliding friction of Acme nut systems.

Ballscrew

The majority of linear motion applications convert motor torque to linear thrust using ballscrews due to their ability to convert more than 90% of the motor's torque to thrust. As seen below, the ball nut uses one or more circuits of recirculating steel balls which roll between the nut and ball screw threads. Ballscrews provide an effective solution when the application requires:

- High efficiency, low friction
- High duty cycle (>50%)
- Long life, low wear

Ballscrew/Leadscrew Comparison

Acme Screw

The acme screw uses a plastic or bronze solid nut that slides along the threads of the screw, much like an ordinary nut and bolt. Since there are no rolling elements between the nut and the lead screw, acme screws yield only 30-50% of the motor's energy to driving the load. The remaining energy is lost to friction and dissipated as heat. This heat generation limits the duty cycle to less than 50%. A great benefit of the acme screw is its ability to hold a vertical load in a power-off situation. The acme screw is a good choice for applications requiring:

- Low speeds
- Low duty cycles (50%)
- The ability to hold position while motor power is off

Considerations	Acme Screw	Ballscrew	Comments
Audible noise	Quiet operation	Noisy	Acme screws are quieter, while one can hear the ball bearings recirculating within a ballscrew. In any case, the motor sound is typically the most audible part of the cylinder assembly.
Back-driving loads	Self-locking	Easily backdrives	When vibration is apparent in a system, an acme may backdrive. Ballscrews may require a brake.
Backlash	Increases with wear	Constant throughout life of screw	Due to high friction, acme screws wear sooner, and therefore, the backlash increases over the life of the leadscrew.
Duty cycle rating	Low/Medium (<60%)	High (100%)	Because excessive heat can deform the screw, acmes are limited to 60%. The high efficiency of ballscrews allows for 100%.
Efficiency rating	Low: Plastic nut (45%) Bronze nut (35%)	High (90%)	Acme screw ratings are lower due to sliding friction while ballscrews are higher due to rolling contact.
Life (mechanical wear)	Shorter life due to high friction	Longer	Acme screw life is load dependent and is rated in travel distance. The higher the load, the shorter the travel life. (See life expectancy charts for ballscrews)
Smoothness of operation	Smooth operation at lower speeds	Smooth operation at all speeds	Ballscrews are generally smoother at all operating speeds.
Speeds	Low	All	Ballscrews operate well at all speeds, while Acme screws are best suited for lower speed applications.

Feature Change Effected Performance How Screw Lead Faster Lead **Required Torque** Increases Screw Lead Faster Lead Load Capacity Increases Screw Lead Faster Lead Accuracy Decreases RPM required for same speed Screw Lead Faster Lead Decreases Screw Lead Faster Lead **Ball Bearing Diameter** Increases Load Capacity Increases Life Decreases Screw Length Increases **Critical Speed** Decreases Column Loading Capacity Screw Length Increases Decreases Screw Diameter Larger Diameter Load Capacity Increases Screw Diameter Column Loading Capacity Larger Diameter Increases **Screw Diameter** Larger Diameter Stiffness of Screw Increases Screw Diameter Larger Diameter Spring Rate Increases Screw Diameter Larger Diameter **Critical Speed** Increases Screw Diameter Larger Diameter Screw Inertia Increases Screw Mounting Increase Rigidity **Critical Speed** Increases Screw Mounting Increase Rigidity System Stiffness Increases Ball Nut Length (1) Lengthen Load Capacity Increases Lengthen System Stiffness Ball Nut Length (1) Increases **Ball Bearings per Nut** More Bearings System Stiffness Increases **Ball Bearings per Nut** More Bearings Load Capacity Increases Preload Force of Nut Increase Preload Continuous torque Increases Preload Force of Nut **Increase** Preload Positional Accuracy Increases Preload Force of Nut Increase Preload System Stiffness Increases Preload Force of Nut **Finest Resolution** Increase Preload Decreases **Ball Diameter in Nut** Larger Diameter Life Increases **Ball Diameter in Nut** System Stiffness Larger Diameter Increases **Ball Diameter in Nut** Larger Diameter Load Capacity Increases

Screw Characteristics and Effects of Changes

(1) Note 7 turn Max

Attribute Comparison of Drive Technologies

Attribute	Leadscrew with Composite Nut	Leadscrew with Bronze Nut	Ballscrew with Rolled Threads	Ballscrew with Ground Threads	Belt Drive
Smoothness	Excellent	Excellent	Fair	Good	Fair
Positional Accuracy	Excellent	Excellent	Fair	Excellent	Fair
Positional Repeatability	Excellent	Excellent	Good	Excellent	Fair
Axial Load Capacity	Low	Moderate	High	High	Moderate
Axial Stiffness	Fair	Good	Very Good	Excellent	Low
Speed	To 15 RPS	To 25 RPS	To 40 RPS	To 40 RPS	120 inches/sec
Duty Cycle	50%	75%	100%	100%	100%
Where used	PROMech MX80	Legacy Products	HD	400XR HD MX80 800CT	HPLA HLE

Timing Belt

Belt drive systems offer many of the benefits of ball screws, yet have fewer moving parts, and do not have the critical speed limits of leadscrew-driven systems. They generally provide greater linear motion from the same motor movement, resulting in higher travel speeds with minimal component wear. In contrast, this design results in lower repeatability and accuracy. Thrust capability is also less compared to screw-drive systems due to the tensile strength limitation of the transport belt.

Backlash

The clearance between elements in a drive train or leadscrew assembly which produces a mechanical "dead band" or "dead space" when changing directions is known as the backlash in a system.

In most mechanical systems, some degree of backlash is necessary to reduce friction and wear. Usually 0.006 - 0.008" is attributed to the lead screw/nut assembly. For ballscrews, backlash will remain constant throughout the life of the actuator, while acme screws will increase backlash with wear.

Reducing the Effects of Backlash

- 1. Approach a stop position from the same direction.
- Apply a constant linear force on the cylinder thrust tube or carriage. This is done automatically for cylinders used in vertical orientations with a backdriving load.
- 3. For programmable positioning devices, it is possible to program out backlash by specifying a small incremental move (enough to take out the backlash) prior to making your normal moves in a particular direction.
- 4. Use a preloaded nut on a lead screw to counteract the backlash. Contact Actuator Division about the precision ground screw option which reduces backlash in the drive nut.
- 5. An inline actuator with the motor directly coupled to the leadscrew has less backlash than parallel or reverse parallel units which utilize a gear train or drive belt/pulley.

Primary Sources of Backlash

requiring:

Drive Nut/Lead Screw Assembly

A toothed belt passes around a pulley in each end of the actuator and is attached to the carriage to pull it

back and forth along the length of travel. The carriage is supported by a linear bearing system to provide load

carrying capacity. The belt is reinforced with steel tensile

elements to provide strength and minimize belt stretch.

Timing belt systems are a good solution for applications

Drive Train (Gears, Timing Belt/Pulley)

Timing Belt/Pulley

0					
	Cross Roller	Round Rail	Square Rail	Slider/Bushing	Roller Wheel
Normal Load Capacity	High	Medium	Med-High	High	Med
Accuracy	High	Medium	Med-High	Low	Med-Low
Stiffness	High	Low	Med	Low	Med-Low
Preload	High	Low	Medium	Medium	Medium
Moment Loading	High	Low	Medium	Low	High
Single Rail Support	No	No	Yes	Yes	No
Same Load in All Directions	Yes	No	Yes	No	Yes
Sealing	No	Yes	Yes	No	Yes
Smoothness	Medium	High	Med-High	low - High	Med
Drag	Med- Low	Low	Med	High	Low
Ease of Install	Med	Simple	Med-Simple	Simple	Med
Mounting Surface Precision Required	High	Medium	Med-High	Low	Low
Self Aligning	No	Yes	No	No	Yes
Life	Med	Medium	High	Low	High
Cost	High	Low	Medium	Low	Med-Low
Continual support needed	No	Yes	Yes	Yes	Yes
Load Cap/Size	High	Low	Med-High	High	Medium
Effeciency	High	High	Medium	Low	Med-High
Velocity Ripple	Low	Low-High	Med-High	High	Med-High

Bearing Characteristics

Round Rail Linear Bearings

Round rail bearings are a recirculating type linear bearing consisting of a large diameter centerless ground rod on which ball bushings ride. The design allows very long travel lengths which are only limited by the available rail and base length. The ball bushing with it recirculating ball bearings, provide good load capacity with very low friction. With its modular design, the bearing components can be replaced easily. These bearings are ideal for assembly and automation applications where high speed, long life and fast low cost maintenance is a must.

Ball and Rod Bearings

Ball and rod bearings consist of two rows of hardened steel balls each pre-loaded between four hardened ground 440C stainless steel rods. This design provides ultra smooth extremely low friction motion by reducing the contact area between the balls and the ways. This design provides extremely good straight line and flatness accuracy.

Square Rail Linear Bearings

Also known as linear guides, these bearings are very similar to the round rail bearing. The major difference is in the shape of the raid and the bearing ways. Square rail bearings have a square or rectangular cross section that enables bearing ways to be ground into the sides of the rail. These bearing ways are shaped in an arch which is approximately the same radius as the ball bearing. This increases the contact surface between the ball and the rail thereby increasing the load capacity of the linear bearing. As with the round rail, travel is only limited by the available base and rail length.

Cross Roller Linear Bearings

Very similar to the ball and rod bearing except the balls have been replaced by rollers and the rods by ground "V" ways. These changes increase the load capacity of this type of bearing up to 2-3 times that of an equivalent size ball and rod bearing. The straightness and flatness specification of these tables is excellent.

Linear Motor Engineering Reference

What are linear motors?

Simply stated, a linear motor is the same as a rotary motor that has been "unwrapped." They operate exactly the same as rotary motors, where the same electromagnetic equations that describe how a rotary motor produces torque now describe how a linear motor produces a direct force.

In many applications, linear motors offer distinct advantages over conventional rotary drive systems. When using a linear motor, there is no need to couple the motor to the load by means of intermediate mechanical components such as gears, ballscrews, or belt drives. The load is directly connected to the motor. Therefore, there is no backlash or elasticity from the moving elements. Thus, the dynamic behavior of the servo control is improved and higher levels of accuracy are achieved.

The absence of a mechanical transmission component results in a drive system with low inertia and noise. In addition, mechanical wear only occurs in the guidance system. As a result, linear motors have better reliability and lower frictional losses than traditional rotary drive systems.

Differences in construction

The differences in construction between a direct-drive linear motor and a conventional rotary drive system are shown in (Fig. 1 and Fig. 2,) using the examples of a linear motor drive and a ballscrew drive. Due to the absence of mechanical transmission elements converting rotary movement into linear movement, the axis fitted with a linear motor has a much simpler mechanical construction, resulting in a low-inertia drive for highly dynamic applications. Though not always required, the linear motor table is equipped with a linear encoder, which provides extremely accurate positional feedback.

Though the linear encoder in (Fig. 2) can be considered a high-cost component, the selection of the feedback system can be optimally suited to the requirements of the application. For instance, Parker offers extremely highresolution optical encoders for applications with demanding precision requirements. In addition, Parker offers lower- resolution, lowcost magnetic encoders for applications where overall system cost is a concern. Actually, it is not uncommon for a linear motor with an economical form of feedback to outperform and actually cost the same or even less than a rotary system using a precision ground ballscrew.

Fig. 1: Precision table fitted with ballscrew drive

Fig. 2: Precision table fitted with linear motor

Selection Guide								
Attribute	Ironcore	Ironless	Slotless					
Cost	Best	Good	Better					
Bearing Sizes	Good	Best	Better					
Velocity Ripple	Good	Best	Better					
Force Density	Best	Good	Better					
Thermal Characteristics	Best	Good	Better					
Forcer Weight	Good	Best	Better					
Forcer Strength	Best	Good	Better					
Cooling Op- tions	Best	Good	Better					
Parker Force Outputs	35 - 1,800 lbs	5 - 600 lbs	5 - 200 lbs					
Industry Use	Industrial	High Precision	Moderate/ High Precision					

Fig. 3: Linear motor components include a separate coil and magnet rail

Fig. 4: Linear motor positioning systems include a base, bearings, carriage, feedback and typically cable management

Types of linear motors

There are many different types of linear motors. Each type exhibits its inherent advantages and benefits to the user. Parker manufactures 3 styles of linear motors – ironless, ironcore, and an interesting variant known as the "slotless" design.

Linear motors are either offered as individual components or complete systems. Components, or "kits" (Fig. 3), consist of a motor coil and separate magnet rail. The coil assembly is known as the "forcer" or sometimes as the "primary" element. The forcer generally consists of the motor coil and an attachment plate or mounting bar which allows the coil to connect to the carriage.

The motor cables typically exit from one side of the package. The magnet track is sometimes referred to as the "secondary" element. Depending on the type of linear motor used, the magnet track can either be a single row of magnets or a double-sided configuration offering balanced attraction forces.

A complete linear motor system (Fig. 4) is typically made up of the individual motor components, base, bearings, feedback elements, and cable management.

By selecting linear motor components, the user is given an economical solution and is allowed complete flexibility with respect to integration into the machine. However, this requires a high degree of specific knowledge on the part of the machine builder. The designing engineer must have an understanding of the motor characteristics, linear feedback technology, cooling methods, and the performance of the servo amplifier and control system.

By selecting integrated linear motor positioning systems, the design engineer is given a preengineered, robustly designed, fully tested package. This takes the worry out of designing and aligning bearings, encoders, heat sinks, cables, connectors, travel stops, and limit / home sensors. Parker linear motor tables provide all this and more in easily mounted and ready-to-run packages.
SYSTEM CONSIDERATIONS

Assembly

Configurations:

Single Axis

The simplest form of positioning stage. Sometimes referred to as "Table", "Slide", "Actuator" or "Stage". It typically consists of slide, base, bearing, motor, encoder, limits, home, cable carrier and hard stops. The base can be mounted to a rigid structure or to the slides of other stages in various configurations as shown below. The slide, which is the moving part, can be used to move another stage, or any object such as a tool, work, test and measuring devices.

This configuration provides the simplest form of 2 linear degrees of freedom of a positioning system where the base of the top axis is bolted to the slide of the lower axis. For a high-performance positioning application, a "monolithic" design can be used where the base of the top axis and the slide of the bottom axis are rigidly made as a single part. In a compound XY configuration care should be given in consideration to the Abbe Error of the top axis due to cantilever "diving board" effect.

Split XYZ Axes

A split axes positioning stage typically provides higher precision and higher stiffness than a compound configuration of the same number of axes. The reason is that at least 2 axes are mounted to a flat, rigid, stationary base with a fewer number of stages that ride on other stages. The result is smaller Abbe Errors and less cantilever effects at the expense of a larger footprint. Note that although this structure looks similar to a Gantry configuration, as shown below, the Z Axis is rigidly mounted to a stationary bridge, and the X Axis is mounted to a stationary Base.

This configuration provides the simplest form of 3 linear degrees of freedom of a positioning system with the smallest footprint. In using this configuration care must be given to calculate the three dimensional accuracy. In particular the Abbe error. (Due to large offset between the bearing of the lowest stage and the point of interest at the top of the vertical stage.)

Gantry

This configuration has the best accessibility to the space around it per footprint of the machine. It is commonly used as single cell or in process application where several machines are operating over a conveyor. Gantry configuration, driven by linear motors and designed for

high natural frequency (typically 150 Hz), can provide an excellent solution that combines high precision, high speed and low settling time. Gantry can further be classified according to the following options:

- Single-sided motor drive typically used for small size applications
- Double-sided motor, driven together by a single amplifier with 1 sided encoder typically used in large system, with low accuracy requirements
- Double-sided motor, driven as two independent axes X1, X2 operating as master slave with two sided encoder typically used for large machines that require high precision. Flexure slides may be needed on the X Axis to prevent cleavage (motion resistance at the bearing of the X Axis due to skewed movement of the Y Axis.)

Axial Force (Maximum)

The maximum thrust force that the stage can generate in the direction of travel. This force is used to overcome friction, damping, tool resistance and acceleration.

A moment loading defines a twisting load about the bearings. The impact of a moment load is that it is not distributed about all of the bearings uniformly. A moment load can be created in a variety of orientations:

- Mx When a load is cantilevered off the end of an axis, parallel to the direction of travel
- My When the load is cantilevered off the sides of an axis, perpendicular to the direction of travel

L

Mz When a force causes a rotational moment about the center of an axis.

Dynamic Loading

may be applied for a bearing life of 254,000 m (10 Million inches) of travel with no evidence of fatigue appearing in 90% of the bearing. This assumes that the load is constant in magnitude and direction and that all forces are perpendicular to the motion of the stage.

Precision

Linear Definitions:

Accuracy

The difference between a commanded position and an actual position of a positioning stage. Accuracy is typically specified in microns that represent specified number of standard deviation "Sigma" (see definition below), per given travel, at a specified height above the stage mounting plate. For example: a +3 micron accuracy, 3 Sigma, per 500 mm travel means that if the controller commands the positioning stage to move to a location 500 mm away from a known "home" position in space, then, in 99.8% of the times that this move will be made, the actual position of the stage, at 25 mm above the mounting surface, will end up being between 499.997 and 500.003 mm.

Repeatability

Repeatability represents the maximum deviation between actual position values, obtained in repetitive moves of a positioning stage, to a desired position. Repeatability, like accuracy, corresponds to a specified number of "Sigma", per specified travel, at a specified height above the mounting surface of the stage.

The smallest positioning movement that can be achieved by a positioning stage.

Resolution (Encoder)

The smallest increment of the position feedback signal that can be measured by a feedback device (e.g., encoder).

High repeatability, high accuracy

Standard Deviation (Sigma)

The average deviation of a Random Variable (a variable such as position error, whose outcome is of a statistical nature) from its average value (mean). The chart below represents a Standard Normal distribution of a random variable with zero mean and sigma of 1. The X Axis

Standard Normal Distribution

represents the random variable in units of Sigma, and the Y Axis represents the Probability Density function of the random variable. The density function is used to calculate the probability that the random variable will occur between two values on the X Axis. More specifically, the probability of a random variable occurring between two values on the X Axis equals to the area under the Probability Density Function between these two values. The total area under the curve equals 1. Some important areas are as follows: the area between +1 sigma is 0.84, between +2 sigma it is 0.977 and between +3 sigma it is 0.998. This means, for example, that the probability of a random variable occurring between +3 Sigma is 99.8%.

Flatness

The maximum boundaries of positioning path of motion projected on the vertical plane.

Straightness

The maximum boundaries of positioning path of motion projected on a horizontal plane.

Angular Definitions:

Pitch

An angular deviation possible in positioning systems, in which the table leading edge rises or falls as the table translates along the direction of travel. This represents rotation around a horizontal axis, perpendicular to the axis of travel.

Yaw

An angular deviation from ideal straight line motion, in which the positioning table rotates around the Z (vertical) Axis as it translates along its travel axis.

Roll

An angular deviation from ideal straight line motion, in which the positioning table rotates around its axis of travel as it translates along that axis.

Abbe Error

A linear positioning error caused by a combination

of an angular error in the bearing of the positioning stage, and an offset between the bearing and the actual point of interest.

Dynamic:

Constant Velocity

A measure of smoothness of motion of a positioning stage. Typically measured in percent variation from a nominal value at a given sampling interval. High smoothness of motion can be achieved by using crossed roller or air bearing stages with ironless linear motors.

Settling Time

The time required for a step response of a system parameter to stop oscillating or ringing and reach its final value. For example, the time it takes for a velocity profile to settle to a specified value of constant velocity after the acceleration ramp phase. Also, the time it takes for a displacement profile to settle to specified accuracy after the deceleration phase at the end of a positioning move. Settling time is greatly affected by the shock, jerk, structural damping and resonance frequencies. Improved settling time in positioning systems can be achieved by high structural stiffness, low moving mass, high natural frequency of the structure, structural damping, high closed loop band width at the overall positioning system and good servo tuning.

Rotary Positioning Stages **Precision:**

Axial Runout Error

The total indicated reading (TIR) of axis movement along the axis of rotation.

Radial Runout Error

The total indicated reading of the horizontal movement of the rotary table.

Backlash Error

The error in rotational position due to clearance between a worm and a gear as a result of changing direction of motion. Backlash has an effect on two directional repeatability since the motion of worm is lost while reversing direction and traveling through the gap it has with the gear.

Wobble Error

The angular error between the actual axis of rotation and the theoretical axis of rotation.

Loading:

Axial Load Capacity

The maximum allowable force acting along the axis of rotation of the rotary stage.

Perpendicular Load Capacity

The maximum load perpendicular to the positioning stage top surface, applied at a specified radius from the axis of rotation of the table.

Motion Control Components

Motors

Brushless rotary motor & brushless direct Drive

Linear Motor

Motors Types Used in Positioning Systems

Servomotor

A device that converts electrical current to mechanical energy where the current is varied by a servo amplifier in a closed loop control system.

DC Motor

A device that converts electrical direct current into mechanical energy. It requires a commutating device, either brushes or electronic. Usually requires source of DC power or DC drive.

AC Motor

A device that converts electrical alternating current into mechanical energy. Requires no commutation devices such as brushes. Normally operated off commercial AC power or a VFD. Can be single or multiple phase.

Synchronous Motor

Another term for a Brushless DC motor.

Permanent Magnet Motor

A motor utilizing permanent magnets to produce a magnetic field. Has linear torque/speed or force/speed characteristic.

Brushless Motor

A type of direct current motor that utilizes electronic commutation rather than brushless to transfer current.

Iron Core Linear Motor

A permanent magnet motor consisting of laminated ferrous coil assembly and a single-sided secondary magnet assembly.

Ironless Linear Motor

A permanent magnet motor consisting of a non laminated coil assembly and a U-channel secondary magnet assembly

Piezo Ceramic Motor

A motor made of a small ceramic plate, oscillating at high frequency (e.g. 40Khz), causing its tip to form circular motion. As the tip comes in contact with a longer ceramic plate, attached to the slide of a positioning stage, it applies friction forces on the plate and causes it to move in the direction of the tip circular rotation.

ELECTRONIC COMPONENTS

Encoders

An encoder is a position feedback device that converts mechanical motion into electrical signals to indicate actuator actual position. The basic configuration of an encoder can be linear or rotary, incremental or absolute. A rotary encoder is typically attached to the rotary motor and measures the motor shaft rotation. Therefore, any windage effect at the ball screw or lost motion due to backlash and friction will not be seen at the encoder. The linear encoder, on the other hand, reads the actual position closer to the point it takes place and therefore the resulting precision is higher.

Linear Encoder Types Used in Positioning Systems

Absolute Encoder

A digital position transducer in which the output is representative of the absolute position of the input shaft within one (or more) revolutions. Output is usually a parallel digital word.

Incremental Encoder

A position transducer in which the output represents incremental changes in position.

Linear Encoder

A digital position transducer that directly measures linear position.

Quadrature Encoder

This is a special incremental encoder with two channels A and B, sometimes referred to as A Quad B. The two channels are 90 degrees out of phase. This configuration allows detection of direction as well as increasing the resolution by a factor of four.

Controller/Amplifier/Motion Controllers

A motion controller is an electronic device that communicates with a host computer and has the capability to store a desired motion profile as a function of time or any other reference signal, read the actual position feedback, calculate the error, and send out a command signal to the servo amplifier as a complex function of the error and its derivatives. It can also monitor various I/O signals and control several axes in a coordinated moves.

PID controller block diagram with Feed Forward and ZOH

PID Controller Functional Elements

ZOH

Zero Order Hold represents the controller time delay in processing the input signals before the output to the amplifier is updated.

DAC

Digital to Analog Convertor component that receives a digital signal from the controller filter and outputs an Analog signal to the Amplifier.

Compensation

The corrective or control action in a feedback loop system that is used to improve system performance characteristics such as accuracy and response time.

Compensation, Feed forward

A control action that depends on the command only and not the error to improve system response time.

Compensation, Integral

A control action that is proportional to the integral or accumulative time error value product of the feedback loop error signal. It is usually used to reduce static error.

Compensation, Lag

A control action that causes the lag at low frequencies and tends to increase the delay between the input and output of a system while decreasing static error.

Compensation, Lead

A control action that causes the phase to lead at high frequencies and tends to decrease the delay between the input and output of a system.

Compensation, Lead Lag

A control action that combines the characteristics of lead and lag compensations.

Compensation, Proportional

A control action that is directly proportional to the error signal of a feedback loop. It is used to improve system accuracy and response time.

Compensation, Derivative

A control action that is directly proportional to the rate of change of the error signal of the feedback loop. It is used to improve system damping to provide smooth motion and reduce settling time.

Servo Amplifier

Servo Amplifier Functional Elements

Servo Amplifier

An amplifier that utilizes internal servo feedback loops for accurate control of motor current and or velocity.

Analog Amplifier

An amplifier that has an analog signal as an input.

Digital Amplifier

An amplifier in which tuning and parameter setting is done digitally. Input can be an analog or digital signal.

Linear Amplifier

An amplifier that has output directly proportional to either voltage or current input. Normally both input and output signals are analog.

PWM Amplifier

An amplifier utilizing Pulse Width Modulation techniques to control power to the motor. Typically a high-efficiency drive that can be used for high response applications.

HOW TO SIZE AND SELECT

Actuator Sizing & Selection

1 Thrust Calculation

Calculate the thrust generated by the application. Total thrust generally consists of three components:

Total Thrust	= F _t	= F _a ·	+ F _g + F _f
Thrust Due to Friction	F_{f}	=	$\mu_{_{\!S}}\text{Lcos}\alpha$
Thrust Due to Gravity*	F_{g}	=	Lsin α
Acceleration Thrust	F_{a}	=	L/g x V/T _a

*Horizontal applications do not apply.

Actuator Orientation

The terms used and their values depend upon the orientation of the actuator. Refer to the illustrations and equations below to determine the form of the thrust equation.

Horizontal

Horizontal Equations: $F_{t} = F_{a} + F_{f}$

Vertical

Vertical Equations: Upward: $F_t = F_a + F_q + F_f$ Downward: $F_t = F_a - F_a +$ F_{f}

Terms used:

- F. = Total (maximum) thrust force (N, Ib)
- Friction force (N, Ib)
- Force of gravity (N, lb)
- $F_{f} = F_{g} = \alpha =$ Angle of inclination (see illustration below)
- **Coefficient of Sliding Friction** μ_ = (Load friction only, actuator friction excluded) L = Actual load (N, lb)
- g = Acceleration due to gravity (9800 mm/sec², 386 in/sec²)
- V = Velocity (mm/sec, in/sec)
- Acceleration time (sec)
- T_a = D = Move distance (mm, in)
- t = Move time (sec)
- A = Acceleration (mm/sec², in/sec²)

Angular Equations: Upward: $F_t = F_a + F_a + F_f$ Downward: $F_t = F_a + F_g + F_f$

2 Motion Profile Calculations

Two common motion profiles that relate velocity to time are the Trapezoidal and Triangular motion profiles. They serve as good starting points for calculating motion parameters and thrusts.

Determine the required velocities and accelerations for the application.

Acceleration ≤ 1 g (9.8 m/sec²)

Note on Acceleration: In general, any acceleration less than or equal to 1 g (9.8 m/sec² or 386 in/ sec²) is considered acceptable. Accelerations greater than 1 g should be referred to the factory before ordering.

3 Determine Motor Torque Requirements

Maximum Torque

T = Thrust x Lead
$$η_s x η_b x 2π x Ratio$$

Where:

Lead = Screw Lead (in/Rev)

Thrust	=	Calculated thrust value in N (lbf)
	=	F _a + Fg + Ff
		F [°] (acceleration thrust)
	=	Load/(9800 mm/sec ²) × Velocity/acceleration time
		F_{α} (force of gravity) = Load × sin α
		F_{f}^{3} (friction force) = μs (see table) × Load × cos α
$\eta_{\rm b}$	=	Timing belt efficiency: for parallel driven versions (typically 0.9 or 90%) for in-line versions, use 1.
$\eta_{\rm s}$	=	Screw efficiency (see table) Belt drive efficiencies = 0.9

T = Input torque required, Nm (in-lb)

Ratio = Drive ratio (if timing belt is not 1:1 or another reducer is used)

Friction Coefficient

Material
(dry contact unless noted)µsSteel on steel0.80Steel on steel (lubricated)0.16Aluminum on steel0.45Copper on steel0.22Brass on steel0.35Teflon on steel0.04

(4) Continuous Torque (Servo systems only)

With servo motors, it is important to understand the relationship between peak torque and continuous torque. Continuous or rms torque refers to the torque a servo motor system can produce continuously, or at 100% duty cycle. Peak torque refers to torque produced in intermittent time quantities, generally less than 5 seconds. This allows the user to better size the servo motor required based on what the actual torque needs are for the application. The maximum torque calculated in the previous section will represent the peak torque requirement. To determine the continuous torque requirement, first establish a sequence of use over a given duty cycle.

It is necessary to calculate the torque required at different instances of thrust. There are three general types of torque, and they correspond to thrusts calculated earlier:

Acceleration Torque

Torque when generating total thrust F_t (This is normally the maximum torque required.)

Constant Speed Torque

Torque when generating friction and gravity thrust $(F_f + F_g)$

Static Torque

Torque when holding a static load (typically gravity thrust F_a)

To calculate the continuous (rms) torque:

$$\mathbf{T}_{\rm rms} = \sqrt{\left[\Sigma \mathbf{T}_i^2 \mathbf{t}_i / \Sigma \mathbf{t}_i \right]}$$

Where:

 $T_i = Torque required over time interval ti (Nm, in-lb)$

= Time interval i (sec)

Example: For a typical trapezoidal profile, let

- $T_1 = \text{acceleration torque} = 1000 \text{ Nm}$
- t, = 1 sec
- \dot{T}_2 = torque at a constant speed (friction) = 25 Nm t_2 = 1 sec
- $t_2 = 1 \text{ sec}$ $T_3 = \text{deceleration torque} = 1000-25 = 975 \text{ Nm}$
- $t_3 = 1 \text{ sec}$
- $\vec{T}_4 = \text{torque at rest} = 0 \text{ Nm (horizontal orientation)}$ $t_4 = 10 \text{ sec}$

When viewing servo motor speed-torque curves, let T_{ms} represent the maximum continuous torque value, while T_{max} may represent the peak torque value. Stepper motors run constantly at full torque and consequently require only the maximum torque value for sizing and selection.

Terms used:

Lead = Screw lead (in/Rev)

V₁ = Maximum linear velocity in m/s (in/sec)

Ratio = Reduction ratio, if any (i.e. 2:1, Ratio =)

Speed = Required motor speed in rev/sec

This would represent a single duty cycle. To calculate T_{ms} .

 $T_{rms} = \sqrt{ [((1000 \text{ Nm})^2 \text{ x 1 sec})+((25 \text{ Nm})^2 \text{ x}$ $((975 \text{ Nm})^2 \text{ x 1 sec})+(0 \text{ Nm})^2 \text{ x10 sec})]/$ $[1+1+1+10 sec]}$

$$T_{ms} = 387.42 \text{ Nm}$$

Breakaway Torque

This information should be taken into consideration when selecting an appropriate motor to drive the actuator and load. The breakaway torque will factor into the initial peak torque required to accelerate the mass from rest.

Before each actuator ships, it is tested for breakaway and running torques. The report generated is shipped with the maintenance manual and other paperwork included with the actuator. This allows a customer to view the specific details of the custom actuator ordered.

Calculating Smallest Linear Resolution

First find the number of steps required to produce breakaway torque:

$$X = \frac{T_{b}}{\sin (M_{res}/D_{res}) \times T_{s}}$$

Where:

X torqu	= e	Steps required to produce breakaway
T _b	=	Breakaway Torque
T _s	=	Motor Static Torque
M_{res}	=	Motor resolution in electrical degrees per rev (18,000 electrical deg/rev)
D _{res}	=	Drive resolution in steps per rev

Then calculate resolution:

Resolution = (screw lead / drive resolution) × X

Determine the maximum speed required

Speed	=	VL x Ratio
		Lead
Where:	1	
Lead	=	Screw lead (mm/rev), see product Ordering Information
VL	=	Maximum linear velocity in m/s (in/sec)
Ratio 2)	=	Reduction ratio, if any (i.e. 2:1, Ratio =
Speed	=	Required motor speed in rev/sec

Calculate the total inertia of the system

$\mathbf{I}_{\text{total}} = \mathbf{I}_{\text{mass}} + \mathbf{I}_{\text{drive}}$

Where:

l total	=	Total inertia of system (excluding motor inertia), kg-m ² (oz-in ²)
I mass	=	Inertia of mass in kg-m ² (oz-in ²) Metric: I _{mass} = M x [Lead / $(2\pi \times 1000)$] ² English: I _{mass} = W x (Lead / 2π) ²
М	=	Load mass (kg) for metric calculation
W	=	Load weight (lb) for English calculation
Lead	=	Screw lead (m/rev, in/rev)
l _{drive} tables)	=	Inertia of the actuator drive train (see

Is a reducer being included in the system?

To calculate the reflected inertia to the motor, divide the inertia of the mass and drive pulley by the square of the reduction ratio. Add the inertia of the reducer to the total inertia.

$$I_{\text{total}} = \frac{I_{\text{reducer}} + (I_{\text{mass}} + I_{\text{drive}})}{R^2}$$

Where:

Recirculating Bearing Tables Calculations

The useful life of any linear translation table at full catalog specifications is dependent upon the forces acting on its bearing system. These forces include both static components, due to load weight, as well as dynamic components due to accelerations and decelerations of the load required by the motion profile. In multi-axes applications, the load capacity is usually limited by the positioner at the bottom of the stack. In the load/life calculations, it is critical to include the weight of all positioning elements in the total load carried by this lowest table.

The following formulas and examples illustrate the calculation of the forces acting on each bearing block. The service life and suitability of a positioner for a given application are determined by vectorial forces on the critically loaded bearing element.

Several dimensions, which are specific to each linear positioning table model, and the load geometry are required for these computations. These dimensions are supplied in the catalog information for each positioner. The dimensions are referenced as follows:

d₁ = bearing block center-to-center longitudinal spacing

- d₂ = bearing rail center-to-center lateral spacing
- d_a = rail center-to-carriage mounting surface

General Limitations

Linear positioning tables are rated at catalog specifications for performance with a maximum load to provide 100 million inches of travel life. While loads greater than this maximum may be supported, we cannot generally guarantee the accuracy, durability or safety of an overloaded positioner. Please contact our applications engineering team for assistance with highly loaded applications.

Horizontal Translation with Normal Load

Figure 1 shows a normal load applied to the carriage translating horizontally. The vector L, defined by the CG of the load, is shown applied at a point whose coordinate distances from the center of the carriage are given by distances d_3 and d_4 .

With the positioner at rest or moving with uniform velocity, the loads on each of the four bearing blocks are given by the following equations:

P4 =	-[L] [4]	-[L 2	$\left[\frac{d_3}{d_1}\right]$	- L 2	$\frac{d_4}{d_2}$
P ₂ =	[L] [4]	+[<u>L</u> ,	$\left[\frac{d_3}{d_1}\right]$	+ [L]	$\frac{d_4}{d_2}$
P3 =	<u>[</u> []. [4]	[<u>L</u> ,	$\left[\frac{d_3}{d_1}\right]$	L_1	$\frac{d_4}{d_2}$
P4 =	=[L] [4]	+[<u>L</u> ,	$\left[\frac{d_3}{d_1}\right]$	[L 2	$\frac{d_4}{d_2}$

Note that each of the four bearing blocks will experience either compressional or tensional loading; the magnitude of these forces at each bearing is dependent upon the location of the load vector with respect to the center of the positioner carriage. For each bearing, the maximum of the forces in tension and compression is plotted on the load charts for the specific model positioner to determine the life of the table in the application.

The calculations for loads whose CG falls outside the carriage mounting surface area, as shown in Figure 2, are identical to those used with Figure 1. In either case, accelerations and decelerations of the load must be considered in calculating the dynamic forces which determine the life of the system in a particular application.

Horizontal Translation with Side Load

Consider a positioner as shown in Figure 3, which involves a lateral (side) load applied to the carriage which translates horizontally. The load vector (L) is shown applied at a point whose coordinate distances from the center of the carriage bearing system are given by dimensions d₃ and d₄. Note that d₄ is the sum of distance d_a—the distance between bearing and center and carriage surface which is provided for each linear positioner—plus d_b, the distance of the load CG from the mounting surface of the carriage.

The loading felt by each of the four bearing blocks when the positioner is stationary or moving with uniform velocity is given by the following equations:

$$\begin{array}{rll} \mathsf{P}_{1} = & \mathsf{P}_{2} = & \frac{\mathsf{L}}{2} \left[\frac{\mathsf{d}_{4}}{\mathsf{d}_{2}} \right] \\ \mathsf{P}_{3} = & \mathsf{P}_{4} = & - & \frac{\mathsf{L}}{2} \left[\frac{\mathsf{d}_{4}}{\mathsf{d}_{2}} \right] \\ \mathsf{P}_{1s} = & \mathsf{P}_{3s} = & \frac{\mathsf{L}}{4} + \left[\frac{\mathsf{L}}{2} * & \frac{\mathsf{d}_{3}}{\mathsf{d}_{1}} \right] \\ \mathsf{P}_{2s} = & \mathsf{P}_{4s} = & \frac{\mathsf{L}}{4} - \left[\frac{\mathsf{L}}{2} * & \frac{\mathsf{d}_{3}}{\mathsf{d}_{1}} \right] \end{array}$$

Here P₁, P₂, P₃ and P₄ are the normal loads (tensional and compressional) and P₁₅, P₂₅, P₃₅ and P₄₅ are the side loads. For each bearing, the largest side loads and normal loads in both tension and compression are identified for calculating the positioner life in the application.

For round rail/ball bushing type bearings, the forces are plotted individually on the appropriate curves to determine the service life.

For linear motion guide bearing positioners, an "equivalent load per bearing" is calculated for the life determination.

Vertical Translation

The figure above shows a load applied to the positioner carriage which translates vertically. The load vector (L) is shown applied at a point whose coordinate distances from the center of the carriage bearing system are given by distances d_3 and d_4 . Note that here d_3 is the sum of distance d_a , which is given for the particular linear positioner plus d_b , the distance of the load CG from the mounting surface of the carriage. d_4 is the horizontal distance of the load vector (L) from the carriage center-line.

The loading felt by each of the four bearing blocks when the positioner is stationary or moving with uniform velocity is given by the following equations:

$$\begin{split} \mathsf{P}_{1} &= \ \mathsf{P}_{3} = \ \frac{\mathsf{L}}{2} \begin{bmatrix} \mathsf{d}_{3} \\ \mathsf{d}_{4} \end{bmatrix} \\ \mathsf{P}_{2} &= \ \mathsf{P}_{4} = - \ \frac{\mathsf{L}}{2} \begin{bmatrix} \mathsf{d}_{3} \\ \mathsf{d}_{4} \end{bmatrix} \\ \mathsf{P}_{1s} &= \ \mathsf{P}_{3s} = \frac{\mathsf{L}}{\mathsf{d}_{4}} \begin{bmatrix} \mathsf{d}_{4} \\ \mathsf{d}_{2} \end{bmatrix} \\ \mathsf{P}_{2s} &= \ \mathsf{P}_{4s} \underbrace{\mathsf{d}_{-}}_{\mathsf{d}_{-}} - \frac{\mathsf{L}}{2} \begin{bmatrix} \mathsf{d}_{4} \\ \mathsf{d}_{2} \end{bmatrix} \end{split}$$

 P_1 through P_4 and P_{1S} through P_{4S} are respectively the normal and side loads on each bearing block. For each bearing, the largest side loads and normal loads in both tension and compression are determined and, for linear motion guides, "equivalent loads" are computed from the equations in the XR manual following the same procedure described in the preceding section for Horizontal Translation with Side Load to calculate the positioner life in the applications.

Once more, accelerations and decelerations of the load must be considered in calculating the dynamic forces which determine the life of the system in a particular application.

Calculate Life Expectancy

As with all mechanical components, the life expectancy of the screw driven actuators is influenced by many factors, including loads, speeds, lubrication, temperature, and mounting.

Measurement of Usable Life

Ballscrew

Usable life is the length of travel that 90% of a group of ball bearing screws will complete or exceed before metal fatigue develops. Fatigue is from the flexing of metal as the balls pass over a given point under load. This is in evidence when "rough spots" or "drag" (points of excessive friction) begin to appear along the travel of the actuator.

Note: Predicting the life of a ball screw is done in the same manner as the bearing industry rates ball bearings, by its B_{10} life. The B_{10} life means that 10% of the units could fail before reaching the required travel (at max rated load) and that 50% of the units will exceed 5 times the rated travel.

Belt Drive Life Expectancy

Parker EM&D specifies the loading capacity of the HPLA and HLE units to 15,000 hours of operation. Specifying for this life would equate to operating in motion for 10 hours per day, 250 days per year, for 6 years continuously. For information on sizing and selecting our belt driven products please refer to parker. com/emn and download DimAxes sizing software.

To Use Charts in Each Section: (Ballscrew actuators only)

 Determine required life (in millions of millimeters or inches of travel). Life is determined by multiplying the total stroke in inches or mm by the total number of strokes required for the designed life of the equipment.

$$L_{m} = \sqrt{\frac{\%1(L_{1})^{2} + \%_{2}(L_{2})^{2} + \%_{3}(L_{3})^{2} + \%_{n}(L_{n})^{2}}{100}}$$

Where

L_m = equivalent load

 $L_n = each increment of load$

 \ddot{W}_n = percent of stroke at load L_n

For Example:

$$\begin{array}{rcl} L_{1} &=& 150 \# \ \%_{1} = 30\% \\ L_{2} &=& 225 \# \ \%_{2} = 45\% \\ L_{3} &=& 725 \# \ \%_{3} = 25\% \\ \hline & & \\ L_{m} = \sqrt{ \frac{30 \ (150)^{2} + 45(225)^{2} + 25(725)^{2}}{100} } \\ L_{m} &=& 466 \ \text{lbs.} \end{array}$$

-
- 2. Calculate the equivalent load $\rm L_{\rm m}$
- 3. Find the point at which load and life intersect.
- 4. Select actuator screw combination to the right of or above the point of intersection.

COMPLETE SYSTEM ANALYSIS

Positioning System Analysis

System Modeling

Physical Model

System modeling is important for developing a better understanding of the effects that various design variables, operating conditions and selected motion control components have on the overall positioning system performance. Modeling starts with a physical system to be modeled. For example, the picture shows a positioning system in a compound X,Y,Z configuration. In the following sections we will model and analyze a typical axis of similar machines.

Schematic Diagram

Once the physical model is defined, a schematic diagram shows the main mechanical components, which are included in the theoretical model, and the way they interact. The diagram shows for example a model of a positioning stage with mass M, driven by a motor force and carrying a flexible structure with mass m, stiffness K and Damping B. The schematic diagram is then used for writing the equations of motion of the theoretical model.

Block Diagram & Transfer Functions

(See the next section on Frequency Response for Parameter definitions.)

The block diagram represents the motion control process within the system with all of its modeled components. The arrows represent the flow of signals within the system from one component to another. The block themselves contain expressions that are called Transfer Functions. Transfer Functions include operators (e.g., "S" designating differentiation and "1/S" designating Integration) and parameters that together describe the equations of motion of each block, which relate the output variable of a block to its input variable.

Transfer functions are used to determine the ratio between the magnitude of the output variable to the magnitude of the input variable. This ratio is called "gain" and it is measured in units of dB, where dB is defined as 20* Log (output / Input). Furthermore, Transfer Functions are used to calculate the "phase angle" which is the lag or lead of the output signal versus the input signal measured in degrees. The plot that shows the gain and the phase angle as a function of input frequency is called "Bode Plot".

Frequency Response

The purpose of Frequency Response Analysis, as shown below, is to help in understanding the motion characteristic of each component in the positioning system, as well as the characteristics of the system as a whole. The plots display the "gain" in units of db, (20* log (output / input) and "phase angle" in degrees for each block in the Block Diagram. Both plots are shown as a function of the frequency of the input variable and referred to as Bode Plots. The frequency in the plots is displayed in logarithmic scale. For example 1 represents 10^1 rad/sec, 2 represents $10^2 = 100$ rad/sec, etc. The analysis is important in determining the Closed Loop Bandwidth of the system, as well as its stability.

Components

Controller - PID

The PID transfer function, has the "positioning error" signal as an input and the "Controller command" signal to the amplifier as an output. It shows high gain (ratio of output signal to input signal) in low frequencies, acting as a low pass filter. It also has high gain at high frequencies, acting as a high pass filter. And finally it has lower gain in some intermediate frequencies, reducing the effects of various vibration causes such as structural resonance, bearing jitter, cogging, and tool vibrations.

The low pass filter, caused by the integrator term, Ki, amplifies small errors, such as those caused by friction, and reduces them over time. The high-pass filter, caused by the derivative gain, Kd, allows the system to lead its reaction to high frequency errors. The phase angle of the output signal versus the input signal starts at -90 degrees Lag and ends up at 90 degrees lead. The purpose of the PID transfer function is to shape the overall transfer function of the positioning system, by choosing the right set of PID parameters, Kp, Ki, Kd, to obtain a fast responding, stable, system with high closed-loop bandwidth.

Servo Amplifier

The amplifier transfer function, has "controller command" signal as an input and "motor voltage" as an output. As shown, the output signal follows the input signal at low frequencies with a constant gain, as determined by the parameter, Ka, of the amplifier. At a certain frequency, called the cutoff frequency, the gain starts to attenuate as frequency increases. The phase angle shows zero lag until the frequency reached the cutoff value, then the output starts to lag to a maximum of -90 degrees at very high frequencies. The cutoff frequency is the inverse of the amplifier time constant Ta, as shown in the transfer function. A time constant is the time it takes for the output signal to reach the level of 63% of a step in the input signal.

Amplifier Frequency Response

Motor/Stage

The combined Motor/Stage transfer function, has "motor voltage" as an input and "stage position" as an output. The gain shows a characteristic of reducing magnitude at a rate of 20 db/decade (decade is a multiple of 10 in frequency change) until a resonant frequency is reached. Then the gain attenuation becomes steeper and reduces at a rate of 60 db/decade. The phase angle starts out at a -90 degrees until the resonance frequency and then it drops an additional 180 degrees to a total of -270. The transfer function of this block has two time constants. One is the electrical time constant of the motor (L/R) and the other is the mechanical time constant of the stage (M \bullet R /Kf \bullet K_F). Where,

L = Motor Coil Inductance R = Motor Coil Resistance Kf = Motor Force Constant K_E = Motor Back EMF M = Stage Moving Weight

Structure

Motor / Stage Frequency Response

The structure transfer function, has the "stage position" as an input and the actual "structure position" of a point of interest on the structure (e.g. Encoder location) as the output. This is a classical transfer function of a mass, spring, damper system with a positive position excitation of the base.

The gain starts at 1 (zero dB) with low frequencies and gradually increases and reaches a peak at the natural frequency of the structure. Then the gain drops at a rate of 40 dB / decade at higher frequencies. The phase angle starts out as zero, at low frequency, and drops 180 degrees around the natural frequency. Finally it gains additional 90 degrees to a total of -90 degrees at very high frequencies. The parameters that characterize this system are as follows:

- m- Structural Mass
- K- Structural Stiffness
- B- Structural Damping

Where the natural frequency of the structure Wn = sqrt (K/m)

Complete System

Overall Positioning System Bode Plot

The overall transfer function of the positioning system model, as shown in the Bode Plot, is made as the superposition of all transfer functions of the individual components. The most important features of this plot are the closed loop bandwidth of the system and the two stability criteria: Phase Margin and Gain Margin. The closed loop bandwidth is determined by the frequency where the gain of the overall transfer function (known as open loop transfer function) crosses the 0 dB line, also referred to as a cross over frequency. The difference between the phase angle at the cross over frequency and -180 degrees is called Phase Margin. For a stable system the Phase margin must be greater than zero. The difference between the gain of zero db and the gain at -180 degrees is called the Gain Margin. For a stable system the gain margin must be greater than zero.

The closed loop bandwidth in the example at the chart is about 48 Hz (300 rad/sec, between 102 and 103 in the chart). The phase margin is about 30 degrees and the gain margin is a few dB, indicating a marginally stable system. The signatures of the PID, Motor/Amplifier and structure are clearly noticeable in the overall plot.

100 60 ^ehase Angle (degrees) 0 60 -100 Gain (db) -150 gain 200 phase angle -250 300 -350 -400 450 Log W (rad /sec)

Complete System Frequency Response

GLOSSARY OF TERMS

Absolute Positioning: Refers to a motion control system employing position feedback devices (absolute encoders) to maintain a given mechanical location.

Accuracy: The difference between the expected The maximum deviation between a commanded position and an actual position of a positioning stage. Accuracy is typically specified for + 3 sigma deviation per given travel.

Actuator: A device which creates mechanical motion by converting various forms of energy to mechanical energy.

Adaptive Control: A technique to allow the control to automatically compensate for changes in system parameters such as load variations.

Abbe Error: A linear positioning error caused by a combination of an angular error in the ways, and an offset between the precision determining element (lead screw, feedback device, etc.) and the actual point of interest.

Ambient Temperature: The temperature of the cooling medium, usually air, immediately surrounding the device such as a motor.

Amplifier: Electronics which convert low level command signals to high power voltages and currents to operate a servomotor.

Back EMF: The electromagnetic force (voltage) generated as coil windings move through the magnetic field of the permanent magnets in a brushless servomotor. This voltage is proportional to motor speed and is present regardless of whether the motor windings are energized or de-energized.

Closed Loop: A broadly applied term relating to any system where the output is measured and compared to the input. The output is then adjusted to reach the desired condition. In motion control the term is used to describe a system wherein a velocity or position (or both) transducer is used to generate correction signals by comparison to desired parameters.

Coefficient of Friction: This is defined as the ratio of the force required to move a given load to the magnitude of that load. Typical values for the ball and crossed roller slides are 0.001 to 0.005.

Cogging: A term used to describe non-uniform angular velocity. Cogging appears as jerkiness especially at low speeds.

Command Position: The desired angular or linear position of an actuator.

Commutation: A term which refers to the action of steering currents or voltage to the proper motor phases so as to produce optimum motor torque. In brush type motors, commutation is done electromechanically via brushes and commutator. In brushless motors, commutation is done by the switching electronics using rotor position information typically obtained by hall sensors, a resolver or an encoder.

Compliance: The amount of displacement per unit of applied force.

Coordinated Motion: Multi-axis motion where the position of each axis is dependent on the other axis such that the path and velocity of a move can be accurately controlled (requires coordination between axes).

Damping: An indication of the rate of decay of a signal to its steady state value.

Dead Band: A range of input signals for which there is no system response.

Detent Torque: The maximum torque that can be applied to an de-energized stepping motor without causing continuous rotating motion.

Duty Cycle: For a repetitive cycle, the ratio of on time to total cycle time: Duty Cycle = On Time/(On Time + Off Time) x 100%

Dynamic Braking: A passive technique for stopping a permanent magnet brush or brushless motor. The motor windings are shorted together through a resistor which results in motor braking with an exponential decrease in speed.

Efficiency: The ratio of output power to input power.

Explosion-proof: A motor classification that indicates a motor is capable of withstanding internal explosions without bursting or allowing ignition to reach beyond the confines of the motor frame.

Flatness of Travel: Deviation from ideal straight line travel in a vertical plane, also referred to as vertical runout.

Following Error: The positional error during motion resulting from use of a position control loop with proportional gain only.

Friction: A resistance to motion caused by surfaces rubbing together. Friction can be constant with varying speed (coulomb friction) or proportional to speed (viscous friction) or present at rest (static friction).

Hall Sensors: A feedback device which is used in a brushless servo system to provide information for the amplifier to electronically commutate the motor. The device uses a magnetized wheel and hall-effect sensors to generate the commutation signals.

Holding Torque: Sometimes called static torque, it specifies the maximum external force or torque that can be applied to a stopped, energized motor without causing the rotor to rotate continuously.

Home Position: A reference position for all absolute positioning movements. Usually defined by a home limit switch and/or encoder marker. Normally set at power up and retained for as long as the control system is operational.

Horsepower (HP): One horsepower is equal to 746 watts. Since Power = Torque x Speed, horsepower is a measure of a motor's torque and speed capability (e.g. a 1 HP motor will produce 35 in-lb. at 1,800 RPM).

Hunting: The oscillation of the system response about a theoretical steady-state value.

Incremental Motion: A motion control term that is used to describe a device that produces one step of motion for each step command (usually a pulse) received.

Indexer: Electronics which convert high level motion commands from a host computer, programmable controller, or operator panel into step and direction pulse streams for use by the stepping motor driver.

Inertia: The property of an object to resist changes in velocity unless acted upon by an outside force. Higher inertia objects require larger torques to accelerate and decelerate. Inertia is dependent upon the mass and shape of the object.

Inertial Match: An inertial match between motor and load is obtained by selecting the coupling ratio such that the load moment of inertia referred to the motor shaft is equal to the motor moment of inertia.

Limits: Motion control systems may have sensors called limits that alert the control electronics that the physical end of travel is being approached and that motion should stop.

Linear Coordinated Move: A coordinated move where the path between endpoints is a line.

Linearity: For a speed control system it is the maximum deviation between actual and set speed expressed as a percentage of set speed. Parameter is mechanical velocity.

Master Slave Motion Control: A type of coordinated motion control where the master axis position is used to generate one or more slave axis position commands.

Optically Isolated: A system or circuit that transmits signals with no direct electrical connection. Used to protectively isolate electrically noisy machine signals from low-level control logic.

Orthogonality: The degree of perpendicularity, or squareness, between the two axes in an X-Y or X-Z table. This parameter is usually measured in arc-seconds or microradians.

Oscillation: An effect that varies periodically between two values.

Overshoot: The amount that the parameter being controlled exceeds the desired value for a step input.

Phase-Locked Servo System: A hybrid control system in which the output of an optical tachometer is compared to a reference square wave signal to generate a system error signal proportional to both shaft velocity and position errors.

Point-to-Point Move: A multi-axis move from one point to another where each axis is controlled independently. (No coordination between axes is required).

Position Error: The difference between the present actuator (feedback) value and the desired position command for a position loop.

Position Feedback: Present actuator position as measured by a position transducer.

Power: The rate at which work is done. In motion control, Power = Torque x Speed.

Repeatability: The degree to which the positioning accuracy for a given move performed repetitively can be duplicated.

Resolution: The smallest positioning increment that can be achieved. Frequently defined as the number of steps or feedback units required for a motor's shaft to rotate one complete revolution.

Resolver: A position transducer utilizing magnetic coupling to measure absolute shaft position over one resolution.

Resonance: The effect of a periodic driving force that causes large amplitude increases at a particular frequency. (Resonance frequency).

Settling Time: The time required for a step response of a system parameter to stop oscillating or ringing and reach its final value.

Slew: In motion control, the portion of a move made at a constant non-zero velocity.

Slew Speed: The maximum velocity at which an encoder will be required to perform.

Stiffness: Ratio of an applied force or torque to change in position for a mechanical system. Ability of an object to resist deformation.

Straightness of Travel: Deviation from straight line motion in a horizontal plane. Also referred to as horizontal runout. This error is usually traceable to an underlying angular error of the ways.

T.I.R.: This stands for Total Indicator Reading, which reflects the total absolute deviation from a mean value (versus a + value which indicates the deviation from a nominal value).

Torque Constant: A number representing the relationship between motor input current and motor output torque. Typically expressed in units of torque/amp.

Torque Ripple: The cyclical variation of generated torque given by product of motor angular velocity and number of commutator segments.

Torque-to-Inertia Ratio: Defined as a motor's torque divided by the inertia of its rotor, the higher the ratio the higher the acceleration will be.

Transducer: Any device that translates a physical parameter into an electrical parameter. Tachometers and encoders are examples of transducers.

Velocity Ripple: Disturbances in the programmed velocity profile due to changes in magnetic flux and commutation switching.

Voltage Constant: (or Back EMF Constant) A number representing the relationship between Back EMF voltage and angular velocity. Typically expressed as V / kRPM.

Yaw: An angular deviation from ideal straight line motion, in which the positioning table rotates around the Z (vertical) Axis as it translates along its travel axis.

OFFER OF SALE

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the "Offer of Sale/Parker As Seller" found on **parker.com/emdusa**

WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

© Copyright 2019, Parker Hannifin Corporation, All Rights Reserved

Extensive Automation Solutions

HMI

Parker offers HMI solutions for every application, from simple push-button replacement to sophisticated networking, multimedia, and data logging requirements.

www.parker.com/hmi

Gearheads

With expert machining and high precision designs, Parker gearheads have precision options with less than three arc-minutes of backlash. Other options include NEMA sizes, right angle, dual drive, and more.

www.parker.com/gearheads

Air Control Valves

Valve technology that meets the most demanding requirements in any industrial application. www.parker.com/pneu/valve

Controllers

Parker automation controllers have advanced features builtin, such as kinematics transformation for the control of robots and other non-linear functions.

www.parker.com/emn/pac

Positioners

Parker offers best-

in-class positioner

designs with screw,

drive technologies.

Our award-winning

designs lead the way

flexibility and precision

with unmatched

www.parker.com/linear

Air Preparation

Parker, the industry

offers a complete line

of products to ensure

clean, dry, oil-free air.

www.parker.com/pneu/airprep

leader in air preparation,

capabilities.

belt, or linear motor-

Drives

Parker servo, stepper, and variable frequency drives deliver maximum power output and performance with optional integrated control capability and multiple communication protocols.

www.parker.com/drives

Manual Positioners

Parker has been a leader in supplying manual positioners for over forty years. Free travel linear slides and precision positioners range in size from less than half an inch wide to 6 inches wide, with capacities of hundreds of pounds.

www.parker.com/linear

Pneumatic Actuators

Aluminum and steel pneumatic cylinders, guided cylinders, rodless cylinders, and short stroke thrusters from the industry leader. www.parker.com/pneu/cylinders

Motors

Parker rotary motors provide maximum torque density, cogfree rotary motion for the best low-speed smoothness and the greatest winding uniformity and accuracy in the industry.

www.parker.com/motors

Cylinders

Parker has one of the most complete electric cylinder product lines available, with high speed linear motor versions, high-force ball screw cylinders, extreme-force roller screw cylinders, and more.

www.parker.com/cylinder

Structural Automation

Parker has over 150 metric and inch profiles, integral motion components, and accessories for unlimited configurations, in premachined kits or complete assemblies.

www.parker.com/ips

EM&D Sales Offices

Australia

Parker Hannifin (Australia) Pty Ltd.

9 Carrington Road Castle Hill NSW 2154 Australia Tel: +61 (0) 2 9634-7777 Fax: +61 (0) 2 9634 3749

Brazil

Parker Hannifin Ind. Com Ltda.

Av. Lucas Nogueira Garcez 2181 Esperança 12325-900 Jacareí, SP Tel: 12 3954 5100 Fax: 12 3954 5262 Email: automation.brazil@parker.com

Canada

Parker Hannifin (Canada) Inc.

160 Chisholm Dr Milton, Ontario L9T 3G9 Tel: 905-693-3000 Fax: 905-876-1958 Email: miltoncustservice@parker.com

China

Parker Hannifin Motion & Control

(Shanghai) Co., Ltd 280 Yunqiao Rd. Jin Qiao Export Processing Zone Shanghai 201206, China Tel: (86-21) 50312525 Fax: (86-21) 64459717

France

Parker Hannifin Manufacturing France SAS

4 Boulevard Eiffel CS 40090 21604 Longvic France Tel +33 (0) 3 80 42 41 40 Fax +33 (0) 3 80 42 41 30

Germany

Electromechanical Europe Parker Hannifin GmbH & Co KG

Robert-Bosch-Strasse 22 D-77656 Offenburg Germany Tel: +49 (0) 781 509 0 Fax: +49 (0) 781 509 98176 Email: em-motion@parker.com

© 2020 Parker Hannifin Corporation Catalog 8092

India

Parker Hannifin India Pvt. Ltd Automation Group-SSD Drives Div.

133 & 151 Developed Plots Estate Perungudi, Chennai 600 096 Tel: 044-4391-0799 Fax: 044-4391-0700

Italy

Parker Hannifin SpA

Via Gounod 1 20092 Cinsello Balsamo Milano, Italy Tel: +39 02 361081 Fax: +39 02 36108400 Email: em-motion@parker.com

Korea

Parker Hannifin Korea

9th Floor KAMCO Yangjae Tower 949-3 Dogok 1-dong Gangnam-gu Seoul 135-860, Korea Tel: 82-2-559-0454 Fax: 82-2-556-8187

Mexico

Parker Hannifin de Mexico

Eje uno Norte No.100 Parque Industrial Toluca 2000 Toluca, CP 50100 México Tel: 52-722-275-4200 Fax: 52-722-279-0316

Singapore

Parker Hannifin Singapore Pte Ltd

11, Fourth Chin Bee Road Singapore 619702 Tel: (65) 6887 6300 Fax: (65) 6265 5125/6261 4929

Taiwan

Parker Hannifin Taiwan Co., Ltd

No. 40, Wuchiuan 3rd Road Wuku Industrial Park Taipei County, Taiwan 248 ROC Tel: 886 2 2298 8987 Fax: 886 2 2298 8982

Thailand

Parker Hannifin (Thailand) Co., Ltd.

1265 Rama 9 Road Suanluang, Bangkok 10250 Thailand Tel: (66) 2 186 7000 Fax: (66) 2 374 1645

Parker Hannifin Electromechanical & Drives Division

www.parker.com/emdusa 1140 Sandy Hill Road

Irwin, PA 15642 USA Tel: (724) 861-8200 800-245-6903 Fax: (724) 861-3330 Email: emn_support@parker.com

UK

Parker Hannifin Ltd. Tachbrook Park Drive Tachbrook Park Warwick CV34 6TU Tel: +44 (0) 1926 317970 Fax: +44 (0) 1926 317980

USA

Parker Hannifin Electromechanical & Drives Division (Intelligent Motion)

1140 Sandy Hill Road Irwin, PA 15642 USA Tel: (724) 861-8200 800-245-6903 Fax: (724) 861-3330 Email: emn_support@parker.com

Parker Hannifin Electromechanical & Drives Division (Gearhead & Motor)

2101 North Broadway New Ulm, Minnesota 56073 USA Tel: (507) 354-1616 800-358-9070 Fax: (507) 233-2390 Email: emn_support@parker.com

Parker Hannifin Electromechanical & Drives Division (Intelligent Motion)

5500 Business Park Drive Rohnert Park, CA 94928 USA Tel: (707) 584-7558 800-358-9070 Fax: (707) 584-8015 Email:emn_support@parker.com

Parker Hannifin Electromechanical & Drives Division (IPS)

135 Quadral Drive Wadsworth, OH 44281 USA Tel: (330) 334-3335 800-358-9070 Fax: (330) 334-2350 Email: emn_support@parker.com

2.2020